20 16 12

8

2 0

4

8

16 20 2

10 -8 -6

LESSON Practice B

Investigating Graphs of Polynomial Functions

Identify the leading coefficient, degree, and end behavior.

1.
$$P(x) = 2x^5 - 6x^3 + x^2 - 2$$

2.
$$Q(x) = -4x^2 + x - 1$$

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.

Graph the function $P(x) = x^3 + 6x^2 + 5x - 12$.

- 6. Identify the possible rational roots.
- 7. Identify the zeros.
- 8. Describe the end behavior of the function.

9. Sketch the graph of the function.

Solve.

10. The number, N(y), of subscribers to a local magazine can be modeled by the function $N(y) = 0.1y^4 - 3y^3 + 10y^2 - 30y + 10,000$, where *y* is the number of years since the magazine was founded. Graph the polynomial on a graphing calculator and find the minimum number of subscribers and the year in which this occurs.

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

negative, so they cannot be the radius.

7. 0.5 inch

Reading Strategies

- 1. Find the factors corresponding to the roots and multiply the factors.
- 2. *x*
- 3. a. (x + 2)(x + 2)(x + 2) = 0, or $x^3 + 6x^2 + 12x + 8$.
 - b. because multiplying the equation by a nonzero number will not change its roots
- 4. a. $(x)(x)(x)(x+2) = x^4 + 2x^3 = 0$ b. 4

LESSON 6-7

Practice A

- 1. 1; 2 2. –3; 3
- 3. 2; 4; $x \to -\infty$, $P(x) \to +\infty$; $x \to +\infty$, $P(x) \to +\infty$
- 4. -6; 5; $x \to -\infty$, $P(x) \to +\infty$; $x \to +\infty$, $P(x) \to -\infty$
- 5. ±1, ±2, ±4
- 6. $(x-1)(x^2+5x+4)$

7.
$$(x-1)(x+4)(x+1)$$

- 8. *y*-intercept = -4; P(-2) = 6; P(-3) = 8
- 9. As $x \to -\infty$, $P(x) \to -\infty$, as $x \to +\infty$, $P(x) \to +\infty$

Practice B

- 1. 2; 5; as $x \to +\infty$, $P(x) \to +\infty$; and as $x \to -\infty$, $P(x) \to -\infty$
- 2. -4; 2; as $x \to -\infty$, $Q(x) \to -\infty$; and as

- $x \to +\infty, Q(x) \to -\infty$
- 3. Even; negative 4. Even; positive
- 5. Odd; positive
- 6. ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12
- 7. -4, -3, and 1
- 8. As $x \to +\infty$, $P(x) \to +\infty$, and as $x \to -\infty$, $P(x) \to -\infty$

10. About 5400 in year 20

Practice C

- 1. -6; 4; as $x \to -\infty$, $R(x) \to -\infty$: and as $x \to +\infty$, $R(x) \to -\infty$
- 2. -16; 3; as $x \to -\infty$, $Q(x) \to +\infty$: and as $x \to +\infty$, $Q(x) \to -\infty$
- 3. Odd; negative 4. Even; positive
- 5. Odd; positive

- 7. Minima: 4.5; maxima: 5.1 and 13.5
- 8. Minima: -8.68; maxima: 0
- 9. a. 3.03 m³
 - b. 1.9 m by 2.9 m by 0.55 m

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.