Lesson 12-3

Objective - To write rules and find sums for arithmetic sequences.

An arithmetic sequence has a common difference between consecutive terms.

Rule for an Arithmetic Sequence

$$
a_{n}=a_{1}+(n-1) d
$$

a_{n} represents the nth term of the sequence.
a_{1} represents the first term.
n is the number of terms.
d is the difference.

Decide if each series is an arithmetic series.

1) $-5,-1,3,7,11, \ldots$ Yes, difference $=4$.
2) $4,5,7,10,14, \ldots$ No common difference.
3) $1,4,8,12,16, \ldots$ No common difference.
4) $-4,-8,-12,-16,-20, \ldots$ Yes, difference $=-4$.

Write a rule for the nth term of each sequemce.
Then find a_{25}.

1) $48,53,58,63, \ldots \quad a_{n}=a_{1}+(n-1) d$

$$
\begin{gathered}
a_{n}=48+(n-1)(53-48) \\
a_{n}=5 n+43 \quad a_{25}=5(25)+43=168
\end{gathered}
$$

$$
\text { 2) }-21,-39,-57,-75, \ldots \quad a_{n}=a_{1}+(n-1) d
$$

$$
a_{n}=-21+(n-1)(-39-(-21))
$$

$$
a_{n}=-18 n-3 \quad a_{25}=-18(25)-3=-453
$$

Write a rule for the nth term.

1) $a_{15}=10, a_{20}=25 \quad d=\frac{25-10}{20-15}=3$

$$
\begin{gathered}
a_{15}=a_{1}+(15-1) 3 \\
10=a_{1}+42 \\
a_{1}=-32 \\
a_{n}=-32+(n-1) 3 \\
a_{n}=3 n-35
\end{gathered}
$$

Write a rule for the nth term.

1) $a_{12}=-23, a_{27}=37 \quad d=\frac{37-(-23)}{27-12}=4$

$$
\begin{gathered}
a_{12}=a_{1}+(12-1) 4 \\
-23=a_{1}+44 \\
a_{1}=-67 \\
a_{n}=-67+(n-1) 4 \\
a_{n}=4 n-71
\end{gathered}
$$

1) $a_{17}=22 \quad d=-4$

$$
\begin{gathered}
a_{17}=a_{1}+(17-1)(-4) \\
22=a_{1}-64 \\
a_{1}=86 \\
a_{n}=86+(n-1)(-4) \\
a_{n}=-4 n+90
\end{gathered}
$$

Lesson 12-3 (cont.)

Sum of a Finite Arithmetic Sequence

Sum of the first n terms of an arithmetic sequence

$$
S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)
$$

Find the sum of the first 20 terms
$12,18,24,30,36, \ldots$
$a_{20}=12+(20-1) 6=126$
$S_{20}=n\left(\frac{a_{1}+a_{20}}{2}\right)=20\left(\frac{12+126}{2}\right)=1380$

Find the sum of the first 50 terms of this series,

$$
\begin{gathered}
34+45+56+67+78+\ldots \\
a_{50}=34+(50-1) 11 \\
a_{50}=573 \\
S_{50}=n\left(\frac{a_{1}+a_{50}}{2}\right) \\
S_{50}=50\left(\frac{34+573}{2}\right) \\
S_{50}=15,175
\end{gathered}
$$

$$
\begin{aligned}
& \text { Find } n \text { if } S_{\mathrm{n}}=20 \text { for the following series, } \\
& -16+(-12)+(-8)+(-4)+0+\ldots \\
& a_{n}=a_{1}+(n-1) d \quad S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right) \\
& a_{n}=-16+(n-1) 4 \\
& a_{n}=4 n-20 \quad 20=n\left(\frac{-16+4 n-20}{2}\right) \\
& 20=2 n^{2}-18 n \\
& 0=2 n^{2}-18 n-20 \\
& 0=n^{2}-9 n-10 \\
& 0= \\
& n=10 n=-10)(n+1)
\end{aligned}
$$

