Practice A 12-1 Introduction to Sequences

Find the first 5 terms of each sequence.

- **1.** $a_1 = 4, a_n = 2a_{n-1} 3$
 - **a.** The first term, a_1 , is given. Make a table to record the terms. Substitute a_1 into the rule for a_n to find the second term.
 - **b.** Continue using each term to find the next term. Complete the table.
 - c. Write the five terms. _

2.
$$a_1 = 2, a_n = (a_{n-1})^2$$

4. $a_1 = 1, a_n = (a_{n-1})^2 + 1$

6.
$$a_1 = 5, a_n = 2(a_{n-1} - 2)$$

- 8. a_n = n 2ⁿ
 a. Use the table. Substitute 1 for n and simplify to find the first term.
 b. Complete the table.
 c. Write the five terms.
- **9.** $a_n = n(n + 1)$ _____
- **10.** $a_n = n^2 2n$
- **12.** $a_n = 2 n$

Solve.

14. A ball is dropped and bounces to a height of 10 feet. The ball rebounds to 80% of its previous height.

- a. Graph the sequence.
- **b.** Describe the pattern.
- **c.** To the nearest inch, find the height of the ball after its eighth bounce.

n	2 <i>a</i> _{<i>n</i>-1} - 3	a _n
1		4
2	2(4) - 3	
3		
4		
5		

3.
$$a_1 = 2, a_n = 1 - 2(a_{n-1})$$

5.
$$a_1 = 1, a_n = (a_{n-1})(a_{n-1} + 1)$$

7.
$$a_1 = 243, a_n = \frac{a_{n-1}}{3}$$

n	n – 2 ⁿ	a _n
1	1 – 2 ¹	
2		
3		
4		
5		

13.
$$a_n = (5 - n)(n + 5)$$

11. $a_n = 2^{n-2}$

3

Holt Algebra 2

