Bivariate Data

VISUALIZATION
LINEAR CORRELATION
SIMPLE LINEAR REGRESSION RESIDUAL ANALYSIS

Visualizing Bivariate Data

ASSESSING ASSOCIATIONS BETWEEN BIVARIATE (i.e. Paired) QUANTITATIVE DATA WITH SCATTER PLOTS

Defining Linear Correlation

(refer to p. 85-88 in text)

- Linear Correlation

Positive or Negative
Strong or Weak

- No Linear Correlation

No Correlation
Non-linear Relationship

- Notice: Correlation does not imply Causation (p. 89)

Further Explorations of Bivariate Data

Possible Non-Linear
Relationship

Possible Outliers and/or Influential Points

Determining Linear Correlation

(b)

ASSESSING ASSOCIATIONS BETWEEN BIVARIATE (i.e. Paired) QUANTITATIVE DATA WITH PEARSON'S LINEAR CORRELATION COEFFICIENT (r)

The Linear
Correlation
Coefficient
(refer to p. 90-95 in text)

Properties

- Formula for Calculating r (p. 95):
$r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{n\left(\sum x y\right)-\left(\sum x\right) *\left(\sum y\right)}{\sqrt{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} * \sqrt{n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}}}$
- Properties of r (p. 94):
- $-1 \leq r \leq 1$
- If all values of either variable are converted to a different scale, the value of r does not change
- The value of r is not affected by the choice of x or y (Can you see why this is the case?)
- r measures the strength of a linear relationship only!!
- r is very sensitive to outliers in the sense that a single outlier can dramatically affect its value

Examples (continued)

City MPG Data

				Weight	City	4095	18
			2839	4035	18	3860	18
5501	1923	14991	2898	3315	22		
5945	1961	14836	3123	3115	22	4020	17
6629	1979	14478	3195	4115 3650	21	2875	25 22
7556	2030	14539	3239	3650 3565	21	3915 4205	18
8716	2112	14395	3129	4030	18	4415	17
9369	2192	14599	3100	3710	19	3060	26
9920	2235	14969	3008	3710	19	3060	26
10167	2351	15107	2983	3135	24	3745	27
11084	2411	14831	3069	4105	17	4180	17
12504	2475	15081	3151	4170	17	3235	23
13746	2524	15127	3127	3190	22	3475	22
13656	2674	15856	3179	4180	17	2865	24
13850	2833	15938	3207	2760	26	3600	22
14145	2863	16081	3345	3195	24	2595	30
				2980	24	3465	22
						3630	20
S. Robinson - University of Arkansas							7/4

Simple Linear Regression

(0)

ASSESSING ASSOCIATIONS BETWEEN BIVARIATE (i.e. Paired) QUANTITATIVE DATA WITH SIMPLE LINEAR REGRESSION

A Line of "Best Fit"

(refer to p. 100-105)
(11)

- Given a collection of paired sample data, simple linear regression attempts to algebraically describe the relationship between the two variables x and y.
- This algebraic description is often denoted as $\hat{y}=b_{0}+b_{1} x$

Does this equation look familiar?
What do you think b_{1} represents? What about b_{0} ?
How would you describe this representation in terms of the relationship that exists between x and y ?

- The graph of the above equation is the Least Squares line

Also known as the "line of best fit" or the "regression line"
The least squares line fits the sample points best
The slope and intercept can be determined using the formulas on p. 103

Residual Analysis

ASSESSING ASSOCIATIONS BETWEEN BIVARIATE (i.e. Paired) QUANTITATIVE DATA WITH SIMPLE LINEAR REGRESSION

Further Investigations

- For the enrollment dataset, we may attempt to fit a quadratic model to account for the slight curvature
- For the city mpg dataset, there appears to be an outlier that may need evaluated more thoroughly
- Both models could be used for prediction purposes, however, when using regression equations for prediction, we must always consider the strength of the linear relationship that exists between the variables and, also, common errors such as extrapolation

Example:
A simple random sample of 30 winning 5 k times for competitive male runners aged $15-24$ years resulted in a mean 5 k time of 16.79 min . The sample linear correlation coefficient between the age of the runner and the 5 k time for this sample was 0.903 . The simple linear regression equation that fits this sample data was found to be $\hat{y}=21.506-0.276 x$ where x represents the age of the runner in years and y represents the 5 k time for the runner in minutes. Can we use the regression equation above to predict the 5 k time for a 65 year old competitive male runner? Why or why not?

A Complete Simple Linear Regression Analysis

\checkmark General Steps for a Complete Regression Analysis:
\checkmark Construct a scatter plot and verify that the pattern of the points is approximately a straight line pattern without outliers
\checkmark Assess the linear correlation between two variables of interest and create a regression equation and least squares line
\checkmark Plot the least squares line and verify that the fitting is appropriate
\checkmark Construct a residual plot and verify that there is no pattern (other than a straight line pattern) and also verify that the residual plot does not become thicker or thinner
\checkmark Use a histogram to confirm that the values of the residuals have a distribution that is approximately normal
\checkmark Consider any effects of a pattern over time

