\qquad Date \qquad Class \qquad

LESSON
 Practice A

12-1 Introduction to Sequences

Find the first 5 terms of each sequence.

1. $a_{1}=4, a_{n}=2 a_{n-1}-3$
a. The first term, a_{1}, is given. Make a table to record the terms. Substitute a_{1} into the rule for a_{n} to find the second term.
b. Continue using each term to find the next term.

Complete the table.

n	$2 a_{n-1}-3$	a_{n}
1		4
2	$2(4)-3$	
3		
4		
5		

c. Write the five terms.
2. $a_{1}=2, a_{n}=\left(a_{n-1}\right)^{2}$
3. $a_{1}=2, a_{n}=1-2\left(a_{n-1}\right)$
4. $a_{1}=1, a_{n}=\left(a_{n-1}\right)^{2}+1$
\qquad
6. $a_{1}=5, a_{n}=2\left(a_{n-1}-2\right)$
5. $a_{1}=1, a_{n}=\left(a_{n-1}\right)\left(a_{n-1}+1\right)$
7. $a_{1}=243, a_{n}=\frac{a_{n-1}}{3}$
8. $a_{n}=n-2^{n}$
a. Use the table. Substitute 1 for n and simplify to find the first term.
b. Complete the table.
c. Write the five terms. \qquad
9. $a_{n}=n(n+1)$ \qquad
10. $a_{n}=n^{2}-2 n$
11. $a_{n}=2^{n-2}$

n	$n-2^{n}$	a_{n}
1	$1-2^{1}$	
2		
3		
4		
5		

12. $a_{n}=2-n$
13. $a_{n}=(5-n)(n+5)$

Solve.

14. A ball is dropped and bounces to a height of 10 feet. The ball rebounds to 80% of its previous height.
a. Graph the sequence.
b. Describe the pattern.
c. To the nearest inch, find the height of the ball after its eighth bounce.

Practice A

12-1 Introduction to Sequences

Write a possible explicit rule for the nth term of each sequence.

7. $1,5,9,13,17, \ldots \quad$ 8. $0.8,1.6,3.2,6.4,12.8, \ldots \quad$ 9. $1.5,3,4.5,6,7.5, \ldots$

$$
a_{n}=4 n-3 \quad a_{n}=0.4(2)^{n}
$$

10. $19.5,18,15.5,12,7.5, \ldots$ 11. $2, \frac{10}{3}, \frac{14}{3}, 6, \frac{22}{3}$,

$$
\begin{gathered}
\frac{a_{n}=\frac{3}{2} n}{\frac{25}{16}, \frac{5}{4}, 1, \frac{4}{5}, \frac{16}{25}, \ldots} \\
a_{n}=\left(\frac{4}{5}\right)^{n-3} \\
\text { 15. } 0,9,24,45,72, \ldots
\end{gathered}
$$

13. $10,7,2,-5,-14, \ldots$
14. $1,0.2,0.03,0.004$,

$$
a_{n}=3 n^{2}-3
$$

Solve.
16. The vertex of each square is the midpoint of the next larger square. The area of the center square is 1 square unit.
a. What are the areas of the next 4 squares? 2, 4, 8, 16
b. Write an explicit rule for the areas. $a_{n}=2^{n-1}$
c. What is the area of the eighth square? 128 square units

17. A grocer stacks oranges in a square pyramid. Each orange sits on the 4 oranges below it. So, the top layer has 1 orange and the layer below it has 4 oranges. The layer below that has 9 oranges. The total number of oranges required for 1 layer is 1 . The total number of oranges required for 2 layers is 5 . The total number of oranges required for 3 layers is 14 .
a. Write a recursive formula for the sequence.
b. How many oranges are required for 10 layers?

Copyrignt by by Hol, Rineharat and Winston.
Al right resesued.

Practice B

12-1 Introduction to Sequences

Find the first 5 terms of each sequence

$$
\begin{aligned}
& \begin{array}{lll}
\text { 1. } a_{1}=1, a_{n}=3\left(a_{n-1}\right) & \text { 2. } a_{1}=2, a_{n}=2\left(a_{n-1}+1\right)-5 & \text { 3. } a_{1}=-2, a_{n}=\left(a_{n-1}\right)^{2}-1
\end{array} \\
& \text { 1, 3, 9, 27, } 81 \\
& \underline{2,1,-1,-5,-13} \quad-2,3,8,63,3968 \\
& 1,4,-2,10,-14 \\
& -1,1,-3,13,141 \\
& 2,0,1, \frac{1}{2}, \frac{3}{4} \\
& \text { 7. } a_{n}=(n-2)(n+1) \\
& \text { 8. } a_{n}=n(2 n-1) \\
& \text { 9. } a_{n}=n^{3}-n^{2} \\
& \text { 0. } \frac{-2,0,4,10,18}{a_{n}=\left(\frac{1}{2}\right)^{n-3}} \\
& \text { 1, 6, 15, 28, } 45 \\
& 0,4,18,48,100 \\
& 4,2,1, \frac{1}{2}, \frac{1}{4} \\
& 1,-2,4,-8,16 \\
& -1,0,3,8,15
\end{aligned}
$$

Write a possible explicit rule for the nth term of each sequence.
$\begin{array}{lll}\text { 13. } 8,16,24,32,40, \ldots & 14.0 .1,0.4,0.9,1.6,2.5, \ldots & \text { 15. } 3,6,11,18,27, \ldots\end{array}$
16. $\frac{3}{2}$,
$a_{n}=8 n$
$a_{n}=0.1 n^{2}$
$\frac{a_{n}=n^{2}+2}{5,1,0.2,0.04,0.008, \ldots}$
$a_{n}=3\left(\frac{1}{2}\right)^{n}$

$$
a_{n}=3 n-5
$$

$$
a_{n}=5(0.2)^{n-1}
$$

Solve

19. Find the number of line segments in the next two iterations. 31, 63

20. Jim charges $\$ 50$ per week for lawn mowing and weeding services. He plans to increas his prices by 4% each year
a. Graph the sequence.
b. Describe the pattern

Exponential
c. To the nearest dollar, how much will he charge per week in 5 years?
\$61 per week

LEsson Reteach

12.1 Introduction to Sequences

A sequence is an ordered set of numbers. Each number is called a term
A recursive formula is a rule that tells you how to write the terms of a sequence, using the

The first five terms are 4, 10, 28, 82, and 244.

Find the first five terms of each sequence.

$a_{2}=a_{1}+3=-8+3=-\quad-5$ $a_{2}=-5 a_{1}=-5(2)=\quad-10$
$a_{3}=a_{2}+3$ \qquad
-2
$a_{3}=-5 a_{2}=\quad 50$
$a_{4}=1$
$a_{5}=$
$a_{4}=\quad-250$
3. $a_{1}=6, a_{n}=2 a_{n-1}-1$
$a_{5}=\quad 1250$
3. $a_{1}=6, a_{n}=2 a_{n-1}-1$
4. $a_{1}=-1, a_{n}=4 a_{n-1}$

$a_{2}=11$
$a_{3}=21$
$a_{4}=41$
$a_{5}=81$

$a_{2}=-4$
$a_{3}=-16$
$a_{4}=-64$
$a_{5}=-256$

