Transformation Unit NOTES

A function transformation takes the basic parent function $f(x)$ and then "transforms" it or "translates" it, which is a fancy way of saying that you change the equation a bit and it moves the graph around.

Basic Transformations:

ALL basic transformations of functions follow these rules:

Translations ("shifts")

- $f(x)+k$ is $f(x)$ shifted upward k units
- $f(x)-k$ is $f(x)$ shifted downward k units
- $f(x+h)$ is $f(x)$ shifted left h units
- $f(x-h)$ is $f(x)$ shifted right h units

Reflections ("flips")

- $-f(x)$ is $f(x)$ flipped upside down ("reflected about the x-axis")
- $f(-x)$ is the mirror of $f(x)$ ("reflected about the y-axis")

Additional Transformations:

There are additional transformations called dilations and compressions, but it is a bit harder to see these changes. If you compare the graphs of $2 x^{2}, x^{2}$, and $1 / 2 x^{2}$, you'll see that the graph doesn't change its position as much as its size. The parabola for $2 x^{2}$ "grows" twice as fast as x^{2}, so its graph is tall and narrow, which is "stretching" it away from the x-axis (dilation). The parabola for the function $1 / 2 x^{2}$ "grows" only half as fast, so its graph is short and wide, which "compresses" it toward the x-axis. So, multiplying the function by a number in front changes the distance of the graph from the x-axis, by stretching it or compressing the picture.

Now compare the graphs of $(2 x)^{2}, x^{2}$, and $(1 / 2 x)^{2}$ The parabola for $(2 x)^{2}$ is "compressed" toward the y-axis, and "stretched" away from the y-axis for $(1 / 2 x)^{2}$. So, multiplying the x by a number "inside" the function (or parentheses, in this case) changes the distance of the graph from the y-axis, by stretching it or compressing the picture.

Dilations / Compressions

- $a \cdot f(x)$ is a vertical transformation of the graph of $f(x)$, with a "stretch" or "dilation" if $a>1$, and a "compression" if $a<1$.)
- $\quad f(a \cdot x)$ is a horizontal transformation of the graph of $f(x)$, with a "stretch" or "dilation" if $a<1$, and a "compression" if $a>1$.

Formula for Putting it All Together let $g(x)$ be a transformation of some function $f(x)$

Practice: name the parent function, and describe the changes:
$f(x)=-3(x-2)^{2}+5$
\qquad
\qquad
\qquad
$f(x)=|x-3|-2$
$g(x)=\frac{1}{x}+1$
$g(x)=-2^{x}+1$

