Algebra 2

Identify whether the function graphed has an <u>even</u> or <u>odd</u> degree. Then state if the leading coefficient of the polynomial function is positive or negative.

5. <u>Matching</u> Use the numbers from the graphs of the problems (#1 - #4) above that have the following end behavior.

a.	As $x \to -\infty$, $f(x) \to -\infty$ As $x \to +\infty$, $f(x) \to +\infty$	a
b.	As $x \to -\infty$, $f(x) \to -\infty$ As $x \to +\infty$, $f(x) \to -\infty$	b
c.	As $x \to -\infty$, $f(x) \to +\infty$ As $x \to +\infty$, $f(x) \to -\infty$	c
d.	As $x \to -\infty$, $f(x) \to +\infty$ As $x \to +\infty$, $f(x) \to +\infty$	d

- 6. Describe the end behavior of each function by completing the statements.
 - a. $f(x) = -3x^6 5x^3 2$ b. $f(x) = 2x^3 + 6x^2 + 1$ c. $f(x) = 2x^3 + 6x^2 + 1$ c. $f(x) = -\infty, f(x) \rightarrow \underline{\qquad}$ c. $f(x) = -\infty, f(x) \rightarrow \underline{\qquad}$ c. $f(x) = -\infty, f(x) \rightarrow \underline{\qquad}$ c. $f(x) \rightarrow \underline{\qquad}$

7. Let $f(x) = x^4 - 2x^3 + 4x - 5$. Write a function g that performs each of the following transformations.

A. Reflect <i>f</i> across the y-axis.	A
B. Reflect f across the x-axis.	В

- 8. Let $f(x) = x^2 2x + 1$. Write the rule for each function
 - A. g(x) = f(x) 4 A.
 - B. g(x) = f(x-4) B. _____

Matching Match the description of function g as a transformation of function f.

9. $g(x) = 5f(x)$	A. Vertical compression
10. $g(x) = \frac{1}{5}f(x)$	B. Horizontal compression
11. $g(x) = f(5x)$	C. Vertical stretch
$\underline{\qquad} 12. g(x) = f\left(\frac{1}{5}x\right)$	D. Horizontal stretch

13. Find the local maximum and local minimum for $f(x) = -3x^3 + 4x - 5$.

Round to the <u>nearest tenth</u> .	Max	Min
-------------------------------------	-----	-----