Practice C

14-1 Graphs of Sine and Cosine

Using $f(x) = \sin x$ or $f(x) = \cos x$ as a guide, graph each function. Identify the amplitude, period, x-intercepts, and phase shift.

1.
$$h(x) = \frac{1}{2}\cos(-\pi x)$$

$$2. \ q(x) = -\sin\left(\frac{\pi}{2}x\right)$$

3.
$$c(x) = 3\cos(x + \pi)$$

$$4. h(x) = -2\sin\left(x - \frac{\pi}{2}\right)$$

Solve.

- **5.** A manual metronome is an inverted pendulum that helps musicians play to the beat. The number of centimeters, C, that the tip of the pendulum is from a tabletop can be modeled by $C(t) = 2\cos 4\pi t + 12$, where t is the time in seconds.
 - $\boldsymbol{a.}$ Graph the height of the pendulum tip for 2 periods.
 - **b.** How high is the pendulum when $t = \frac{1}{4}$ second?

Practice A

1451 Graphs of Sine and Cosine

Identify whether each function is periodic. If the function is periodic, give the period.

Use $f(x) = \sin x$ or $g(x) = \cos x$ as a guide. Identify the amplitude and period. Then graph each function.

3.
$$h(x) = -3\sin 4x$$

4.
$$p(x) = 2\cos(0.5x)$$

Use $f(x) = \cos x$ as a guide. Graph the function.

- **5.** $g(x) = \cos(x \pi)$
- a. Identify the amplitude and period.

Amplitude: 1; period: 2π

- b. Identify the phase shift.
 - π radians to the right
- c. Identify the x-intercepts. $\frac{\pi}{2} + n\pi$, where n is an integer d. Identify the maximum and minimum values.
 - 1, -1
- e. Use the information to graph the function.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Holt Algebra 2

Practice B

14-1 Graphs of Sine and Cosine

Using $f(x) = \sin x$ or $g(x) = \cos x$ as a guide, graph each function. Identify the amplitude and period.

1.
$$b(x) = -5\sin \pi x$$

 $4. h(x) = \cos\left(x - \frac{\pi}{4}\right)$

Using $f(x) = \sin x$ or $g(x) = \cos x$ as a guide, graph each function Identify the x-intercepts and phase shift.

$$3. h(x) = \sin\left(x + \frac{\pi}{4}\right)$$

x-intercepts:
$$\frac{3\pi}{4}$$
, $\frac{7\pi}{4}$; phase

shift: $\frac{\pi}{4}$ radians to the left

- 5. a. Use a sine function to graph a sound wave with a period of 0.002 second and an amplitude of 2 centimeters
 - b. Find the frequency in hertz for this sound wave.

500 Hz

Copyright © by Holt, Rinehart and Winston All rights reserved.

Holt Algebra 2

Practice C Graphs of Sine and Cosine

Using $f(x) = \sin x$ or $f(x) = \cos x$ as a guide, graph each function. Identify the amplitude, period, x-intercepts, and phase shift.

1.
$$h(x) = \frac{1}{2}\cos(-\pi x)$$

Amplitude: 0.5; period: 2; x-intercepts: 0.5, 1.5; phase shift: 0

Amplitude: 3; period: 2π ;

x-intercepts: $\frac{\pi}{2}$, $\frac{3\pi}{2}$;

phase shift: π radians to the left

3. $c(x) = 3\cos(x + \pi)$

 $2. \ q(x) = -\sin\left(\frac{\pi}{2}x\right)$

Amplitude: 1; period: 4; x-intercepts: 0, 2, 4; phase shift: 0

4. $h(x) = -2\sin(x - \frac{\pi}{2})$

Amplitude: 2; period: 2π ; x-intercepts: $\frac{\pi}{2}$, $\frac{3\pi}{2}$; phase shift: $\frac{\pi}{2}$ radians to the right

⊼ Reteach

145 Graphs of Sine and Cosine

Transformations of the sine and cosine functions change the amplitude and/or the period of the graph. The amplitude is half the difference

4

For $y = \mathbf{a}\sin\mathbf{b}x$ or $y = \mathbf{a}\cos\mathbf{b}x$:

between the greatest and least values of the function.

· the amplitude is |a|, the period is $\frac{2\pi}{|h|}$.

One full cycle appears in each period.

Use the graph of $f(x) = \sin x$ to sketch the graph of $g(x) = 0.5\sin 2x$.

Step 1 Compare $g(x) = 0.5\sin 2x$ to $y = a\sin bx$. Find a to identify the amplitude.

The maximum value of g(x) is 0.5 and the minimum value is -0.5.

Step 2 Find b to identify the period.

a = 0.5 and |0.5| = 0.5, so the amplitude is 0.5. b=2, and $\frac{2\pi}{|b|}=\frac{2\pi}{|2|}=\pi$, so the period is π . Graph $f(x)=\sin x$.

One full cycle appears in the interval from 0 to π .

 $0.5\sin 2x$ on the same plane as f(x). Step 4 Graph q(x)

The **amplitude** is 0.5. The maximum and minimum values of g(x) are 0.5 and -0.5. The **period** is π . One full cycle appears in the interval from 0 to π . Two full cycles appear in the interval from 0 to 2π and from -2π to 0. The x-intercepts are at multiples of $\frac{\pi}{2}$

Solve

- 5. A manual metronome is an inverted pendulum that helps musicians play to the beat. The number of centimeters. C. that the tip of the pendulum is from a tabletop can be modeled by $C(t) = 2\cos 4\pi t + 12$, where t is the time in seconds
 - a. Graph the height of the pendulum tip for 2 periods.
 - **b.** How high is the pendulum when $t = \frac{1}{4}$ second?

5

10 cm

Copyright © by Holt, Rinehart and Winston All rights reserved.

Complete to graph $h(x) = 0.5\cos 2x$.

- 0.5 **1.** Find the amplitude of h(x). a =2. Find the period of h(x). $\frac{2\pi}{|b|}$
- 3. What are the maximum and minimum values of h(x)?

in the interval from 0 to π ?

4. How many full cycles appear

1 cycle

0.5, -0.5

Copyright © by Holt, Rinehart and Winston. All rights reserved. 6 Holt Algebra 2