## **TI-84 Standardized Test Prep compatible with the ACT**

| ŕ | Page | Table of Contents                                                       |  |  |
|---|------|-------------------------------------------------------------------------|--|--|
|   | 2    | Substitution - Evaluation of algebraic expressions through substitution |  |  |
|   | 3    | Solving Linear Equations - Solving Linear Equations in one-variable     |  |  |
|   | 4    | Functions - Evaluating a Function at a Value                            |  |  |
|   | 5    | Lowest Common Multiple - Basic Operations Using Whole Numbers           |  |  |
|   | 6    | Modeling - Find the function given a set of data                        |  |  |
|   | 7    | <b>Points -</b> Relations between equations and graphs                  |  |  |
|   | 8    | Matrices - Finding the Determinant of a Matrix                          |  |  |
|   | 9    | Greatest Common Factor - Basic Operations Using Whole Numbers           |  |  |
|   | 10   | Complex Numbers - Evaluating expressions                                |  |  |
|   | 11   | Decimals - Basic operations with decimals                               |  |  |
|   | 12   | Zeros - Finding roots of polynomials                                    |  |  |
|   | 13   | Function Composition - Composing functions                              |  |  |
|   | 14   | Scientific Notation - Calculations involving scientific notation        |  |  |
|   | 15   | Roots of Polynomials - Finding roots of polynomials                     |  |  |
|   | 16   | f(y) Equations - Relationship between points & lines                    |  |  |
|   | 17   | Logarithms - Evaluating logarithms with base other than 10              |  |  |
|   | 18   | <b>Circles -</b> Relations between equations and graphs                 |  |  |
|   | 19   | Expanding Binomials - Understanding algebraic operations                |  |  |
|   | 20   | Exponents - Solving equations with exponents                            |  |  |
|   | 21   | Absolute Value - Evaluating absolute value expressions                  |  |  |
|   | 22   | Inequalities - Solving inequalities                                     |  |  |
|   | 23   | Mixed Numbers - Evaluating expressions with mixed numbers               |  |  |
|   | 24   | Systems - Solving systems of equations                                  |  |  |
|   | 25   | Substitution - Using tables to substitute values in expressions         |  |  |
|   | 26   | Trig Identities - Evaluating trigonometric expressions                  |  |  |

**IMPORTANT:** Make sure to update your TI-84 Operating System (OS). Update to at least level 2.55 for the steps in this document to work properly

## Elementary Algebra - Substitution

Evaluation of algebraic expressions through substitution

When x = 3 and y = 5, by how much does the value of  $3x^2 - 2y$  exceed the value of  $2x^2 - 3y$ ?

F. 4 G. 14 H. 16 J. 20 K. 50

| Type 3 STO• $X,T,\Theta,n$ to store the value of $x$ .<br>Press ENTER.<br>Type 5 STO• ALPHA 1 to store the value<br>of $y$ . Press ENTER. | 3→X<br>5→Y                                        | 3<br>5        |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------|
| Type each expression and press <b>ENTER</b> after each expression to calculate it.                                                        | - ·<br>3X <sup>2</sup> -2Y<br>2X <sup>2</sup> -3Y | 5<br>17<br>3  |
| Subtract these two calculated values.                                                                                                     | 3A -21<br>2X <sup>2</sup> -3Y<br>17-3             | 17<br>3<br>14 |

### Pre-Algebra - Solving Linear Equations

Solving Linear Equations in one-variable

If 
$$9(x - 9) = -11$$
, then  $x = ?$   
A.  $\frac{-92}{9}$  B.  $\frac{-20}{9}$  C.  $\frac{-11}{9}$  D.  $\frac{-2}{9}$  E.  $\frac{70}{9}$   
Press  $\boxed{Y}_{2}$  and type the left and right side of the equation as your first two functions.  
Press  $\boxed{200M}$ >Fit (to get a better window of the graph).  
Press  $\boxed{200M}$ >Fit (to get a better window of the graph).  
Press  $\boxed{200M}$ >Fit (to get a better window of the intersection point. The *x* -value of the intersection point is the solution.  
Press  $\boxed{200M}$  and type  $\underbrace{X.T.\Theta.n}$ .  
Then press  $\underbrace{MATH}$ >Frac, to convert the decimal to a fraction.  
 $\underbrace{X + Fr = C}{9}$ 

