

- 67. Use the graph provided to choose the best description of what the graph represents.
  - A ball is dropped from a height of 42 feet and lands on the ground after 3 seconds.
  - **(B)** A ball is dropped from a height of 42 feet and lands on the ground after 1.5 seconds.
  - C A ball is shot up in the air and reaches a height of 42 feet after 1 second.
  - **D** A ball is shot up in the air, reaches a height of 42 feet, and lands on the ground after 1.5 seconds.



- 68. Which function has -7 as its only zero?
  - (F) f(x) = x(x-7)**G** h(x

$$x) = (x-7)^2$$

(H) 
$$g(x) = (x + 1)(x + 7)$$
  
(J)  $j(x) = (x + 7)^2$ 

- 69. Which expression is a perfect square trinomial?
  - (A)  $25v^2 16$ (C)  $25y^2 - 40y + 16$ (D)  $25v^2 - 10v + 16$ **B**  $25y^2 - 20y + 16$
- **70. Gridded Response** Find the positive root of  $x^2 + 4x 21 = 0$ .

## CHALLENGE AND EXTEND

Find the roots of each equation by factoring.

**71.** 
$$3(x^2 - x) = x^2$$
  
**72.**  $x^2 = \frac{1}{3}x$   
**73.**  $x^2 - \frac{3}{4}x + \frac{1}{8} = 0$   
**74.**  $x^2 + x + 0.21 = 0$ 

- **75.** Another special factoring case involves perfect cubes. The sum of two cubes can be factored by using the formula  $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ .
  - **a.** Verify the formula by multiplying the right side of the equation.
  - **b.** Factor the expression  $8x^3 + 27$ .
  - **c.** Use multiplication and guess and check to find the factors of  $a^3 b^3$ .
  - **d.** Factor the expression  $x^3 1$ .

## **SPIRAL REVIEW**

Evaluate each expression. Write the answer in scientific notation. (Lesson 1-5)

**76.**  $(1.4 \times 10^8)(6.1 \times 10^{-3})$ **77.**  $(2.7 \times 10^{10})(3.2 \times 10^2)$ **79.**  $\frac{(3.12 \times 10^{-6})}{(4.8 \times 10^{3})}$ **78.**  $\frac{(3.5 \times 10^6)}{(1.4 \times 10^{-4})}$ 

Solve each proportion. (Lesson 2-2)

**80.** 
$$\frac{12}{7.5} = \frac{n}{5}$$
 **81.**  $\frac{1.2}{4.8} = \frac{w}{8.8}$  **82.**  $\frac{6.8}{4.5} = \frac{r}{90}$ 

Using the graph of  $f(x) = x^2$  as a guide, describe the transformations, and then graph each function. (Lesson 5-1)

**83.** 
$$h(x) = 0.5x^2$$
 **84.**  $d(x) = x^2 + 2$  **85.**  $g(x) = (x+1)^2$