Practice B

8-6 Radical Expressions and Rational Exponents

Simplify each expression. Assume all variables are positive.

1.
$$\sqrt[3]{125x^9}$$

2.
$$\sqrt[4]{\frac{x^8}{81}}$$

3.
$$\sqrt[3]{\frac{64x^3}{8}}$$

Write each expression in radical form, and simplify.

4.
$$64^{\frac{5}{6}}$$

5.
$$27^{\frac{2}{3}}$$

6.
$$(-8)^{\frac{4}{3}}$$

Write each expression by using rational exponents.

7.
$$\sqrt[5]{51^4}$$

8.
$$(\sqrt{169})^3$$

9.
$$\sqrt{36^{14}}$$

Simplify each expression.

10.
$$4^{\frac{3}{2}} \cdot 4^{\frac{5}{2}}$$

11.
$$\frac{27^{\frac{4}{3}}}{27^{\frac{2}{3}}}$$

12.
$$(125^{\frac{2}{3}})^{\frac{1}{2}}$$

13.
$$(27 \cdot 64)^{\frac{2}{3}}$$

14.
$$\left(\frac{1}{243}\right)^{\frac{1}{5}}$$

15.
$$64^{-\frac{1}{3}}$$

16.
$$(-27x^6)^{\frac{1}{3}}$$

17.
$$\frac{(25x)^{\frac{3}{2}}}{5 \cdot x^{\frac{1}{2}}}$$

18.
$$(4x)^{-\frac{1}{2}} \cdot (9x)^{\frac{1}{2}}$$

Solve.

19. In every atom, electrons orbit the nucleus with a certain characteristic velocity known as the Fermi–Thomas velocity, equal to $\frac{Z^{\frac{2}{3}}}{137}c$, where Z is the number of protons in the nucleus and c is the speed of light. In terms of c, what is the characteristic Fermi-Thomas velocity of the electrons in Uranium, for which Z = 92?