\qquad Date \qquad Class \qquad

LEsson Practice C

11-5. Measures of Central Tendency and Variation

Write a data set to satisfy the given conditions.

1. Median $=8 ;$ mode $=4$
2. Mean $=10 ;$ median $=12$

Make a box-and-whisker plot of the data. Find the interquartile range.
3. $21,20,4,5,5,20,20,13,1,1,13,7,13,17,7,17,9,9$

4. $10,16,3,18,18,10,8,2,9,3,7,7,8,8,18,13,7,13$

Find the variance and standard deviation.
5. $\{13,7,16,22,26,11,12,19,9\}$
6. $\{4,7,28,6,1,1,10,15,48,3,4,5\}$
7. $\{15,5,12,8,19,11,7,10,9,13,17,5\}$
8. $\{37,29,33,30,23,28,20,35,19,21\}$

Solve.

9. The probability distribution for the number of children per family in a particular suburb of Chicago is shown below.
Find the expected number of children per family in this region.

Number of Children, \boldsymbol{n}	1	2	3	4
Probability	0.27	0.28	0.35	0.10

10. A chemist weighs samples obtained from a production run. The weights of the samples are $13 \mathrm{~g}, 14 \mathrm{~g}, 65 \mathrm{~g}, 11 \mathrm{~g}, 15 \mathrm{~g}, 14 \mathrm{~g}, 14 \mathrm{~g}, 12 \mathrm{~g}, 13 \mathrm{~g}, 15 \mathrm{~g}$, 14 g , and 12 g .
a. Find the mean of the data.
b. Find the standard deviation.
c. Identify any outliers.
d. Describe how any outlier affects the mean and the standard deviation.

Practice A

11-5 Measures of Central Tendency and Variation

Find the mean, median, and mode of each data set.

1. $\{3,10,2,8,7,5,2,5\}$
a. The mean is the sum of the values in a set divided by the number of values. Find the mean of the set.

5.25
5
2,5

b. The median is the middle value when the set is
ordered numerically. Find the median of the set.
c. The mode is the value or values that occur most often. Find the mode of the set.
2. $\{11,15,4,10,7,5,11,9$

a. Mean	b. Median		c. Mode	
	9			

Find the expected values.
3. The probability distribution for the number of free throws that Larry makes in a game is given below. Find the expected number of free throws that Larry makes in
a game.

Number of Free Throws Made, \boldsymbol{n}	5	6	7	8
	Probability	0.21	0.58	0.14

4. The probability distribution for the number of pieces of junk mail May receives is given below. Find the expected
number of junk mail letters May receives in a day.

Number of Junk Mail Letters, \boldsymbol{n}	1	2	3	4
Probability	0.15	0.70	0.10	0.05

Make a box-and-whisker plot of the data. Find the interquartile range.

Interquartile range is 4.
6. $\{1,9,9,2,2,5,5,10\}$ Interquartile range is 7.

Find the variance and standard deviation.

7. $\{1,2,8,11,7,10,7,2$
8. $\{10,14,8,12,9,13\}$

13; 3.6
.
35

Practice C
11-5 Measures of Central Tendency and Variation

Write a data set to satisfy the given conditions.

1. Median $=8 ;$ mode $=4$	2. Mean $=10 ;$ median $=12$
Possible answer: $\{4,4,8,9,10\}$	Possible answer: $\{3,6,12,14,15\}$

Make a box-and-whisker plot of the data. Find the interquartile range

Find the variance and standard deviation.

${ }^{\text {LIEson }}$ Practice B

11-5 Measures of Central Tendency and Variation

Find the mean, median, and mode of each data set.

1. $\{12,11,17,3,9,14,16,2\}$

a. Mean 10.5 b. Median 11.5 c. Mode None		a. Mean	8.6
b. Median	9		
c. Mode	9		

Make a box-and-whisker plot of the data. Find the interquartile range.
3. $\{3,7,7,3,10,1,6,6\}$

Interquartile range is 4.
4. $\{1,2,3,5,3,5,8,2\}$ Interquartile range is 3.

Find the variance and standard deviation.
5. $\{7,4,3,9,2\}$

$\begin{array}{lllllllllll} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{array}$					

6. $\{35,67,21,16,24,51,18,32\}$

278; 16.7

7. $\{19,23,17,20,25,19,15,22\}$
$9.3 ; 3.0$

9.3; 3.0

Solve.

9. The probability distribution for the amount of rain
that falls on Boston in May each year is given below.
Find the expected amount of rain for Boston in May. 7.01

Inches of Rain, \boldsymbol{n}	5	6	7	8
Probability	0.05	0.10	0.64	0.21

10. A biologist is growing bacteria in the lab. For a certain species of bacteria, she records these doubling times: $41 \mathrm{~min}, 45 \mathrm{~min}, 39 \mathrm{~min}, 42 \mathrm{~min}, 38 \mathrm{~min}$, $88 \mathrm{~min}, 43 \mathrm{~min}, 40 \mathrm{~min}, 44 \mathrm{~min}, 39 \mathrm{~min}, 42 \mathrm{~min}$, and 40 min .
a. Find the mean of the data.
b. Find the standard deviation
c. Identify any outliers.

45.1
13.1
88

d. Describe how any outlier affects the mean and the standard deviation. The mean increases from ≈ 41.2 to ≈ 45.1, and the standard deviation increases from ≈ 2.1 to ≈ 13.1.
\qquad

Reteach

11-5 Measures of Central Tendency and Variation

Expected value can be thought of as the long-term average of an experiment after many trials.
The table shows a probability distribution for the variable x. A probability distribution table pairs each outcome with its probability.

Outcome	x_{1}	x_{2}	x_{3}	\ldots	x_{n}		
Probability	p_{1}	p_{2}	p_{3}	\ldots	p_{n}	\quad	To find the expected value, find
:---							
the sum of the products of each							
Eutcome and its associated							
probability.							

This table shows the probability distribution for the number of red marbles selected when 3 marbles are randomly selected without replacement from a bag with 4 red and 6 blue marbles. Find the expected number of red marbles selected.

Outcome	0	1	2	3
Probability	0.17	0.5	0.3	0.03

In the formula for the expected value, $n=4$.	
Expected value	$=x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{3}+x_{4} p_{4}$
	$=0(0.17)+1(0.5)+2(0.3)+3(0.03)$
$=0+0.5+0.6+0.09=1.19$	

Because the expected
value is a type of average,
it may not correspond
exactly to any of the

actual outcomes.

The probability distribution of temperatures, in degrees Celsius, from a chemistry experiment is shown below. Find the expected value of the temperature during the experiment.

Outcome	4	5	6	7	8
Probability	$\frac{2}{13}$	$\frac{4}{13}$	$\frac{3}{13}$	$\frac{4}{13}$	$\frac{2}{13}$

2. Write the expected value formula to use.

Expected value $=x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{3}+x_{4} p_{4}+x_{5} p_{5}$
3. Find the expected value of the temperature during the experiment.
≈ 6.9

Copy © by Hoth, Bineharat and Winston
All s resesered.
38
Holt Algebra 2

