Name			

	_
Date	Per.

The Natural Base, e

The *compound interest formula* $A = P\left(1 + \frac{r}{n}\right)^{nt}$, where A is the amount, P is the principal, r is the annual interest, n is the number of times the interest is compounded per year and t is the time in years.

Suppose that \$1 is invested at 100% interest (r = 1) compounded n times for one year as represented by the function $f(n) = P\left(1 + \frac{1}{n}\right)^n$.

As n gets very large, interest is $continuously\ compounded$. Examine the graph of $f(n) = P\left(1+\frac{1}{n}\right)^n$. The function has a horizontal asymptote. As n becomes infinitely large, the value of the function approaches approximately 2.7182818.... This number is called ______. Like π , the constant _____ is an irrational number.

Exponential functions with _____ as a base have the same properties as the other exponential functions you have studied.

A logarithm with a base of e is called a _____ and is abbreviated as "____" (rather than as \log_e). ____ have the same properties as other logarithms with other bases.

The <u>natural logarithmic function</u> $f(x) = \ln x$ is the ______ of the natural exponential function $f(x) = e^x$.