Evaluate each of the following.

1.
$$\log_3 3 = 1$$

2.
$$\log_3 9 = 2$$

3.
$$\log_3 27 = 3$$

4.
$$\log_3 1 = \emptyset$$

5.
$$\log_3 \frac{1}{3} = -$$

6.
$$\log_3 \frac{1}{9} = -2$$

8.
$$\log_2 2 =$$

10.
$$\log_2 1 = 0$$

11.
$$\ln(e) = 1$$

12.
$$\log_2 \frac{1}{4} = -2$$

Change the following from exponential form to logarithmic form.

13.
$$5^2 = 25$$

14.
$$5^{-2} = \frac{1}{25}$$

Change the following from exponential form to logarithmic form.

13.
$$5^2 = 25$$

14. $5^{-2} = \frac{1}{25}$

15. $5^2 = 25$

15.
$$A^B = C$$

15.
$$A^B = C$$
 $\log_A(C) = E$

16.
$$3^{\circ} = 1$$
 Log 2 (1) = 0

17.
$$e^x = 5$$

10
$$e^0 = 1$$

18.
$$e^0 = 1$$
 $\int_{\mathbb{N}} (1) = 0$

Change the following from logarithmic form to exponential form.

19.
$$\log_3 9 = 2$$

20.
$$\log_3 \frac{1}{9} = -2$$
 $3 = 4$

21.
$$\log_4 8 = \frac{3}{2}$$

22.
$$\log_{\mathbb{R}} C = A$$

23.
$$\ln(x) = \frac{1}{2}$$

24.
$$\ln(1) = 0$$

Simplify.

25.
$$e^{3\ln x}$$

$$\chi^3$$

26.
$$e^{\ln(x+4)}$$

27.
$$\ln e^{x}$$

28.
$$\ln e^{x-8}$$

29. The population of whooping cranes was about 22 in 1940 and grew at an exponential rate to about 194 in 2003. a. Use the exponential growth function $A(t) = Pe^{rt}$ to determine the growth rate.

234553 1945 228 R(43) $LN(\frac{194}{22}) = LN(e^{R(43)})$

R=0.034553

- 3.46. If the flock continues to grow at the same rate, how large will it be in 2020? £=80
- 349 Charles
 30. Graph the following inverse functions on the same graph. Then find the following characteristics about each graph. Write "none" if it does not exist.

 $v = 4^{x}$

Domain All REALS

y-intercept

Equation of asymptote $\sqrt{=0}$

As
$$x \to -\infty$$
, $f(x) \to$

As
$$x \to +\infty$$
, $f(x) \to \underline{+\infty}$

 $y = \log_4 x$

Domain X>O

x-intercept ____

y-intercept Now 2

Equation of asymptote X=0