LESSON Practice B

9-5 Functions and Their Inverses

Find the inverse of each function. Determine whether the inverse is a function and state its domain and range.

1.
$$k(x) = 10x + 5$$

2.
$$d(x) = 6 - 2x$$

3.
$$f(x) = (x-5)^2$$

4.
$$g(x) = \frac{4-x}{2}$$

5.
$$h(x) = \sqrt{x^2 - 9}$$

6.
$$b(x) = 2\log x$$

Determine by composition whether each pair of functions are inverses.

7.
$$q(x) = \sqrt{x} - 4$$

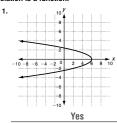
and $r(x) = x^2 + 4$ for $x \ge 0$

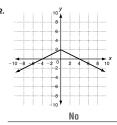
8.
$$s(x) = \frac{2}{x-2}$$
 and $t(x) = \frac{x+2}{-2}$

9.
$$u(x) = \frac{x^2}{4} - 1$$
 for $x \ge -1$ and $v(x) = \pm 2\sqrt{x+1}$

10.
$$A(x) = \log (x - 1)^4$$

and $B(x) = 1 + \log^{-1} \left(\frac{x}{4}\right)$


Solve.


- **11.** So far, Rhonda has saved \$3000 for her college expenses. She plans to save \$30 each month. Her college fund can be represented by the function f(x) = 30x + 3000.
 - **a.** Find the inverse of f(x).
 - **b.** What does the inverse represent?
 - c. When will the fund reach \$3990?
 - **d.** How long will it take her to reach her goal of \$4800?

LESSON Practice A

9-5 Functions and Their Inverses

Use the horizontal line test to determine whether the inverse of each

Find the inverse of each function. State whether the inverse is a function.

3.
$$f(x) = 2x - 6$$

a. Substitute
$$y$$
 for $f(x)$.

$$\mathbf{4.} \ \mathbf{y}(\mathbf{x}) = \mathbf{x} + \mathbf{9}$$

$$g^{-1}(x) = x - 9$$
; yes

$$6. p(x) = x^2 + 1$$

$$p^{-1}(x) = \pm \sqrt{x-1}$$
; no

5.
$$h(x) = \frac{x}{2} - 1$$

$$h^{-1}(x) = 2x + 2$$
; yes
 $b(x) = \sqrt{x+7}$

$$b^{-1}(x) = x^2 - 7$$
; yes, for $x \ge -7$

 $T^{-1}(x) = \frac{x}{1.08}$

The price of the jacket

Holt Algebra 2

y = 2x - 6

8. The total cost of a jacket, including 8% tax, can be found by using the function T(x) = 1.08x.

a. Find the inverse of
$$T(x)$$
.

- b. What does the inverse represent?
- c. Tia wants to return a jacket. She paid a total of
- \$102.60 for it. What was the price of the jacket?

LESSON Practice B

9-5 Functions and Their Inverses

Find the inverse of each function. Determine whether the inverse is a function and state its domain and range.

1.
$$k(x) = 10x + 5$$

 $k^{-1}(x) = \frac{x - 5}{10}$; function

domain:
$$(-\infty, +\infty)$$

range: $(-\infty, +\infty)$

3.
$$f(x) = (x-5)^2$$

$$y = 5 \pm \sqrt{x}$$
; not a function domain: $(-\infty, +\infty)$

range:
$$[0, +\infty)$$

5.
$$h(x) = \sqrt{x^2 - 9}$$

2.
$$d(x) = 6 - 2x$$

 $d^{-1}(x) = -\frac{x}{2} + 3$; function

domain:
$$(-\infty, +\infty)$$

range:
$$(-\infty, +\infty)$$

4.
$$g(x) = \frac{4-x}{2}$$

 $g^{-1}(x) = -2x + 4$; function domain: $(-\infty, +\infty)$

domain:
$$(-\infty, +\infty)$$

range: $(-\infty, +\infty)$

$$6. b(x) = 2\log x$$

$$\frac{h^{-1}(x) = \pm \sqrt{x^2 + 9}; \text{ not a function}}{\text{domain: } [0, +\infty)}$$

$$\frac{\text{range: } (-\infty, -3] \text{ and } [3, +\infty)}{\text{range: } (-\infty, -3] \text{ and } [3, +\infty)}$$

$$\frac{b^{-1}(x) = \log^{-1} \frac{x}{2} \text{ or } b^{-1}(x) =}{\frac{10^{\frac{x}{2}}; \text{ function; domain: } (-\infty, +\infty)}{\text{range: } [0, +\infty)}$$

Determine by composition whether each pair of functions are

7.
$$q(x) = \sqrt{x} - 4$$

and $r(x) = x^2 + 4$ for $x \ge 0$

9.
$$u(x) = \frac{x^2}{4} - 1$$
 for $x \ge -1$ and $v(x) = \pm 2\sqrt{x+1}$

8.
$$s(x) = \frac{2}{x-2}$$
 and $t(x) = \frac{x+2}{-2}$

10.
$$A(x) = \log (x - 1)^4$$

and $B(x) = 1 + \log^{-1} \left(\frac{X}{4}\right)$

$$d B(x) = 1 + \log^{-1} \left(\frac{x}{4}\right)$$

Yes

- 11. So far, Rhonda has saved \$3000 for her college expenses. She plans to save \$30 each month. Her college fund can be represented by the function f(x) = 30x + 3000. $f^{-1}(x) = \frac{1}{30}x - 100$
 - **a.** Find the inverse of f(x).
 - b. What does the inverse represent?
 - c. When will the fund reach \$3990?
 - d. How long will it take her to reach her goal of \$4800?
- Number of months she has saved 33 months

Copyright © by Holt, Rinehart and Winston All rights reserved.

