Date

LESSON Practice B					
6-5 Finding Real Roots of Polynomial Equations					
Solve each polynomial equation by f	actoring.				
1. $9x^3 - 3x^2 - 3x + 1 = 0$	2. $x^5 - 2x^4 - 24x^3 = 0$				
3. $3x^5 + 18x^4 - 21x^3 = 0$	4. $-x^4 + 2x^3 + 8x^2 = 0$				
Identify the roots of each equation.	State the multiplicity of each root.				
5. $x^3 + 3x^2 + 3x + 1 = 0$	6. $x^3 + 5x^2 - 8x - 48 = 0$				
Identify all the real roots of each equ	lation.				
7. $x^3 + 10x^2 + 17x = 28$	8. $3x^3 + 10x^2 - 27x = 10$				

Solve.

- 9. An engineer is designing a storage compartment in a spacecraft. The compartment must be 2 meters longer than it is wide and its depth must be 1 meter less than its width. The volume of the compartment must be 8 cubic meters.
 - a. Write an equation to model the volume of the compartment.
 - b. List all possible rational roots.
 - c. Use synthetic division to find the roots of the polynomial equation. Are the roots all rational numbers?
 - d. What are the dimensions of the storage compartment?

8.
$$x^3 - 1^3$$

(x - 1)(x² + x + 1)

Challenge

- 1. {[(6)x + 8]x 5}x + 1 2. ({[(-2)x + 5]x - 1}x + 3)x - 4 3. N(3) = 128 4. N(3) = 128 5. N(x) = 5x³ - 3x² + 7x - 1 6. N(3) = 5 \cdot 3³ - 3 \cdot 3² + 7 \cdot 3 - 1 = 128 7. P(x) = {[(2)x - 6]x - 2}x - 30, P(4) = {[(2)4)}
- 7. $P(X) = \{\lfloor (2)X 6\rfloorX 2\}X 30, P(4) = \{\lfloor (2)A 6\rfloor4 2\}4 30 = \lfloor (2)A 2]4 30 = (6)A 30 = -6$; The numbers in the innermost nests are the coefficients of the quotient, and the last number is the remainder. So the quotient is $2x^2 + 2x + 6$ and the remainder is -6.
- 8. The quotient is $2x^2 + 2x + 6$ and the remainder is -6.

Problem Solving

b.
$$(2x + 2)(x + 4)(x)$$

3. a. 5, 8, 9

b.
$$(x-5)(x-8)(x-9)$$

4.

Basket	Dimensions (in terms of <i>x</i>)	Actual Dimensions	Volume
A	(x-5), (x-8), (x-9)	7 by 4 by 3	84 cubic units
В	(x+2), (x-4), (x-6)	14 by 8 by 6	672 cubic units
С	(2x+2), (x+4), (x)	26 by 16 by 12	4992 cubic units

5. No; the dimensions of each basket are doubled from one size to the next except for 14 to 26.

6. No;
$$\frac{84}{672} \neq \frac{672}{4992}$$

Reading Strategies

- 1. Multiply (x + 3) and $(x^2 + 2)$.
- 2. No; there are no two factors that have $x^2 + 2$ as their product.

3. 5 4. a. $(x^3 - 8x^2) + (-x + 8)$ b. x^2 c. -1 d. $x^2(x - 8) - 1(x - 8) = (x - 8)(x^2 - 1)$ e. $x^2 - 1$; (x + 1)(x - 1)f. (x - 8)(x + 1)(x - 1)

LESSON 6-5

Practice A

- 1. $x^2 + 2x + 1; -1, 0$
- 2. 2*x*²− 18; −3, −2, 3
- 3. -5, 0 4. -1, 0, 7
- 5. x = -3 with multiplicity 1; x = 0 with multiplicity 1; x = 1 with multiplicity 1
- 6. x = 0 with multiplicity 1; x = 1 with multiplicity 2
- 7. x = 1 with multiplicity 2; x = 5 with multiplicity 1
- 8. x = -6 with multiplicity 2; x = 0 with multiplicity 1

9.
$$\pm \frac{1}{3}, \pm 1$$

11.
$$\pm \frac{1}{2}$$
, ± 1 , ± 2 , $\pm \frac{5}{2}$, ± 5 , ± 10

- 12. ±1, ±3, ±9
- Stefan is correct. The roots of the expression are 2 and –2, both of which have multiplicity 1.