#### Intermediate Algebra - Functions

Evaluating a Function at a Value

# A function f(x) is defined as $f(x) = -8x^2$ . What is f(-3)?

F. -72 G. 72 H. 192 J. -576 K. 576

| Press Y= and type the function.                                                  | X= Plot1 Plot2 Plot3<br>\Y18-8X2<br>\Y2=<br>\Y3=<br>\Y4=<br>\Y5=<br>\Y6=<br>\Y7=                     |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Press 2nd MODE to access a calculator screen.<br>Press VARS>Y-Var>Y <sub>1</sub> | <b>14 X (2) (2) (2)</b><br><b>14</b> Y 1<br>22 Y 2<br>33 Y 3<br>43 Y 4<br>53 Y 5<br>63 Y 6<br>74 Y 7 |
| Type ((-)3 and press ENTER to calculate the answer.                              | Y1(-3<br>-72                                                                                         |

Pre-Algebra - Lowest Common Multiple

Basic Operations Using Whole Numbers

What is the least common multiple of 70, 60, and 50?

F. 60 G. 180 H. 210 J. 2,100 K. 210,000

| Press MATH then arrow to the <b>NUM</b> drop-<br>down menu and choose <b>LCM(</b> .                                                                                    | MATH <u>NUM</u> CPX PRB<br>Smilcm(<br>9:9cd(<br>0:remainder(<br>A:⊧n/d∢⊧Un/d<br>B:⊧F∢⊧D<br>C:Un/d<br>D:n/d |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Type 70,60 and press ENTER.                                                                                                                                            | lcm(70,60<br>420                                                                                           |
| Arrow up to highlight the LMC(70,60<br>expression and press ENTER to copy/paste it.<br>Change the values to reflect the answer to the<br>first and the 3rd number, 50. | lcm(70,60<br>420<br>lcm(420,50<br>2100                                                                     |

Intermediate Algebra - Modeling Find the function given a set of data

As Part of a lesson on motion, students observed a cart rolling at a constant rate along a straight line. As shown in the chart below, they recorded the distance, y feet, of the cart from a reference point at

1 – second intervals from t = 0 seconds to t = 5 seconds.

| t | 0  | 1  | 2  | 3  | 4  | 5  |
|---|----|----|----|----|----|----|
| у | 14 | 19 | 24 | 29 | 34 | 39 |

Which of the following equations represent this data?

F. 
$$y = t + 14$$
 G.  $y = 5t + 9$  H.  $y = 5t + 14$ 

J. 
$$y = 14t + 5$$
 K.  $y = 19t$ 

| Press $STAT$ >Edit, then type the data into list L <sub>1</sub> and L <sub>2</sub>                                                                                                       | L1     L2     L3     2       0     14        1     19        2     24     3       3     29        4     34        5     39        L2(7)     = |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Press 2nd MODE to access a calculator screen.<br>Press STAT and use your arrow keys to<br>navigate to the CALC drop-down menu.<br>Choose LinReg(ax+b) to perform a linear<br>regression. | EDIT <b>Dill</b> TESTS<br>1:1-Var Stats<br>2:2-Var Stats<br>3:Med-Med<br>5:QuadRe9<br>5:QuadRe9<br>6:CubicRe9<br>74QuartRe9                   |
| Press enter multiple times to calculate the linear regression.                                                                                                                           | Utinissi<br>9=ax+b<br>a=5<br>b=14                                                                                                             |

#### Coordinate Geometry - Points Relations between equations and graphs

The graph of  $y = -5x^2 + 9$  passes through (1,2a) in the standard (x, y) coordinate plane. What is the value of a?

