TESSON Practice B

Introduction to Sequences

Find the first 5 terms of each sequence.

1.
$$a_1 = 1$$
, $a_n = 3(a_{n-1})$

2.
$$a_1 = 2$$
, $a_n = 2(a_{n-1} + 1) - 5$ **3.** $a_1 = -2$, $a_n = (a_{n-1})^2 - 1$

3.
$$a_1 = -2$$
, $a_n = (a_{n-1})^2 - 1$

4.
$$a_1 = 1$$
, $a_2 = 6 - 2(a_{2-1})$

4.
$$a_1 = 1$$
, $a_n = 6 - 2(a_{n-1})$ **5.** $a_1 = -1$, $a_n = (a_{n-1} - 1)^2 - 3$ **6.** $a_1 = -2$, $a_n = \frac{2 - a_{n-1}}{2}$

6.
$$a_1 = -2$$
, $a_n = \frac{2 - a_{n-1}}{2}$

7.
$$a_n = (n-2)(n+1)$$

8.
$$a_n = n(2n - 1)$$

9.
$$a_n = n^3 - n^2$$

10.
$$a_n = \left(\frac{1}{2}\right)^{n-3}$$

11.
$$a_n = (-2)^{n-1}$$

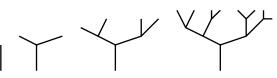
12.
$$a_n = n^2 - 2n$$

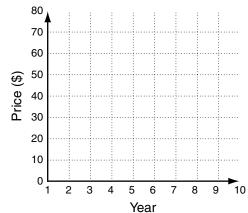
Write a possible explicit rule for the nth term of each sequence.

16.
$$\frac{3}{2}$$
, $\frac{3}{4}$, $\frac{3}{8}$, $\frac{3}{16}$, $\frac{3}{32}$, ...

Solve.

- 19. Find the number of line segments in the next two iterations.
- 20. Jim charges \$50 per week for lawn mowing and weeding services. He plans to increase his prices by 4% each year.
 - a. Graph the sequence.
 - **b.** Describe the pattern.
 - c. To the nearest dollar, how much will he charge per week in 5 years?





SSON Practice A

12-1 Introduction to Sequences

Find the first 5 terms of each sequence.

1	a	=	4	a	=	2a1	_	3
١.	a_1	_	4,	a_n	_	$2a_{n-1}$		J

	ven. Make a table to record a_1 into the rule for a_n to find
the second term.	5

b. Continue using each to	erm	to	find	the	next	term.
Complete the table.						_

c. Write the five terms. 4, 5, 7, 11, 19

2.	a.	= 2,	a., =	(a.)2

3.
$$a_1 = 2$$
, $a_n = 1 - 2(a_{n-1})$

4.
$$a_1 = 1$$
, $a_n = (a_{n-1})^2 + 1$

5.
$$\frac{2, -3, 7, -13, 27}{a_1 = 1, a_n = (a_{n-1})(a_{n-1} + 1)}$$

6.
$$a_1 = 5$$
, $a_n = 2(a_{n-1} - 2)$

7.
$$a_1 = 243, a_n = \frac{a_{n-1}}{3}$$

8.
$$a_n = n - 2^n$$

b. Complete the table.
c. Write the five terms.
$$-1, -2, -5, -12, -27$$

 $2, 6, 12, 20, 30$

9.
$$a_n = n(n+1)$$

10.
$$a_n = n^2 - 2n$$

-1, 0, 3, 8, 15

11.
$$a_n = 2^{n-2}$$
 5 5 -

12.
$$a_0 = 2 - n$$

3

2.
$$a_n = 2 - n$$

1, 0, -1, -2, -3

13.
$$a_n = (5 - n)(n + 5)$$

24, 21, 16, 9, 0

Solve.

- 14. A ball is dropped and bounces to a height of 10 feet. The ball rebounds to 80% of its previous height.
 - a. Graph the sequence.
 - b. Describe the pattern.

Exponential

c. To the nearest inch, find the height of the ball after its eighth bounce. 2 ft 1 in.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

2(4) - 3

2(5) - 3

2(7) - 3

2(11) - 3

5

_11

-2

Holt Algebra 2

Practice B

124 Introduction to Sequences

Find the first 5 terms of each sequence.

1.
$$a_1 = 1$$
, $a_n = 3(a_{n-1})$

1.
$$a_1 = 1$$
, $a_n = 3(a_{n-1})$ **2.** $a_1 = 2$, $a_n = 2(a_{n-1} + 1) - 5$ **3.** $a_1 = -2$, $a_n = (a_{n-1})^2 - 1$

4.
$$a_1 = 1$$
, $a_n = 6 - 2(a_{n-1})$ **5.** $a_1 = -1$, $a_n = (a_{n-1} - 1)^2 - 3$ **6.** $a_1 = -2$, $a_n = \frac{2 - a_{n-1}}{2}$

5.
$$a_1 = -1$$
, $a_n = (a_{n-1})$

8.
$$a_n = n(2n - 1)$$

$$a = n^3 - n^2$$

$$\frac{-2, 0, 4, 10, 18}{2 - (1)^{n-3}}$$

10, 18 1, 6, 15, 28, 45 11.
$$a_n = (-2)^{n-1}$$

$$a_n = \left(\frac{1}{2}\right)^{n-3}$$

12.
$$a_n = n^2 - 2n$$

$$4, 2, 1, \frac{1}{2}, \frac{1}{4}$$

Write a possible explicit rule for the nth term of each sequence.

