Statistics Terms and formulas: Mean - the average value of a set of numbers. Sum and divide by \# terms. Median - the middle value, when numbers are arranged in order. Mode - most frequently occurring value in the set. Variance: 1. Find the mean value. 2. Square the difference between each value and the mean 3. Find the average of the squared numbers. Standard Deviation: The Square Root of the Variance
Rules of Monomials:
$a^{m} a^{n}=a^{m+n}$

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

$$
(a b)^{m}=a^{m} b^{m}
$$

$$
\begin{aligned}
& \left(\frac{a}{b}\right)^{n}=\left(\frac{a^{n}}{b^{n}}\right) \\
& a^{-n}=\frac{1}{a^{n}} \\
& \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}
\end{aligned}
$$

Rational Exponents:

$$
b^{\frac{1}{n}}=\sqrt[n]{b}
$$

Exponential form: $b^{x}=y$ \square
Variation:
Direct variation:
equation: $\mathrm{y}=\mathrm{kx}$
Inverse variation:
equation: $x y=k$ or $y=\frac{k}{x}$
radians \rightarrow degrees
degrees \rightarrow radians

$$
R \cdot \frac{180^{\circ}}{\pi}=D^{\circ}
$$

$$
D^{\circ} \cdot \frac{\pi}{180^{\circ}}=R
$$

Interest / population model: $\quad A(t)=a(1 \pm r)^{t}$

Statistics Terms and formulas: Mean - the average value of a set of numbers. Sum and divide by \# terms. Median - the middle value, when numbers are arranged in order. Mode - most frequently occurring value in the set. Variance: 1. Find the mean value. 2. Square the difference between each value and the mean 3. Find the average of the squared numbers. Standard Deviation: The Square Root of the Variance

> Rules of Monomials:
> $a^{m} a^{n}=a^{m+n}$
> $\frac{a^{m}}{a^{n}}=a^{m-n}$
> $\left(a^{m}\right)^{n}=a^{m n}$
> $(a b)^{m}=a^{m} b^{m}$

Rational Exponents:

$$
\begin{aligned}
& \left(\frac{a}{b}\right)^{n}=\left(\frac{a^{n}}{b^{n}}\right) \\
& a^{-n}=\frac{1}{a^{n}} \\
& \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}
\end{aligned}
$$

$$
\boldsymbol{b}^{\frac{1}{n}}=\sqrt[n]{\boldsymbol{b}}
$$

Exponential form: $b^{x}=y \quad \longleftrightarrow$ Logarithmic form: $\log _{b} y=x$

Variation:

Direct variation: equation: $\mathrm{y}=\mathrm{kx}$
Inverse variation: equation: $\mathrm{xy}=\mathrm{k}$ or $y=\frac{k}{x}$
radians \rightarrow degrees degrees \rightarrow radians

$$
R \cdot \frac{180^{\circ}}{\pi}=D^{\circ} \quad D^{\circ} \cdot \frac{\pi}{180^{\circ}}=R
$$

Interest / population model:

$$
A(t)=a(1 \pm r)^{t}
$$

How do you find the inverse of a function? Steps to find an inverse, $f^{-1}(x)$, of a function $\mathrm{f}(\mathrm{x})$:

1. Change $f(x)$ or $g(x)$ or $h(x)$ to y.
2. switch the variables x and y.
3. Take the new equation and solve for y.
4. Once y is by itself change it to $f^{-1}(x), g^{-1}(x), h^{-1}(x)$

How do you find the inverse of a function?
Steps to find an inverse, $f^{-1}(x)$, of a function $\mathrm{f}(\mathrm{x})$:

1. Change $f(x)$ or $g(x)$ or $h(x)$ to y.
2. switch the variables x and y.
3. Take the new equation and solve for y.
4. Once y is by itself change it to $f^{-1}(x), g^{-1}(x), h^{-1}(x)$