F. 2 G. 4 H. 7 J. -1 K. -8

| Press Y= and type the function.                             | X= Plot1 Plot2 Plot3<br>$Y1 = -5X^2 + 9$<br>$Y_2 =$<br>$Y_3 =$<br>$Y_4 =$<br>$Y_5 =$<br>$Y_6 =$<br>$Y_7 =$ |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Press TRACE [1] ENTER to find the $y$ —value when $x = 1$ . | Y1=-5X2+9                                                                                                  |
| Solve $2a = 4$                                              |                                                                                                            |
| (Hopefully, you don't need a calculator for this step).     |                                                                                                            |



#### Pre-Algebra - Greatest Common Factor

Basic Operations Using Whole Numbers

## What is the greatest common factor of 42,126 and 210?

| F. 2       | G. 6         | Н. 14 | J. 21  | К. 42 |
|------------|--------------|-------|--------|-------|
| I. <u></u> | <b>U</b> . U |       | J. 🛆 🕹 | К. ТД |

| Press MATH and use the arrows to navigate to<br>the <b>NUM</b> drop-down menu. Choose the <b>gcd(</b><br>command. | MATH <u>RUM</u> CPX PRB<br>4↑fPart(<br>5:int(<br>6:min(<br>7:max(<br>8:lcm(<br>8:lcm(<br>Ø↓remainder( |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Type 42,126 and press ENTER.                                                                                      | 9cd(42,126<br>42                                                                                      |
| Use the arrow keys to move up and highlight the expression, then press ENTER to copy/paste it.                    | 9cd(42,126<br>42<br>9cd(42,210<br>42                                                                  |
| Find the GCD of the value you just calculated and the 3rd number, 210.                                            |                                                                                                       |

Intermediate-Algebra - Complex Numbers

Evaluating expressions

12. 
$$\sqrt{-(-9)^2} = ?$$
  
(Note:  $i = \sqrt{-1}$ )  
F. 9*i* G. 9 + *i* H. 9 - *i* J. 9 K. -9  
First, change the mode.  
Press [MODE] and change REAL to  $a + bi$ .  
Press [2nd]MODE to access the calculator screen.  
Press [2nd]MODE to access the calculator screen.  
Type the expression and press [ENTER].  
 $\sqrt{-(-9)^2}$   
9*i*.

Basic operations with decimals

What is the difference between 1.8 and 1.  $\overline{08}$  ?

(Note: A bar indicates a digit pattern that is repeated.)

A.  $0.7\overline{1}$  B.  $0.\overline{71}$  C.  $0.7\overline{19}$  D.  $0.7\overline{2}$  E.  $0.\overline{72}$ 

| Type 1.08080808080808080808080808<br>Press MATH > Frac to convert the decimal to a fraction. | 1.080808080808⊧⊧<br><u>107</u><br>99                                         |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Subtract the fraction from 1.8                                                               | 1.080808080808⊧⊧<br><u>107</u><br>99<br>1.8- <u>107</u><br>99<br>.7191919192 |

### Intermediate-Algebra - Zeros

Finding roots of polynomials

What is the *x* –intercept of the graph of  $y = x^2 - 4x + 4$ ?

|--|

| Type the function, $f1(x) = x^2 - 4x + 4$ into<br>the entry line and press enter to graph it.                                                        | X= Plot1 Plot2 Plot3<br>$Y1 \equiv X^2 - 4X + 4$<br>$Y_2 =$<br>$Y_3 =$<br>$Y_4 =$<br>$Y_5 =$<br>$Y_6 =$<br>$Y_7 =$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Press ZOOM > Standard to graph the function.                                                                                                         | Y1=X2-4X+4 🕌 🖌                                                                                                     |
| Press 2nd TRACE >Zero. Move the cursor to the left of the zero and press ENTER, then move the cursor to the right of the zero and press ENTER again. | Right Bound?<br>X=3.6170213 Y=2.6147578                                                                            |
| Press enter to guess.                                                                                                                                | \ /                                                                                                                |
| Note: A graph is an approximate environment,<br>the calculator had trouble identifying the exact<br>value of $x = 2$ , but it was <u>very</u> close. | Zero<br>X=1.999999 Y=0                                                                                             |

