

For each table, tell whether there is a common ratio. If there is, write an equation relating the two variables x and y, where x is the quantity in the left-hand column of the table and y is the quantity in the right-hand column.

2.

1.	Diameter of a tree trunk at various stages of growth		
	Age of tree (yr)	Trunk diam. (in.)	
	2	1.3	
	4	2.6	
	5	3.25	
	7	4.55	
	10	6.5	

5	0		
Wind resistance encountered by a bicyclist			
Speed (mi/h)	Wind Resist. (lb)		
12	0.41		
16	0.72		
18	0.91		
20	1.12		
22	1.36		

3.	Sales of a clothing company based on advertising		
	Ad Budget (thous. of \$)	Sales (mil. of \$)	
	140	2.1	
	128	1.9	
	120	1.8	
	88	1.3	
	72	1.1	

For each equation, tell whether y varies directly with x. If so, graph the equation.

4.
$$y = \frac{3}{5}x$$
 5. $y = \frac{2}{3x}$ **6.** $y = 2x + 3$ **7.** $y = -\frac{5x}{3}$

8. a. When she filled the gas tank, Wenona noticed that the gas guage indicated that she had used $\frac{5}{8}$ of the tank. Let x = the total capacity of the tank. Let y = the amount of gas used. Write an equation relating x and y at the time she filled the tank.

- **b**. Wenona's gas tank took 7.5 gal to fill. What is the total capacity of her gas tank?
- 9. a. It took Wenona 1.2 h to drive the first 45 mi of her trip. Let y = the distance she covered in time x. Write an equation relating y and x based on Wenona's first 45 mi. (Assume that she drove at a more or less steady speed.)
 - **b**. Suppose the equation you wrote for part (a) remains true during the remaining 68 mi of her trip. How much longer will she be driving?
- **10.** The graph at the right shows the results of fuel efficiency tests on three different cars. For each car, write a direct variation equation that relates distance traveled to gallons of fuel used. What does the constant of variation represent in all three cases?

