Practice A

7-3 Logarithmic Functions

Write each exponential equation in logarithmic form.

1.
$$7^3 = 343$$

$$log_{base} 343 = exponent$$

$$\log_7 343 =$$

4.
$$2^3 = 8$$

7.
$$4^5 = 1024$$

2.
$$2^6 = 64$$

$$log_{base} 64 = exponent$$

$$\log_2 64 =$$

5.
$$17^0 = 1$$

8.
$$3^6 = 729$$

3.
$$15^2 = 225$$

$$log_{base} 225 = exponent$$

$$\log_{15} 225 =$$

6.
$$1^{12} = 1$$

9.
$$5^4 = 625$$

Write each logarithmic equation in exponential form.

10.
$$\log_4 64 = 3$$

11.
$$\log_8 512 = 3$$

$$log_{base}$$
 512 = exponent

12.
$$\log_6 36 = 2$$

$$log_{base} 36 = exponent$$

13.
$$\log_{10} 100 = 2$$

14.
$$\log_5 125 = 3$$

15.
$$\log_9 1 = 0$$

16.
$$\log_2 128 = 7$$

17.
$$\log_3 243 = 5$$

18.
$$\log_{100} 1,000,000 = 3$$

Evaluate by using mental math.

$$10^4 = 10,000$$

$$10^5 = 100,000$$

$$10^{0} = 1$$

Practice A

7-3 Logarithmic Functions

Write each exponential equation in logarithmic form.

1.
$$7^3 = 343$$

2.
$$2^6 = 64$$

3.
$$15^2 = 225$$

$$\log_{\text{base}} 343 = \text{exponent}$$

$$\log_7 343 = ____3$$

 $\log_2 8 = 3$

$$\log_2 64 =$$

 $\log_{17} 1 = 0$

4.
$$2^3 = 8$$

7. $4^5 = 1024$

$$\log_{15} 225 = 2$$
6. $1^{12} = 1$

3.
$$5^3 = 125$$

$$\log_5 125 = 3$$

Write each logarithmic equation in exponential form. **5.** $\log_4 1024 = 5$

1 4.
$$\log_{10}100,000 = 5$$

$$\log_1 1 = 12$$

$$\log_1 0.5 - 100$$

$$4^5 = 1024$$
 8. $3^6 = 729$ 9. $5^4 = 625$ $\log_4 1024 = 5$ $\log_3 729 = 6$ $\log_5 625 = 4$

Write each logarithmic equation in exponential form.

10.
$$\log_4 64 = 3$$
 $\log_{\text{base}} 64 = \text{exponent}$

$$log_{base} 36 = exponent$$

$$6^2 = 36$$

13.
$$\log_{10} 100 = 2$$

 $10^2 = 100$

14.
$$\log_5 125 = 3$$

 $5^3 = 125$

15.
$$\log_9 1 = 0$$

 $9^0 = 1$

16.
$$\log_2 128 = 7$$
 $2^7 = 128$

17.
$$\log_3 243 = 5$$

 $3^5 = 243$

$$9^0 = 1$$

18.
$$\log_{100} 1,000,000 = 3$$

 $100^3 = 1,000,000$

Evaluate by using mental math.

19.
$$\log 10,000$$
 $10^4 = 10,000$

20.
$$\log 100,000$$

 $10^5 = 100,000$

21.
$$\log 1$$
 $10^{\circ} = 1$

Λ

q

Practice B

7-3 Logarithmic Functions Write each exponential equation in logarithmic form.

1.
$$3^7 = 2187$$

2.
$$12^2 = 144$$

$$10^5 = 100,000$$

$$4^5 = 1024$$

$$9^3 = 729$$

4

Evaluate by using mental math.

13.
$$f(x) = 2^x$$
; $x = -2, -1, 0, 1, 2, 3, 4$

14.
$$f(x) = \left(\frac{1}{2}\right)^x$$
; $x = -3, -2, -1, 0, 1, 2, 3$

Domain: $\{x | x > 0\}$; range: all real numbers

Domain: $\{x \mid x > 0\}$; range: all real numbers

- 15. The hydrogen ion concentration in moles per liter for a certain brand of tomato-vegetable juice is 0.000316.
 - a. Write a logarithmic equation for the pH of the juice. b. What is the pH of the juice?
- pH = -log (0.000316)3.5

Holt Algebra 2

Practice C Logarithmic Functions

Write each exponential equation in logarithmic form.

3.
$$a^b = c$$

$$\log_{20} 8000 = 3$$

$$\log_a c = b$$

 $p^r = q$

Write each logarithmic equation in exponential form.

6.
$$\log_p q = r$$

$$10^7 = 10,000,000$$
 $6^3 = 216$

0

Use the given x-values to graph each function. Then graph its inverse. Describe the domain and range of the inverse function.

13.
$$f(x) = 0.1^x$$
; $x = -1, 0, 1, 2$

Domain: $\{x \mid x > 0\}$: range: all real numbers

Domain: $\{x \mid x > 0\}$: range: all real numbers

15. The hydrogen ion concentration in moles per liter of a certain

$$pH = -\log(0.00794)$$

Holt Algebra 2

LESSON Reteach

7-3 Logarithmic Functions

A **logarithm** is another way to work with exponents in equations. If
$$b^x = a$$
, then $\log_b a = x$.

If b to the x power equals a , then x is the logarithm of a in bas

then x is the logarithm of a in base b. Use the definition of the logarithm to write exponential equations in logarithmic form and to

If no base is written for a logarithm, the base is assumed to be 10.
Example:
$$log \frac{100}{4} = 2 because 10^2 = 100.$$

Assume the base is 10.

Write each exponential equation in logarithmic form.

$$b = 6$$
, $x = 3$, $a = 216$ 3. $a = 216$ 4. $a = 216$ 4.

$$b=2, x=5, a=32$$

 $\log_2 32 = 5$

$$\log_7 49 = 2$$

b = 7, x = 2, a = 49

4. $\log_{2} 729 = 3$

b = 9, x = 3, a = 729 $9^3 = 729$

Write each logarithmic equation in exponential form.
4.
$$\log_9 729 = 3$$
 5. $\log_2 64 = 6$

 $\log_{6} 216 = 3$

$$b = 2$$
, $x = 6$, $a = 64$

6.
$$\log 1000 = 3$$

 $b = 10, x = 3,$
 $a = 1000$

$$10^3 = 1000$$