Lesson 12-4

Objective - To write rules and find sums for geometric sequences.

A geometric sequence has a common ratio between consecutive terms.

Rule for a Geometric Sequence

$$
a_{n}=a_{1} r^{n-1}
$$

a_{n} represents the nth term of the sequence. a_{1} represents the first term. n is the number of terms.
r is the common ratio.

Decide if each series is a geometric series.

1) $-5,-10,-20,-40, \ldots \quad$ Yes, ratio $=2$.
2) $\frac{4}{7}, \frac{8}{49}, \frac{16}{343}, \frac{32}{2401}, \ldots \quad$ Yes, ratio $=2 / 7$.
3) $1,4,8,12,16, \ldots$ No common ratio.
4) $128,64,32,16,8, \ldots \quad$ Yes, ratio $=1 / 2$.

Write a rule for the nth term of each sequemce. Then find a_{10}.

1) $2,16,128,1024, \ldots \quad a_{n}=a_{1} r^{n-1}$

$$
a_{n}=2 \cdot\left(\frac{16}{2}\right)^{n-1} \quad a_{n}=2 \cdot 8^{n-1}
$$

$$
a_{10}=2 \cdot 8^{9} \not 268,435,456
$$

2) $\frac{2}{5}, \frac{6}{25}, \frac{18}{125}, \frac{54}{625}, \ldots$
$a_{n}=\frac{2}{5} \cdot\left(\frac{6}{\frac{25}{2}}\right)^{n-1} \quad a_{n}=\frac{2}{5} \cdot\left(\frac{3}{5}\right)^{n-1} \quad a_{10}=\frac{2}{5} \cdot \frac{3^{9}}{5}=0.004$

Write a rule for the nth term.

1) $a_{12}=\frac{2}{3}, r=3$

$$
\begin{gathered}
a_{12}=a_{1}(3)^{12-1} \\
\frac{2}{3}=a_{1}(3)^{11} \\
a_{1}=\frac{2}{3} \div 3^{11} \\
a_{1}=0.0000038 \\
a_{n}=0.0000038 \cdot(3)^{n-1}
\end{gathered}
$$

Write a rule for the nth term.

1) $a_{2}=-1, r=2 \quad$ Write the first few terms.

$$
\begin{gathered}
-0.5,-1,-2,-4,-8, \ldots \\
a_{n}=a_{1} \cdot r^{n-1} \\
a_{n}=(-0.5) \cdot 2^{n-1}
\end{gathered}
$$

Write a rule for the nth term.

1) $a_{2}=8 \quad a_{5}=512$

$$
\begin{array}{cc}
a_{2}=a_{1} \cdot r^{2-1} \longrightarrow & 8=a_{1} \cdot r \quad a_{1}=\frac{8}{r} \\
a_{5}=a_{1} \cdot r^{5-1} \longrightarrow & 512=a_{1} \cdot r^{4} \\
\begin{array}{cc}
512=\frac{8}{r} \cdot r^{4} \\
512=8 \cdot r^{3} \\
64=r^{3} \\
r=4
\end{array} & a_{1}=\frac{8}{4}=2 \\
a_{n}=2 \cdot(4)^{n-1}
\end{array}
$$

Lesson 12-4 (cont.)

Sum of a Finite Geometric Sequence
Sum of the first n terms of a geometric sequence

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
$$

Find the sum of the first 6 terms

$$
2,10,50,250, \ldots \quad r=\frac{10}{2}=5
$$

$$
S_{6}=2\left(\frac{1-5^{6}}{1-5}\right)=2\left(\frac{-15,624}{-4}\right)=7812
$$

Find the sum of the first 6 terms of this seires,

$$
\begin{gathered}
1+7+49+343+\ldots \\
r=\frac{7}{1}=7 \\
S_{6}=1\left(\frac{1-7^{6}}{1-7}\right) \\
S_{6}=\frac{-117,648}{-6} \\
S_{6}=19,608
\end{gathered}
$$

Find n if $S_{\mathrm{n}}=55,987$ for the following series,

$$
\begin{aligned}
& 1+6+36+216+\ldots \\
& S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right) \quad 55,987=1\left(\frac{1-6^{n}}{1-6}\right) \\
& 55,987=\frac{1-6^{n}}{-5} \\
&-279,935=1-6^{n} \\
& 279,936=6^{n} \\
& \log (279,936)=\log \left(6^{n}\right) \\
& \log (279,936)=n \log 6 \quad n=\frac{\log (279,936)}{\log 6}=7
\end{aligned}
$$