$$a_n = 8n$$
16. $\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \dots$

17.
$$-2$$
, 1, 4, 7, 10, ... **18.** 5, 1, 0.2, 0.04, 0.008, ...

$$a_n = 0.1n^2 \qquad a_n = n^2 + 2$$

$$a_n = 3\left(\frac{1}{2}\right)^n$$

$$=3\left(\frac{1}{2}\right)^n$$

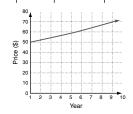
$$a_n = 3n - 5$$

$$a_n = 5(0.2)^{n-1}$$

Solve

- 19. Find the number of line segments in the next two iterations. 31, 63
- 20. Jim charges \$50 per week for lawn mowing and weeding services. He plans to increase his prices by 4% each year.
 - a. Graph the sequence.
 - b. Describe the pattern. Exponential
 - c. To the nearest dollar, how much will he charge per week in 5 years?

\$61 per week



Copyright © by Holt, Rinehart and Winston. All rights reserved.

Holt Algebra 2

Practice C 12-1 Introduction to Sequences

Find the first 5 terms of each sequence.

 $\frac{3}{2}$, 2, 2, 1

1.
$$a_1 = -3$$
, $a_n = (a_{n-1} + 2)^3$ **2.** $a_1 = 2$, $a_n = \frac{1 - a_{n-1}}{a_{n-1}}$
2. $a_{n-1} = 2$, $a_{n-1} = 2$,

$$\frac{1}{1}, \frac{1}{2}, -3, \frac{4}{3}, \frac{1}{4}$$

$$= (n-1)^n$$

$$a_n = n^2 - 2^n$$

Write a possible explicit rule for the nth term of each sequence.

0, 1, 8, 81, 1024

-1, 0, 1, 0, -7

$$a_n = 4n - 3$$

$$\frac{a_n = 4n - 3}{10. \ 19.5, 18, 15.5, 12, 7.5, \dots} \qquad \frac{a_n = 0.4(2)^n}{11. \ 2, \frac{10}{3}, \frac{14}{3}, 6, \frac{22}{3}, \dots}$$

 $a_n = n(0.1)^{n-1}$

12.
$$\frac{25}{16}$$
, $\frac{5}{4}$, 1, $\frac{4}{5}$, $\frac{16}{25}$, ...
$$a_n = \left(\frac{4}{5}\right)^{n-3}$$

$$a_n = 20 - 0.5n^2$$

 $a_n = 11 - n^2$

 $a_n = 3n^2 - 3$

- 16. The vertex of each square is the midpoint of the next larger square. The area of the center square is 1 square unit.
 - a. What are the areas of the next 4 squares?

b. Write an explicit rule for the areas.

$$a_n = 2^{n-1}$$
c. What is the area of the eighth square?
128 square units

17. A grocer stacks oranges in a square pyramid. Each orange sits on the 4 oranges below it. So, the top layer has 1 orange and the layer below it has 4 oranges. The layer below that has 9 oranges. The total number of oranges required for 1 layer is 1. The total number of oranges required for 2 layers is 5. The total number of oranges required for 3 layers is 14.

5

a. Write a recursive formula for the sequence. b. How many oranges are required for 10 layers?

$$a_n = n^2 + a_{n-1}$$
385 oranges

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Reteach

Make a ta

12-1 Introduction to Sequences

A sequence is an ordered set of numbers. Each number is called a term. A recursive formula is a rule that tells you how to write the terms of a sequence, using the preceding terms of the sequence. a., comes

Find the first five terms of the sequence with $a_1 = 4$ and $a_n = 3a_{n-1} - 2$.

a₁ denotes the first term in the sequence.

Recursive formula a_n denotes the nth

ake a table to list the	ne terms in t	he sequence.	ter	m in the sequence
Term number	— n	$a_n = 3a_{n-1} - 2$	a _n -	Term value
	1	Given: a ₁ = 4	4	
	2	$a_2 = 3a_{2-1} - 2$ $= 3a_1 - 2$ $= 3(4) - 2 = 10$	10	
	3	$a_3 = 3a_2 - 2$ = 3(10) - 2 = 28	28 <	Notice how the previous
	4	$a_4 = 3a_3 - 2$ = 3(28) - 2 = 82	82	term is used each time to
	5	$a_5 = 3a_4 - 2$ = 3(82) - 2 = 244	244	compute the next term.

The first five terms are 4, 10, 28, 82, and 244.

Find the first five terms of each sequence.

1.
$$a_1 = -8$$
, $a_n = a_{n-1} + 3$
 $a_2 = a_1 + 3 = -8 + 3 = -5$

$$= a_2 + 3 =$$
 -2 $=$ 1

6

3.
$$a_1 = 6$$
, $a_n = 2a_{n-1} - 1$

	$a_2 = 11$
•	a ₃ = 21
	$a_4 = 41$
	$a_5 = 81$

4. $a_1 = -1$, $a_n = 4a_{n-1}$

2. $a_1 = 2$, $a_n = -5a_{n-1}$

 $a_2 = -5a_1 = -5(2) =$

$$a_2 = -4$$
 $a_3 = -16$
 $a_4 = -64$
 $a_5 = -256$

-250

1250

Copyright © by Holt, Rinehart and Winston. All rights reserved

Holt Algebra 2

Holt Algebra 2