\qquad Date \qquad Per. \qquad

The Natural Base, e

The compound interest formula $A=P\left(1+\frac{r}{n}\right)^{n t}$, where A is the amount, P is the principal, r is the annual interest, n is the number of times the interest is compounded per year and t is the time in years.

Suppose that $\$ 1$ is invested at 100% interest $(r=1)$ compounded n times for one year as represented by the function $f(n)=P\left(1+\frac{1}{n}\right)^{n}$.

As n gets very large, interest is continuously compounded. Examine the graph of $f(n)=P\left(1+\frac{1}{n}\right)^{n}$. The function has a horizontal asymptote. As n becomes infinitely large, the value of the function approaches approximately 2.7182818.... This number is called \qquad . Like π, the constant \qquad is an irrational number.

Exponential functions with \qquad as a base have the same
 properties as the other exponential functions you have studied.

A logarithm with a base of e is called a \qquad and is abbreviated as " \qquad (rather than as $\log _{e}$). \qquad have the same properties as other logarithms with other bases.

The natural logarithmic function $f(x)=\ln x$ is the \qquad of the natural exponential function $f(x)=\mathrm{e}^{x}$.