Practice B

1.
$$\frac{1}{3}, \frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}$$
 2. -4, 0, 6

- 3. -7, 0, 1 4. -2, 0, 4
- 5. x = -1 with multiplicity 3
- 6. x = 3 with multiplicity 1; x = -4 with multiplicity 2

7.
$$-4$$
, 1, -7 8. -5 , $-\frac{1}{3}$, 2

9. a.
$$x^3 + x^2 - 2x - 8 = 0$$

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

b. ±1, ±2, ±4, ±8

c. 2,
$$\frac{-3 \pm i\sqrt{7}}{2}$$
; no, 2 of the roots are irrational numbers.

d. 2 m wide, 4 m long, and 1 m deep

Practice C

- 1. -5, 0, 7 2. 0, 3, 4
- 3. x = 2 with multiplicity 3
- 4. x = -4 with multiplicity 2; x = -2 with multiplicity 1
- 5. -8, 0, 6 6. 3, 6, $2 \pm \sqrt{3}$
- 7. -3, 0, 1 8. -3, 1, -3 $\pm \sqrt{11}$
- 9. a. $2x^3 4x^2 64 = 0$ b. ± 1 , ± 2 , ± 4 , ± 8 , ± 16 , ± 32 , ± 64
 - c. 4, $-1 \pm i\sqrt{7}$; no, 2 of the roots are irrational numbers.
 - d. 4 in. wide, 8 in. long, and 2 in. deep

Reteach

- 1. $3x^4(x-5)(x+2)$; -2, 0, 5 2. $x^2(x^2-5x+6)$; $x^2(x-2)(x-3)$; 0, 2, 3
- 2. x (x 5x + 6), x (x 2)(x 3), 0, 2, 3
- 3. $2x(x^2 3x 18)$; 2x(x 6)(x + 3); -3, 0, 6
- 4. $2x^4(x^2 16)$; $2x^4(x + 4)(x 4)$; -4, 0, 4
- 5. a. ±1, ±3, ±5, ±15

b. 3 or 5

Coefficients of the Equation				
1	-7	7	15	
1	6	13	28	
1	-4	-5	0	
1	-2	-3	0	
	1 1 1 1	1 -7 1 6 1 -4 1 -2	1 -7 7 1 6 13 1 -4 -5 1 -2 -3	

- c. $(x-3)(x^2-4x-5) = 0; (x-3)(x-5)$ (x+1) = 0
- d. x = 3 or x = 5 or x = -1

Challenge

1. y = (x + 3)(x)(x - 4)2. $y = -(x + 1)^2(x - 1)(x - 3)$

3.
$$y = (x+5)(x+2)^2 \left(x-\frac{1}{2}\right)(x-3)$$

4. $y = (x+6)^2(x)(x-1)(x-3)^2(x-4)^2$
5. $y = (x+3i)(x-3i)(x-1)^2 \left(x-(1+\sqrt{3})\right)$
 $\left(x+(1+\sqrt{3})\right)$

Problem Solving

- 1. V = w(w + 10)(w 14)
- 2. $w^3 4w^2 140w 76,725 = 0$
- 3. No; yes; no

The constant term is 76,725, which is not a multiple or 4 or 10, but is a multiple of 5.

- 4. Students should test possible roots that are multiples of 5 but not multiples of 10, such as 35, 45, and 55.
- 5. C 6. A

Reading Strategies

- 1. Substitute the value of the root in the function and see if it equals 0.
- 2. (x 3) and (x + 2)
- 3. a. (x + 4)
- b. 3 times
- 4. 4*x*, (*x* 3), (*x* + 3); -3, 0, 3
- 5. -x, (x 5), (x 1); 0, 1, 5
- 6. (x+2), (x+2), (x-2); -2, 2

LESSON 6-6

Practice A

1. 3 2. 5 3. 4 4. a. P(x) = x(x + 1)(x - 2)b. $P(x) = (x^2 + x)(x - 2)$ c. $P(x) = x^3 - 2x^2 + x^2 - 2x$ d. $P(x) = x^3 - x^2 - 2x$ 5. $P(x) = x^3 - 3x^2 - 13x + 15$ 6. $P(x) = x^3 + 4x^2 - x - 4$ 7. a. 2

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.