| Intermediate Algebra - Function Composition<br>Composing functions                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| If $h(x) = x^3$                                                                                                               | + x and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g(x) = 2x + 3                                                                            | then $g(h(2)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = ?   |
| F. 7                                                                                                                          | <b>G</b> . 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H. 17                                                                                    | J. 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | к. 23 |
| Type $h(x)$ , then<br>Then type the f<br>Type $g(x)$ , then<br>Then type the f<br>Press 2nd MODE<br>Press VARS>Y-V<br>Press ( | h press $erricetries refricted and the press erricetries refricted and the press erricetries refricted and the press erricetries refricted and the press erricet and the press the press of the prese of the press of the press of the press of the press of the prese$ | (this types a :=).<br>+ $x$ . Press enter.<br>(this types a :=).<br>+ $x$ . Press enter. | $ \begin{array}{c} & \text{$X$= P1ot1 & P1ot2} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & $ | Plot3 |
| Press <u>VARS</u> >Y-\<br>Press (), then t                                                                                    | Vars>Y <sub>1</sub><br>type 2 and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | press (ENTER).                                                                           | Y2(Y1(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23    |

# Pre-Algebra - Scientific Notation

Calculations involving scientific notation

A particly travels  $1 \times 10^6$  meters per second in a straight line for  $5 \times 10^{-6}$  seconds. How many meters has it traveled?

A.  $2 \times 10^{11}$ 

B.  $5 \times 10^{12}$ 

C.  $5 \times 10^{-12}$ 

## D. 5

E.  $5 \times 10^{-36}$ 

| Type 1, then type 2nd, followed by the exponent, 6.                                               | (1e6)*(5e-6) |   |
|---------------------------------------------------------------------------------------------------|--------------|---|
| Type 5, then type 2nd, followed by the exponent, $-6$ .<br>( <i>Note:</i> $1E6 = 1 \times 10^6$ ) |              |   |
| Press enter.                                                                                      | (1E6)*(5E-6  | 5 |
|                                                                                                   |              |   |

http://www.analyzemath.com/practice\_tests/act/act\_sample\_1.html

Intermediate Algebra - Roots of Polynomials

Finding roots of polynomials

How many solutions are there to the equation  $x^2 - 7 = 0$ ?

| A. 1                                                                        | B. 2                                                                                                                 | C. 4                                                                 | D. 7                                                                                             | E. 14      |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|
| To find th<br>function<br>Begin by<br>right side<br>functions               | he solutions, graph th<br>and locate the zeros<br>pressing Y= and grap<br>es of the equation as<br>s.                | ne quadratic<br>on the graph.<br>ohing the left &<br>two separate    | X= Plot1 Plot<br>\Y1 = X <sup>2</sup> -7<br>\Y2 = 0<br>\Y3 =<br>\Y4 =<br>\Y5 =<br>\Y6 =<br>\Y7 = | 2 Plot3    |
| Press 20<br>Press 2nd<br>ENTER th                                           | OM>Standard to grap                                                                                                  | oh the functions.                                                    | Intersection<br>X=2.6457513 Y=                                                                   |            |
| Repeat tl<br>Press <u>2nc</u><br><u>ENTER</u> tw<br>the 3rd ti<br>the other | he process:<br><u>TRACE</u> >Intersection<br>vo times. But, before<br>ime, move your curse<br>r zero will be recogni | , then press<br>you press <u>ENTER</u><br>or to the left and<br>zed. | Intersection<br>X= -2.645751 Y=                                                                  |            |
| Of course<br>the numl<br>have suff                                          | e, since this question<br>ber of roots, the orig<br>ficed (there are two a                                           | only asked for<br>inal graph would<br>a —intercepts).                | Shades )(PoI)                                                                                    | -Trace)(?) |

http://www.analyzemath.com/practice\_tests/act/act\_sample\_1.html

#### Coordinate Geometry - f(y) Equations

Relationship between points & lines

In the *xy* coordinate plane below, which of the following points has coordinates (x, y) such that x = y - 2?



| Solve the equation for $y$ and type in the $Y=$ screen.                              | X= Plot1 Plot2 Plot3<br>\Y1 = X+2<br>\Y2=<br>\Y3=<br>\Y4=<br>\Y5=<br>\Y6=<br>\Y7= |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Press ZOOM > Standard to graph the function.<br>Press TRACE and type, 2, then ENTER. | Y1=X+2                                                                            |

#### Intermediate Algebra - Logarithms

Evaluating logarithms with base other than 10

Which of the following is a value that satisfies  $\log_6(216) = x$  ?

