67. Use the graph provided to choose the best description of what the graph represents.
(A) A ball is dropped from a height of 42 feet and lands on the ground after 3 seconds.
(B) A ball is dropped from a height of 42 feet and lands on the ground after 1.5 seconds.
(C) A ball is shot up in the air and reaches a height of 42 feet after 1 second.
(D) A ball is shot up in the air, reaches a height of 42 feet, and lands on the ground after 1.5 seconds.

Ball Height

68. Which function has -7 as its only zero?
(F) $f(x)=x(x-7)$
(H) $g(x)=(x+1)(x+7)$
(G) $h(x)=(x-7)^{2}$
(J) $j(x)=(x+7)^{2}$
69. Which expression is a perfect square trinomial?
(A) $25 y^{2}-16$
(C) $25 y^{2}-40 y+16$
(B) $25 y^{2}-20 y+16$
(D) $25 y^{2}-10 y+16$
70. Gridded Response Find the positive root of $x^{2}+4 x-21=0$.

CHALLENGE AND EXTEND

Find the roots of each equation by factoring.
71. $3\left(x^{2}-x\right)=x^{2}$
72. $x^{2}=\frac{1}{3} x$
73. $x^{2}-\frac{3}{4} x+\frac{1}{8}=0$
74. $x^{2}+x+0.21=0$
75. Another special factoring case involves perfect cubes. The sum of two cubes can be factored by using the formula $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$.
a. Verify the formula by multiplying the right side of the equation.
b. Factor the expression $8 x^{3}+27$.
c. Use multiplication and guess and check to find the factors of $a^{3}-b^{3}$.
d. Factor the expression $x^{3}-1$.

SPIRAL REVIEW

Evaluate each expression. Write the answer in scientific notation. (Lesson 1-5)
76. $\left(1.4 \times 10^{8}\right)\left(6.1 \times 10^{-3}\right)$
77. $\left(2.7 \times 10^{10}\right)\left(3.2 \times 10^{2}\right)$
78. $\frac{\left(3.5 \times 10^{6}\right)}{\left(1.4 \times 10^{-4}\right)}$
79. $\frac{\left(3.12 \times 10^{-6}\right)}{\left(4.8 \times 10^{3}\right)}$

Solve each proportion. (Lesson 2-2)
80. $\frac{12}{7.5}=\frac{n}{5}$
81. $\frac{1.2}{4.8}=\frac{w}{8.8}$
82. $\frac{6.8}{4.5}=\frac{r}{90}$

Using the graph of $f(x)=x^{2}$ as a guide, describe the transformations, and then graph each function. (Lesson 5-1)
83. $h(x)=0.5 x^{2}$
84. $d(x)=x^{2}+2$
85. $g(x)=(x+1)^{2}$