36

Holt Algebra 2

Practice C

9-5 Functions and Their Inverses

Find the inverse of each function. Determine whether the inverse is a function and state its domain and range.

1.
$$A(x) = \frac{9-2x}{5}$$

$$A^{-1}(x) = -2.5x + 4.5$$
; function domain: $(-\infty, +\infty)$ range: $(-\infty, +\infty)$

ange:
$$(-\infty, +\infty)$$
3. $C(x) = 25 - x^2$

$$\frac{C^{-1}(x) = \pm \sqrt{25 - x}}{\text{not a function; domain: } (-\infty, 25]}$$

s.
$$E(x) = \frac{x}{x+2}$$

$$E^{-1}(x) = \frac{2x}{1-x}; \text{ not a function}$$

$$E(x) = \frac{2x}{1-x}; \text{ and } (-2, +\infty)$$

$$E(x) = \frac{1}{x} \text{ and } (-2, +\infty)$$

2.
$$B(x) = \frac{3+x}{x}$$

2.
$$B(x) = \frac{3+x}{x}$$
 $B^{-1}(x) = \frac{3}{x-1}$; function
 $\frac{\text{domain: } (-\infty, 1) \text{ and } (1, +\infty)}{\text{ranne: } (-\infty, 1) \text{ and } (0, +\infty)}$

4.
$$D(x) = 2 - \log x^3$$

 $D^{-1}(x) = \log^{-1}\left(\frac{-x+2}{3}\right)$; not function; domain: $(-\infty, +\infty)$
range: $(-\infty, 0)$ and $(0, +\infty)$

$$\begin{array}{c} x \\ +2 \\ -2x \end{array} \quad \text{and function} \qquad \qquad 6. \ F(x) = 4$$

$$E^{-1}(x) = \frac{2x}{1-x}; \text{ not a function}$$

$$\text{domain: } (-\infty, -2) \text{ and } (-2, +\infty)$$

$$\text{range: } (-\infty, 1) \text{ and } (1, +\infty)$$

2.
$$B(x) = \frac{3+x}{x}$$

$$B^{-1}(x) = \frac{3}{x-1}; \text{ function}$$

$$domain: (-\infty, 1) \text{ and } (1, +\infty)$$

$$range: (-\infty, 0) \text{ and } (0, +\infty)$$

4.
$$\frac{D(x) = 2 - \log x^3}{D^{-1}(x) = \log^{-1}\left(\frac{-x+2}{3}\right)}$$
; not a function; domain: $(-\infty, +\infty)$

6.
$$F(x) = 4 + \sqrt{2x - 1}$$

$$F^{-1}(x) = 0.5x^2 - 4x + 8.5$$

function; domain: [4, +\infty]

Determine by composition whether each pair of functions are

7.
$$p(x) = \sqrt{5 - x^2}$$
 for $|x| \le 5$

and
$$q(x) = \sqrt{5 - x^2}$$
 for $|x| \le 5$

and
$$q(x) = \sqrt{5 - x^2}$$
 for $|x| \le$

and $v(x) = 3 + \frac{\sqrt{x}}{x}$, for x > 0

and
$$t(x) = \frac{2x}{2-x}$$

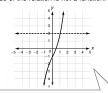
9.
$$u(x) = \frac{1}{(x-3)^2}$$
, for $x > 3$
and $v(x) = 3 + \frac{\sqrt{x}}{\sqrt{x}}$, for $x > 0$
10. $b(x) = \log (x-1)^4$
and $d(x) = 1 + 10^{\frac{x}{4}}$ for $x \ge 1$

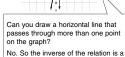
The area of a regular octagon can be found by using the remarks $A(s) = 2s^2(\sqrt{2}+1)$, where s is the length of each side. $s = \pm \sqrt{\frac{A}{2(\sqrt{2}+1)}}$ 11. The area of a regular octagon can be found by using the formula

$$s = \pm \sqrt{\frac{A}{2(\sqrt{2} + 1)}}$$
Side length

b. What does the inverse represent?

c. What is the side length of a regular octagon whose area is $(9.68\sqrt{2}\,+\,9.68)$ m?

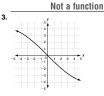

2.2 meters Holt Algebra 2


Reteach

9-5 Functions and Their Inverses

Not all relations are functions and not all relations have inverse functions. To decide whether the inverse of a relation is a function, use the horizontal-line test.

If any horizontal line passes through more than one point on the graph of a relation, the inverse of the relation is not a function.



Can you draw a horizontal line that passes through more than one point on the graph? Yes. So the inverse of the relation is NOT a function

Use the horizontal-line test to determine whether the inverse of each

Copyright © by Holt, Rinehart and Winston All rights reserved.

Function Not a function 38

Holt Algebra 2