Sections 5.2
Basics

Algebra 2

This function is in standard form. $f(x)=a x^{2}+b x+c$. The graph of this quadratic function is a parabola.

The quadratic coefficient is \boldsymbol{a}, the linear coefficient is \boldsymbol{b}, and the constant is \boldsymbol{c}.
The equation of the axis of symmetry of a function in standard form is found by using $\quad x=\frac{-b}{2 a}$.
The axis of symmetry always passes through the vertex, so the \mathbf{x}-coordinate of the vertex is also $\frac{-b}{2 a}$.

The y-coordinate of the vertex can be found by directly substituting this value back into the function replacing the x variable with this value. You can also find the y -coordinate by using synthetic substitution.

To find the \mathbf{y}-intercept, set $x=0$ and solve for x .

Consider the following function: $\quad f(x)=2 x^{2}-12 x+8$.
Find: $\quad a=$ \qquad $b=$ \qquad $c=$ \qquad

Find the axis of symmetry: \qquad vertex \qquad y-intercept \qquad
Find the y-coordinates of these points then graph this function with the axis of symmetry, vertex, and points. Use the axis of symmetry to plot another point from the y-intercept found above.

\mathbf{X}	\mathbf{Y}
1	
2	
4	
5	

Find the domain of the graph \qquad
Find the range of the graph \qquad

Find the coordinates of the vertex of the parabola. \qquad

Find the equation of the axis of symmetry. \qquad

State the domain.
State the range.
\qquad
\qquad

Write the equation for the graph in vertex form.
\qquad

Review:

Use the description to write the quadratic function in vertex form. The parent function $f(x)=x^{2}$ is vertically stretched by a factor of 2 and then translated 4 units right and 3 units down to create $h(x)$.

State the transformations for the problems below.
$g(x)=(x-5)^{2}-3$
$g(x)=\left(\frac{1}{2} x\right)^{2}$

$$
g(x)=-3 x^{2}
$$

