\qquad Date \qquad Class \qquad

Lessom, Practice B

8-6. Radical Expressions and Rational Exponents

Simplify each expression. Assume all variables are positive.

1. $\sqrt[3]{125 x^{9}}$
2. $\sqrt[4]{\frac{x^{8}}{81}}$
3. $\sqrt[3]{\frac{64 x^{3}}{8}}$

Write each expression in radical form, and simplify.
4. $64^{\frac{5}{6}}$
5. $27^{\frac{2}{3}}$
6. $(-8)^{\frac{4}{3}}$

Write each expression by using rational exponents.
7. $\sqrt[5]{51^{4}}$
8. $(\sqrt{169})^{3}$
9. $\sqrt[7]{36^{14}}$

Simplify each expression.
10. $4^{\frac{3}{2}} \cdot 4^{\frac{5}{2}}$
11. $\frac{27^{\frac{4}{3}}}{27^{\frac{2}{3}}}$
12. $\left(125^{\frac{2}{3}}\right)^{\frac{1}{2}}$
13. $(27 \cdot 64)^{\frac{2}{3}}$
14. $\left(\frac{1}{243}\right)^{\frac{1}{5}}$
15. $64^{-\frac{1}{3}}$
16. $\left(-27 x^{6}\right)^{\frac{1}{3}}$
17. $\frac{(25 x)^{\frac{3}{2}}}{5 \cdot x^{\frac{1}{2}}}$
18. $(4 x)^{-\frac{1}{2}} \cdot(9 x)^{\frac{1}{2}}$

Solve.
19. In every atom, electrons orbit the nucleus with a certain characteristic velocity known as the Fermi-Thomas velocity, equal to $\frac{Z^{\frac{2}{3}}}{137} c$, where Z is the number of protons in the nucleus and c is the speed of light. In terms of c, what is the characteristic Fermi-Thomas velocity of the electrons in Uranium, for which $Z=92$?

