Basic Trigonometric Identities - sec. 7.1

A statement of equality between two expressions that is true for all values of the variable(s) for which the expressions are defined is called an identity. An identity involving trigonometric expressions is a trigonometric identity.

Some of the following identities were covered in a previous chapter. They are listed here as review.

Reciprocal Identities: $\begin{array}{lll}\sin A=\frac{1}{\csc A} & \cos A=\frac{1}{\sec A} & \tan A=\frac{1}{\cot A} \\ & \csc A=\frac{1}{\sin A} & \sec A=\frac{1}{\cos A}\end{array} \quad \cot A=\frac{1}{\tan A}$

Example 1: If $\tan A=0.8$, find $\cot A$.

$$
\begin{aligned}
\cot A & =\frac{1}{\tan A} \\
& =\frac{1}{0.8} \\
& =1.25
\end{aligned}
$$

Quotient Identities:

$$
\begin{aligned}
& \frac{\sin A}{\cos A}=\tan A \rightarrow \sin A=\cos A \tan A \\
& \frac{\cos A}{\sin A}=\cot A \rightarrow \cos A=\sin A \cot A
\end{aligned}
$$

$$
\sin ^{2} A+\cos ^{2} A=1
$$

Pythagorean Identities: $\tan ^{2} A+1=\sec ^{2} A$

$$
1+\cot ^{2} A=\csc ^{2} A
$$

Example 2: If $\tan A=\frac{2}{5}$, find $\cos A$.

$$
\begin{aligned}
& \text { To find } \cos A, \text { first find } \sec A . \\
& \tan ^{2} A+1=\sec ^{2} A \\
& \begin{array}{l}
\left(\frac{2}{5}\right)^{2}+1=\sec ^{2} A \\
\frac{29}{25}=\sec ^{2} A \\
\pm \frac{\sqrt{29}}{5}=\sec A
\end{array}
\end{aligned}
$$

Then, find $\cos A$.

$$
\cos A=\frac{1}{\sec A}
$$

$$
\cos A= \pm \frac{5}{\sqrt{29}}= \pm \frac{5 \sqrt{29}}{29}
$$

Example 3: Simplify $\sin ^{2} x+\sin ^{2} x \tan ^{2} x$.

$$
\begin{aligned}
& \sin ^{2} x\left(1+\tan ^{2} x\right) \\
& \sin ^{2} x\left(\sec ^{2} x\right) \\
& \sin ^{2} x \cdot \frac{1}{\cos ^{2} x} \\
& \frac{\sin ^{2} x}{\cos ^{2} x} \\
& \tan ^{2} x
\end{aligned}
$$

Example 4: Simplify $\csc ^{2} x-\cot ^{2} x$

$$
1 \quad\left(u \sin g 1+\cot ^{2} x=\csc ^{2} x\right)
$$

Example 5: Simplify $\frac{\sin ^{2} x+\cos ^{2} x}{\cos ^{2} x}$

$$
\begin{aligned}
& \frac{1}{\cos ^{2} x} \\
& \sec ^{2} x
\end{aligned}
$$

Example 6: Simplify $\cos y \csc y$

$$
\begin{aligned}
& \cos y \cdot \frac{1}{\sin y} \\
& \frac{\cos y}{\sin y} \\
& \cot y
\end{aligned}
$$

Example 7: Simplify $2 \csc ^{2} x-\csc ^{4} x+\cot ^{4} x$

$$
2 \csc ^{2} x+\cot ^{4} x-\csc ^{4} x
$$

$$
2 \csc ^{2} x+\left(\cot ^{2} x-\csc ^{2} x\right)\left(\cot ^{2} x+\csc ^{2} x\right)
$$

$$
2 \csc ^{2} x+(-1)\left(\cot ^{2} x+\csc ^{2} x\right)
$$

$$
2 \csc ^{2} x-\cot ^{2} x-\csc ^{2} x
$$

$$
\csc ^{2} x-\cot ^{2} x
$$

$$
1
$$

Example 8: Simplify $\frac{\tan x}{\sin x}$

$$
\frac{\sin x}{\cos x}
$$

$$
\sin x
$$

$$
\frac{\sin x}{\cos x} \div \sin x
$$

$$
\frac{\sin x}{\cos x} \cdot \frac{1}{\sin x}
$$

$$
\frac{1}{\cos x}
$$

$\sec x$

