Practice B

9-4 Operations with Functions

Use the following functions for Exercises 1–18.

$$f(x)=\frac{1}{2x}$$

$$g(x) = x^2$$

$$h(x) = x - 8$$

$$k(x) = \sqrt{x}$$

Find each function.

1.
$$(gk)(x)$$

2.
$$(g + h)(x)$$

3.
$$(g - h)(x)$$

4.
$$(fg)(x)$$

5.
$$(gh)(x)$$

6.
$$\left(\frac{f}{g}\right)(x)$$

Find each value.

7.
$$g(k(9))$$

8.
$$h(g(-3))$$

9.
$$g(h(-3))$$

10.
$$k(h(12))$$

11.
$$f(g(4))$$

Write each composite function. State the domain of each.

13.
$$f(g(x))$$

14.
$$h(g(x))$$

15.
$$h(k(x))$$

$$16. \ \overline{f(k(x))}$$

17.
$$k(g(x))$$

18.
$$k(h(x))$$

Solve.

- **19.** A retail shoe store manager sets the price of shoes at twice his cost. The shoe store is now offering a 40% discount on all shoes.
 - **a.** Write a composite function for the price of a pair of shoes after the discount.
 - **b.** If a pair of shoes cost the manager \$25, what is the sale price?

Practice A 9-4 Operations with Functions

Use the following functions for Exercises 1–18.

 $g(x) = x - 3 \qquad h(x) = x^2 - 9$

k(x) = 2x

1. (ak)(x)

4. (fg)(x)

Find each value.

7. *g*(*k*(9))

10. *k*(*h*(12))

13. f(g(x))

16. $\overline{f(k(x))}$

Find each function.

9-4 Operations with Functions Use the following functions for Exercises 1–18.

 $f(x) = \frac{1}{2x}$ $g(x) = x^2 h(x) = x - 8$

 $\chi^2 \sqrt{\chi}$

9

 $f(g(x)) = \frac{1}{2x^2};$

 $\{x \mid x \neq 0\}$

 $f(k(x)) = \frac{\sqrt{x}}{2x};$

 $\{x \mid x > 0\}$

Practice B

2. (q + h)(x)

5. (*gh*)(*x*)

8. h(g(-3))

11. *f*(*g*(4))

14. h(g(x))

17. k(g(x))

Write each composite function. State the domain of each.

 $x^2 + x - 8$

 $x^3 - 8x^2$

 $h(g(x)) = x^2 - 8;$ {x | x is a real

number}

 $k(g(x)) = \pm x;$ $\{x \mid x \text{ is a real}\}$

number}

 $k(x) = \sqrt{x}$

 $x^2 - x + 8$

2x³

121

14

 $h(k(x)) = \sqrt{x} - 8;$

 $\{x \mid x \geq 0\}$

 $k(h(x)) = \sqrt{x-8}$;

 $\{x\mid x\geq 8\}$

3. (a - h)(x)

6. $\left(\frac{f}{g}\right)(x)$

9. g(h(-3))

12. *f*(*h*(1))

15. h(k(x))

18. k(h(x))

Find each function.

1. (ak)(x) $= g(x) \cdot k(x)$ = (x - 3)(2x) **2.** (a + k)(x)

3. (k-f)(x)

5. (hk)(x)

6. $\left(\frac{h}{g}\right)(x)$

2 where $x \neq 0$

 $2x^3 - 18x$

x + 3 where $x \neq 3$

7. (h + f)(x) $x^2 + x - 9$ 8. (g - k)(x)-x - 3 **9.** (g + h)(x)

Find each value.

10. g(h(10))= $g(10^2 - 9) = g(91)$

 $x^2 + x - 12$

12. f(g(2))

11. *g*(*f*(-1))

14. *h*(*g*(3))

15. *h*(*k*(-3))

16. k(f(-2))

17. k(g(0))

-6

27

18. *k*(*h*(1))

19. The area of a square is represented by the function $A(x) = x^2$, where x is the length of a side of the square in yards.

a. Write a composite function for the area of a square in square feet.