### A. 0 B. 1 C. 2 D. 3 E. 4

| Press ALPHA WINDOW > logBASE(                         | 1: abs(<br>2: Σ(<br>3: nDeriv(<br>4: fnInt(<br><b>5:</b> 109BASE(<br>[FRAC FUNC HTRX YVAR] |   |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------|---|
| Type in the base and the number, then press<br>ENTER. | 109 <sub>6</sub> (216)<br>3                                                                | 5 |

#### Coordinate Geometry - Circles Relations between equations and graphs

A circle in the standard (x, y) coordinate plane has center (4,9) and radius of 9 coordinate units. Which of the following is an equation of the circle?

A.  $(x-4)^2 - (y-3)^2 = 9$ B.  $(x+4)^2 + (y+9)^2 = 9$ C.  $(x-4)^2 - (y-9)^2 = 81$ D.  $(x-4)^2 + (y-9)^2 = 81$ E.  $(x + 4)^2 - (y - 9)^2 = 81$ Press the APPS key and scroll down to the loke ALG1PRT1 **Conics** app. ¦App4Math 5:AreaForm **6∶**CabriĴr 7:CelSheet ∰Conics 9↓CSheetDe Choose Circle from the menu and then choose CIRCLE the first choice for the form of the circle. 🎩 (X-H)2+(Y-K)2=R2 2: AX2+AY2+BX+CY+D=0 (Hint: Just seeing the formula may be enough to job your memory to solve the problem) ESC Change the h, k and r values. CIRCLE (X-H)2+(Y-K)2=R2 H=4 K=9 R=9 ESC Note: Choosing a value of 9 for r, means that the formula will be = 81. Since both h and k are being subtracted in the formula, D is the correct answer.

| Elementary Algebra - Expanding Binomials<br>Understanding algebraic operations                                                                             |                                                                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|
| The expression $(3x - 4y^2)(3x + 4y^2)$ is equation                                                                                                        | quivalent to:                                                  |  |  |  |
| A. $9x^2 - 16y^4$ B. $9x^2 - 8y^4$                                                                                                                         | C. $9x^2 + 16y^4$                                              |  |  |  |
| D. $6x^2 - 16y^4$ E. $6x^2$                                                                                                                                | $x^{2} - 8y^{4}$                                               |  |  |  |
| Type the expression, $(3x - 4y^2)(3x + 4y^2)$<br>on a calculator screen.                                                                                   | (3X-4Y <sup>2</sup> )*(3X+4Y <sup>2</sup>                      |  |  |  |
| Press 2nd MATH and choose the equals sign.<br>Then type the first answer choice on the right<br>side of your equation.                                     | <b>4</b> X+4Y <sup>2</sup> )=9X <sup>2</sup> −16Y <sup>4</sup> |  |  |  |
| Press ENTER. The calculator is evaluating<br>whether the statement is true (1) or false (0).<br>Since a 1 displays, the correct answer has been<br>chosen. | (3X-4Y <sup>2</sup> )*(3X+4Y <sup>2</sup> )<br>1               |  |  |  |

### Pre-Algebra - Exponents

Solving equations with exponents

| If $3^x = 54$ , then which of the following must be true?                                                                                                                 |                                                                                                             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| A. 1 < <i>x</i> < 2 B. 2 < <i>x</i> < 3                                                                                                                                   | C. 3 < <i>x</i> < 4                                                                                         |  |  |
| D. $4 < x < 5$ E. 5                                                                                                                                                       | < <i>x</i>                                                                                                  |  |  |
| Press the MATH key and scroll down to <b>Solver</b> .                                                                                                                     | Mini NUM CPX PRB<br>6↑fMin(<br>7:fMax(<br>8:nDeriv(<br>9:fnInt(<br>0:summation Σ(<br>A:lo9BASE(<br>EBSolver |  |  |
| To solve the equation $3^x = 54$ , you must set it<br>equal to zero first. If you subtract 54 from<br>both sides, you get $0 = 3^x - 54$ . Type this in<br>to the solver. | EQUATION SOLVER<br>ean:0=3^X-54                                                                             |  |  |
| Scroll down and make a 'guess' where it says, X=.                                                                                                                         | 3^X-54=0<br>X=3<br>bound={-1ε99,1                                                                           |  |  |
| A guess can be any number that you think could be the answer. On this problem, you could guess, $X = 3$ .                                                                 |                                                                                                             |  |  |
| Press ALPHA ENTER to solve the equation.                                                                                                                                  | 3^X-54=0<br>•X=3.6309297535…<br>bound={-1£99,1…<br>•left-rt=0                                               |  |  |

