\qquad Date \qquad Class \qquad

LEsson Practice B

9-4 Operations with Functions

Use the following functions for Exercises 1-18.
$f(x)=\frac{1}{2 x}$
$g(x)=x^{2}$
$h(x)=x-8$
$k(x)=\sqrt{x}$

Find each function.

1. $(g k)(x)$
2. $(g+h)(x)$
3. $(g-h)(x)$
4. $(f g)(x)$
5. $(g h)(x)$
6. $\left(\frac{f}{g}\right)(x)$

Find each value.
7. $g(k(9))$
8. $h(g(-3))$
9. $g(h(-3))$
10. $k(h(12))$
11. $f(g(4))$
12. $f(h(1))$

Write each composite function. State the domain of each.
13. $f(g(x))$
14. $h(g(x))$
15. $h(k(x))$
16. $f(k(x))$
17. $k(g(x))$
18. $k(h(x))$

Solve.
19. A retail shoe store manager sets the price of shoes at twice his cost. The shoe store is now offering a 40% discount on all shoes.
a. Write a composite function for the price of a pair of shoes after the discount.
b. If a pair of shoes cost the manager $\$ 25$, what is the sale price?

Practice A

9-4 Operations with Functions

Use the following functions for Exercises 1-18

$f(x)=x \quad g(x)$	$x-3 \quad h(x)=x^{2}-9$	$k(x)=2 x$
Find each function.		
$\text { 1. } \begin{aligned} &(g k)(x) \\ &=g(x) \cdot k(x) \\ &=(x-3)(2 x) \end{aligned}$	2. $(g+k)(x)$	3. $(k-f)(x)$
$2 x^{2}-6 x$	$3 x-3$	\boldsymbol{X}
4. $\left(\frac{k}{f}\right)(x)$	5. $(h k)(x)$	6. $\left(\frac{h}{g}\right)(x)$
2 where $x \neq 0$	$2 x^{3}-18 x$	$x+3$ where $x \neq 3$
7. $(h+f)(x)$	8. $(g-k)(x)$	9. $(g+h)(x)$
$x^{2}+x-9$	$-x-3$	$x^{2}+x-12$
Find each value.		
10. $\begin{aligned} & g(h(10)) \\ & =g\left(10^{2}-9\right)=g(91) \end{aligned}$	11. $g(f(-1))$	12. $f(g(2))$
88	-4	-1
13. $g(k(3))$	14. $h(g(3))$	15. $h(k(-3))$
3	-9	27
16. $k(f(-2))$	17. $k(g(0))$	18. $k(h(1))$
-4	-6	-16

Solve
19. The area of a square is represented by the function $A(x)=x^{2}$, where x
the length of a side of the square in yards.
a. Write a composite function for the area of a

> Let $g(x)=3 x$,
> so $A(g(x))=9 x^{2}$. square in square feet.
b. Find the area in square feet of a square with a side length of 4 yards.
$144 \mathrm{ft}^{2}$

Copry tigut by Holt Rinehart and Winston.	27	Holt Algebra 2

Practice C

9-4 Operations with Functions
Use the following functions for Exercises 1-18
$f(x)=-\frac{1}{x}$
$g(x)=x^{2}-36 x$
$h(x)=6-$
$k(x)=\sqrt{x}$

Find each function.

1. $(f g)(x)$	2. $(g+h)(x)$	3. $\left(\frac{g}{f}\right)(x)$
$-x+36$	$x^{2}-37 x+6$	$-x^{3}+36 x^{2}$
Find each value.		
4. $f(g(-1))$	5. $h(g(0))$	6. $h(k(121))$
$-\frac{1}{37}$	6	-5
7. $g(k(9))$	8. $h(g(-3))$	9. $g(h(-3))$
-99	-111	-243
10. $k(h(-10))$	11. $k(f(-4))$	12. $f(h(1))$
4	$\frac{1}{2}$	$-\frac{1}{5}$

Write each composite function. State the domain of each
13. $f(g(x))$
14. $k(h(x))$
15. $h(k(x))$

