\qquad Date \qquad Class \qquad

LESSON
 Practice C

14-1 Graphs of Sine and Cosine

Using $f(x)=\sin x$ or $f(x)=\cos x$ as a guide, graph each function. Identify the amplitude, period, x-intercepts, and phase shift.

1. $h(x)=\frac{1}{2} \cos (-\pi x)$
2. $q(x)=-\sin \left(\frac{\pi}{2} x\right)$

3. $c(x)=3 \cos (x+\pi)$

4. $h(x)=-2 \sin \left(x-\frac{\pi}{2}\right)$

Solve.
5. A manual metronome is an inverted pendulum that helps musicians play to the beat. The number of centimeters, C, that the tip of the pendulum is from a tabletop can be modeled by $C(t)=2 \cos 4 \pi t+12$, where t is the time in seconds.
a. Graph the height of the pendulum tip for 2 periods.
b. How high is the pendulum when $t=\frac{1}{4}$ second?

LLEson Practice A
14-1 Graphs of Sine and Cosine
Identify whether each function is periodic. If the function is periodic, give the period.

Periodic; 2
2.

Not periodic

Use $f(x)=\sin x$ or $g(x)=\cos x$ as a guide. Identify the amplitude and period. Then graph each function.

4. $p(x)=2 \cos (0.5 x)$

\qquad

Use $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { c o s } x}$ as a guide. Graph the function.

3. $c(x)=3 \cos (x+\pi)$

Amplitude: 3; period: 2π x-intercepts: $\frac{\pi}{2}, \frac{3 \pi}{2}$
phase shift: π radians to the left

Solve
5. A manual metronome is an inverted pendulum that helps musicians play to the beat. The number of centimeters, C, that the tip of the pendulum is of centimeters, C, that the tip of the
from a tabletop can be modeled by
$C(t)=2 \cos 4 \pi t+12$, where t is the time in seconds
a. Graph the height of the pendulum tip for 2 periods.
b. How high is the pendulum when $t=\frac{1}{4}$ second? 10 cm
\qquad
4. $h(x)=-2 \sin \left(x-\frac{\pi}{2}\right)$ Amplitude: 2; period: 2π; x-intercepts: $\frac{\pi}{2}, \frac{3 \pi}{2}$; phase shift: $\frac{\pi}{2}$ radians to the right

Copyight by Hol. Rinehart and Winston.
Al light reseeved.
5
Holt Algebra 2

Practice B

14.1 Graphs of Sine and Cosine

Using $f(x)=\sin x$ or $g(x)=\cos x$ as a guide, graph each function. Identify the amplitude and period.

1. $b(x)=-5 \sin \pi x$
2. $k(x)=3 \cos 2 \pi x$
Amplitude: 5; period: 2
Amplitude: 3; period: 1

Using $f(x)=\sin x$ or $g(x)=\cos x$ as a guide, graph each function. Identify the x-intercepts and phase shift.

3. $h(x)=\sin \left(x+\frac{\pi}{4}\right)$ x-intercepts: $\frac{3 \pi}{4}, \frac{7 \pi}{4}$; phase	4. $h(x)=\cos \left(x-\frac{\pi}{4}\right)$ x-intercepts: $\frac{3 \pi}{4}, \frac{7 \pi}{4}$; phase shift: $\frac{\pi}{4}$ radians to the right
shift: $\frac{\pi}{4}$ radians to the left	

Solve.
5. a. Use a sine function to graph a sound wave with a period of 0.002 second and an amplitude of 2 centimeters.
b. Find the frequency in hertz for this sound wave. 500 Hz

Coporight © by Hoth Rinehar and Winston.
Ail
4
Holt Algebra 2

LIEson Reteach
 14-1 Graphs of Sine and Cosine

Transformations of the sine and cosine functions change the amplitude and/or the period of

- the period is $\frac{2 \pi}{|b|}$. One full cycle appears in each period.

Use the graph of $f(x)=\sin x$ to sketch the graph of $g(x)=0.5 \sin 2 x$
Step 1 Compare $g(x)=0.5 \sin 2 x$ to $y=\boldsymbol{a} \sin \boldsymbol{b} x$.
 of $g(x)$ is 0.5 and the minimum value is -0.5 .
$a=0.5$ and $|0.5|=0.5$, so the amplitude is 0.5 .

> One full cycle appears in the interval from 0 to π.
Step 2 Find b to identify the period.
$b=2$, and $\frac{2 \pi}{|b|}=\frac{2 \pi}{|2|}$
Step $3 \operatorname{Graph} f(x)=\sin x$

Step 4 Graph $g(x)=0.5 \sin 2 x$ on the same plane as $f(x)$.
The amplitude is 0.5 . The maximum and
minimum values of $g(x)$ are 0.5 and -0.5 .
The period is π. One full cycle appears in the
interval from 0 to π. Two full cycles appear in
the interval from 0 to 2π and from -2π to 0.
The x-intercepts are at multiples of $\frac{\pi}{2}$.

Complete to graph $h(x)=0.5 \cos 2 x$.

1. Find the amplitude of $h(x) . a=$
2.
3. Find the period of $h(x) \cdot \frac{2 \pi}{|b|}=$
4. What are the maximum and minimum values of $h(x)$?
5. How many full cycles appear in the interval from 0 to π ? \qquad
6. Sketch the graph of $f(x)=\cos x$. Then graph $h(x)=0.5 \cos 2 x$.