### Pre-Algebra - Absolute Value

Evaluating absolute value expressions

| -3 -6+8  = ?                                                                           |                                        |                         |                                                                                   |                                      |
|----------------------------------------------------------------------------------------|----------------------------------------|-------------------------|-----------------------------------------------------------------------------------|--------------------------------------|
| F42 G                                                                                  | -6                                     | Н. —1                   | J. 6                                                                              | К. 42                                |
| Start typing the expres<br>then press <u>ALPHA</u> <u>WIND</u><br>absolute value comma | sion, —3<br><u>OW</u> to access<br>nd. | s the                   | -3<br><b>1:</b> abs(<br>2: Σ(<br>3: nDeri<br>4: fnInt<br>5: 109Bf<br>FRAC FUNC AT | V(<br>(<br>ISE(<br>RX <b> </b> YVAR) |
| Choose the <b>abs(</b> comm                                                            | and.                                   |                         | -3101                                                                             |                                      |
| Type, —6 + 8 between<br>signs. Press ENTER to e                                        | the absolute<br>valuate the e          | e value<br>expression.  | -31-6+81                                                                          | -6                                   |
| Alternatively, you could the absolute value com                                        | d press <u>2nd</u> (<br>mand in the    | ] to access<br>catalog. | CATALOG<br>▶abs(<br>and<br>an9le(<br>ANOVA(<br>Ans<br>Archive<br>Asm(             |                                      |

#### Intermediate Algebra - Inequalities Solving inequalities

The inequality 6(x + 2) > 7(x - 5) is equivalent to which of the following inequalities?

| A. $x < -23$ B. $x < 7$                         | C. <i>x</i> < 17                                                                   |
|-------------------------------------------------|------------------------------------------------------------------------------------|
| D. <i>x</i> < 37 E. <i>x</i> < 47               | 7                                                                                  |
| Press ¥ and start typing the inequality.        | X= Plot1 Plot2 Plot3<br>\Y186(X+2)<br>\Y2=<br>\Y3=<br>\Y4=<br>\Y5=<br>\Y6=<br>\Y7= |
| Press $2ndMATH$ and choose the $>$ symbol.      | E                                                                                  |
| Finish typing the expression, $7(x - 5)$ , then |                                                                                    |
| press the [GRAPH] key.                          |                                                                                    |
| Hint: When the inequality is TRUE, a line is    |                                                                                    |
| graphed at $y = 1$ .                            | F<br>Shades )(PoI-Trace)(?)                                                        |
| Since the graph starts/ends outside of the      | MĨŅDŎMĨ                                                                            |
| viewing window, change the x-min and x-max.     | Shadekes=3<br>  Xmin=-25                                                           |
| Press WINDOW and change the Xmin=-25 and        | Xscl=1                                                                             |
| the Xmax=50                                     | Ymin=j10                                                                           |
|                                                 | Ymax=10<br>↓Yscl=1                                                                 |
| Press TRACE to find the start of the graph near | Y1=6(X+2)>7(X-5                                                                    |
| 47.                                             |                                                                                    |
|                                                 | <u>¥</u>                                                                           |
|                                                 |                                                                                    |
|                                                 |                                                                                    |
|                                                 | X=46.808511 Y=1                                                                    |

## Pre-Algebra - **Mixed Numbers** Evaluating expressions with mixed numbers

The lead of a screw is the distance that the screw advances in a straight line when the screw is turned 1 complete turn. If a screw is  $2\frac{1}{2}$  inches long and has a lead of  $\frac{1}{8}$  inch, how many complete turns would get it all the way into a piece of wood?

