Sections 5.2	Algebra 2	Name
Basics	-	Period

This function is in standard form. $f(x) = ax^2 + bx + c$. The graph of this quadratic function is a **parabola**.

The <u>quadratic coefficient</u> is *a*, the <u>linear coefficient</u> is *b*, and the <u>constant</u> is *c*.

The equation of the **axis of symmetry** of a function in standard form is found by using $x = \frac{-b}{2a}$. The axis of symmetry always passes through the vertex, so the **x-coordinate of the vertex** is also $\frac{-b}{2a}$.

The **y-coordinate of the vertex** can be found by directly substituting this value back into the function replacing the x variable with this value. You can also find the y-coordinate by using synthetic substitution.

To find the **y-intercept**, set x = 0 and solve for x.

Consider the following function: $f(x) = 2x^2 - 12x + 8$.

Find: $a = _ b = _ c = _$

 Find the axis of symmetry:
 vertex
 y-intercept

Find the y-coordinates of these points then graph this function with the axis of symmetry, vertex, and points. Use the axis of symmetry to plot another point from the y-intercept found above.

Χ	Y
1	
2	
4	
5	

Find the domain of the graph _____

Find the range of the graph _____

Find the coordinates of the vertex of the parabola.

Review:

Use the description to write the quadratic function in vertex form. The parent function $f(x) = x^2$ is vertically stretched by a factor of 2 and then translated 4 units right and 3 units down to create h(x).

State the transformations for the problems below.

$$g(x)=(x-5)^2-3$$

$$g(x) = \left(\frac{1}{2}x\right)^2$$

 $g(x) = -3x^2$