Let g(x) = 3x, so $A(g(x)) = 9x^2$

b. Find the area in square feet of a square with a side length of 4 yards.

144 ft²

Solve.

19. A retail shoe store manager sets the price of shoes at twice his cost. The shoe store is now offering a 40% discount on all shoes.

a. Write a composite function for the price of a pair of shoes after the discount.

f(g(x)) = 1.2x

b. If a pair of shoes cost the manager \$25, what is the sale price?

\$30

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

28

Holt Algebra 2

Practice C 9-4 Operations with Functions

Use the following functions for Exercises 1–18.

 $f(x) = -\frac{1}{x}$

 $g(x) = x^2 - 36x$ h(x) = 6 - x

 $k(x) = \sqrt{x}$

 $-x^3+36x^2$

-243

Holt Algebra 2

Find each function.

1. (fa)(x)

2. (g + h)(x)

3. $\left(\frac{g}{f}\right)(x)$

-x + 36

 $x^2 - 37x + 6$

4. f(g(-1))

7. g(k(9))

5. h(g(0))

8. h(g(-3))

9. g(h(-3))

6. h(k(121))

10. k(h(-10))

11. k(f(-4))

6

-111

12. *f*(*h*(1))

Write each composite function. State the domain of each.

13. f(g(x))

14. k(h(x))

15. h(k(x))

 $f(g(x)) = -\frac{1}{x^2 - 36x};$

 $k(h(x)) = \sqrt{6-x};$ $\{x \mid x \neq 0 \text{ and } x \neq 36\} \qquad \{x \mid x \leq 6\}$

 $h(k(x)) = 6 - \sqrt{x};$ $\{x \mid x \geq 0\}$

16. f(k(x))

f(k(x)) = $-\frac{1}{\sqrt{X}};\{x\mid x>0\}$

17. k(g(x))k(g(x)) = $\sqrt{x^2-36x}$; $\{x \mid x \ge 36 \text{ or } x \le 0\}$

18. h(g(x)) $h(g(x)) = -x^2 +$ 36x + 6; {x | x is a real number}

Solve.

19. The cost of renting a banquet hall for an event is \$300 plus \$30 for each person attending the event. If the hall provides live music, the cost is 40% more per person.

a. Write a function for the cost of an event that

b. How much is the cost of an event for 125 people

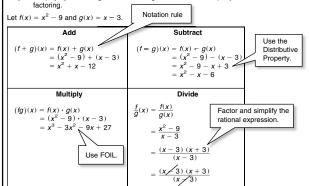
 $\underline{f(g(x))} = 300 + 42x$ \$5550

Copyright © by Holt, Rinehart and Winston.

29

Holt Algebra 2

Reteach


9-4 Operations with Functions

Follow these steps to perform operations with functions.

Step 1 Use the notation rule for the operation.

Step 2 Substitute each function into its rule.

Step 3 Simplify by combining like terms, using the Distributive Property, and/or

= x + 3 where $x \neq 3$

Given $f(x) = 4x^2 - 1$ and g(x) = 2x - 1, find each function.

(f+g)(x)=f(x)+g(x)

3. (fg)(x)

 $= 4x^2 - 1 + 2x - 1 = 4x^2 + 2x - 2$

 $(fg)(x) = f(x) \cdot g(x)$

 $= 4x^2 - 1 - (2x - 1) = 4x^2 - 2x$ **4.** $\frac{f}{g}(x)$

 $= (4x^{2} - 1) (2x - 1)$ = $8x^{3} - 4x^{2} - 2x + 1$

 $\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{4x^2 - 1}{2x - 1}$ $=\frac{(2x+1)(2x-1)}{}$ 2x - 1= 2x + 1, where $x \neq \frac{1}{2}$

(f-g)(x) = f(x) - g(x)

Copyright © by Holt, Rinehart and Winston. 30 Holt Algebra 2