$\begin{aligned} & f(g(x))=-\frac{1}{x^{2}-36 x} \\ & \{x \mid x \neq 0 \text { and } x \neq 36\} \end{aligned}$	$\begin{gathered} k(h(x))=\sqrt{6-x} ; \\ \{x \mid x \leq 6\} \end{gathered}$	$\begin{gathered} h(k(x))=6-\sqrt{x} ; \\ \{x \mid x \geq 0\} \end{gathered}$
16. $f(k(x))$	17. $k(g(x))$	18. $h(g(x))$
$\boldsymbol{f}(\boldsymbol{k}(\boldsymbol{x}) \mathrm{)}=$	$k(g(x))=$	$h(g(x))=-x^{2}$
$1:\{x\|x\rangle$	$\sqrt{x^{2}-36 x}$	$36 x+6 ;\{x \mid x$ is a
\sqrt{x},	$\underline{\{x \mid x \geq 36 \text { or } x \leq 0\}}$	real number\}

Solve

19. The cost of renting a banquet hall for an event is $\$ 300$ plus $\$ 30$ for each person attending the event. If the hall provides live music, the cost is 40% more per person
a. Write a function for the cost of an event that includes live music.
$\frac{f(g(x))=300+42 x}{\$ 5550}$
b. How much is the
with live music?
$\$ 5550$
\qquad

Practice B

9-4 Operations with Functions

Use the following functions for Exercises 1-18

$f(x)=\frac{1}{2 x}$
$g(x)=x^{2}$
$h(x)=x-8$
$k(x)=\sqrt{x}$

Find each function.

1. $(g k)(x)$	2. $(g+h)(x)$	3. $(g-h)(x)$
$x^{2} \sqrt{x}$	$x^{2}+x-8$	$x^{2}-x+8$
4. $(f g)(x)$	5. $(g h)(x)$	6. $\left(\frac{f}{g}\right)(x)$
$\frac{x}{2}$	$x^{3}-8 x^{2}$	$\frac{1}{2 x^{3}}$
Find each value.		
7. $g(k(9))$	8. $h(g(-3))$	9. $g(h(-3))$
9	1	121
10. $k(h(12))$	11. $f(g(4))$	12. $f(h(1))$
2	$\frac{1}{32}$	$-\frac{1}{14}$
Write each composite function. State the domain of each.		
13. $f(g(x))$	14. $h(g(x))$	15. $h(k(x))$
$\begin{aligned} & f(g(x))=\frac{1}{2 x^{2}} \\ & \quad\{x \mid x \neq 0\} \end{aligned}$	$\begin{gathered} h(g(x))=x^{2}-8 ; \\ \{x \mid x \text { is a real } \\ \text { number }\} \\ \hline \end{gathered}$	$\begin{gathered} h(k(x))=\sqrt{x}-8 ; \\ \{x \mid x \geq 0\} \end{gathered}$
16. $\overline{f(k(x))}$	17. $k(g(x))$	18. $k(h(x))$
$\begin{gathered} f(k(x))=\frac{\sqrt{x}}{2 x} \\ \{x \mid x>0\} \end{gathered}$	$k(g(x))= \pm x$ $\{x \mid x$ is a real number\}	$\begin{gathered} k(h(x))=\sqrt{x-8} ; \\ \{x \mid x \geq 8\} \\ \hline \end{gathered}$

Solve.
19. A retail shoe store manager sets the price of shoes at twice his cost. The shoe store is now offering a 40% discount on all shoes.
a. Write a composite function for the price of a pair of shoes after the discount
$f(g(x))=1.2 x$
b. If a pair of shoes cost the manager $\$ 25$, what is the sale price?

Reteach

9-4 Operations with Functions
Follow these steps to perform operations with functions.
Step 1 Use the notation rule for the operation.
Step 2 Substitute each function into its rule.

Given $f(x)=4 x^{2}-1$ and $g(x)=2 x-1$, find each function.

1. $(f+g)(x)$
2. $(f-g)(x)$

$(f+g)(x)=f(x)+g(x)$		$(f-g)(x)=f(x)-g(x)$
$\begin{gathered} =4 x^{2}-1+2 x-1= \\ 4 x^{2}+2 x-2 \end{gathered}$		$\begin{gathered} =4 x^{2}-1-(2 x-1)= \\ 4 x^{2}-2 x \end{gathered}$
$\begin{aligned} & \text { 3. }(f g)(x) \\ & \qquad(f g)(x)=f(x) \cdot g(x) \end{aligned}$		(x) $\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{4 x^{2}-1}{2 x-1}$
$\begin{aligned} & =\left(4 x^{2}-1\right)(2 x-1) \\ & =8 x^{3}-4 x^{2}-2 x+1 \end{aligned}$		$\begin{aligned} & =\frac{(2 x+1)(2 x-1)}{2 x-1} \\ & =2 x+1, \text { where } x \neq \frac{1}{2} \end{aligned}$
	30	Holt Algebra 2