| A. 5                                                        | В. 10                                                                         | <b>C</b> . 15               | D. 20                                                                  | E. 25 |
|-------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------|-------|
| Press <u>ALPHA</u><br>Choose <b>Un/</b><br>template.        | .]Y= to access the fi<br><b>d</b> to access the mix                           | raction tools.<br>ed number | 1: n/d<br>20 Un/d<br>3: Þn/d4ÞUn/d<br>4: ÞF4ÞD<br>FRAC FUNC MTRX Y     | VAR)  |
| Type in the and access t<br>ALPHA Y= .<br>Choose <b>n/d</b> | mixed number, $2\frac{1}{2}$<br>the fraction tools age to access the fraction | then press                  | 2 1<br>2 1<br>2: Un/d<br>3: Fn/d4FUn/d<br>4: FF4FD<br>FRAC FUNC MTRX Y | VAR)  |
| Type the fra<br>evaluate the                                | ction, <del>1</del> / <sub>8</sub> and press [<br>e expression.               | <u>ENTER</u> ) to           | 2 <sup>1</sup> /8                                                      | 20    |

#### Intermediate Algebra - Systems

Solving systems of equations



Elementary Algebra - **Substitution** Using tables to substitute values in expressions

The volume, V, of the right circular cone with radius r and height h can be found using the formula  $V = \frac{1}{3}\pi r^2 h$ .

A cone-shaped paper cup has a volume of 142 cubic centimeters and a height of 8.5 centimeters. What is the radius, to the nearest

centimeter, of the paper cup?

| A. 2                                    | B. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C. 8                                                | D. 12                                                                                                            | E                                                    | . 16              |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------|
| Type the r<br>to substitu<br>instead of | ight-side of the equite 8.5 for <i>h</i> and u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | juation. Make sure<br>se the ( <u>X,T,Θ,n</u> ) key | $X = Plots = V_1 = 1$<br>$V_1 = 1$<br>$V_2 = 0$<br>$V_3 = 0$<br>$V_4 = 0$<br>$V_5 = 0$<br>$V_6 = 0$<br>$V_7 = 0$ | ι ΡΊοτ2 ΡΊ<br>/3πΧ²*8.                               | lot3<br>. 5       |
| Press 2nd                               | GRAPH) to access the second se | ne table.                                           |                                                                                                                  | V1<br>0<br>8.9012                                    |                   |
| You should                              | d be able to identi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fy the solution.                                    | 23<br>5<br>5<br>5<br>8<br>X=4                                                                                    | 35.605<br>80.111<br>142.42<br>222.53<br>320.44       |                   |
| Alternative the Indpnt                  | ely, press <u>2nd WINE</u><br>t to Ask.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00W) and change                                     | TABLE<br>Tb1S<br>ATb1:<br>Inden<br>Depend                                                                        | SETUP<br>tart=0<br>t: Auto<br>d: <b>ERE</b>          | <b>iss</b><br>Ask |
| By typing<br>can substi                 | values for <i>x</i> and pl<br>tute multiple value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ressing <u>ENTER</u> , you<br>es for <i>x</i> .     | X<br>2<br>4<br>12<br>16<br>X=                                                                                    | Y1<br>35.605<br>142.42<br>569.68<br>1281.8<br>2278.7 |                   |

#### Trigonometry - Trig Identities

Evaluating trigonometric expressions

Which of the following is equivalent to  $\sin(\theta) \cdot \csc(\theta)$  is defined?

| F. −1                                                                  | <b>G</b> . 1                                               | H. –tan ( $\theta$ )                                | J. tan $(\theta)$                                                                                            | K. $-sin^2(\theta)$                                                                 |
|------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Press the M<br>DEGREE mo                                               | ODE) key and c<br>de.                                      | hange the setting to                                | INDRHAL SU<br>FLOAT 01<br>Radian (03<br>Func Par<br>Connected<br>Sequentian<br>Real <u>9+66</u><br>Full Hory | CI ENG<br>23456789<br>C1399<br>POL SEQ<br>DOT<br>SIMUL<br>re^0i<br>IZ G-T<br>INEXT4 |
| Choose an a<br>30 <i>degrees</i><br>Substitute t<br>Press <u>ENTER</u> | angle in the fir<br>5<br>his value into<br>] to evaluate 1 | st quadrantlike<br>the expression.<br>he expression | sin(30)                                                                                                      | $(*\frac{1}{\sin(-30)} -1)$                                                         |