\qquad DATE \qquad

Practice 47

FOR USE WITH SECTION 8.1

Match each function with one of the graphs below.

1. $f(x)=\sqrt{x+3}-2$
2. $f(x)=-\sqrt{x-2}$
3. $f(x)=\sqrt{3-x}+2$
4. $f(x)=\sqrt{x}-3$
5. $f(x)=\sqrt{x-3}$
6. $f(x)=-\sqrt{x+2}$
A.

D.

B.

C.

E.

F.

Graph each function. Also state the domain and range.
7. $y=\sqrt{x-4}+3$
8. $y=4-\sqrt{x}$
9. $y=\sqrt{x}-4$
10. $y=\sqrt{x+4}$
11. $y=\sqrt{x+2}-4$
12. $y=-\sqrt{4-x}+2$
13. $y=\sqrt{x+4}-2$
14. $y=\sqrt{2 x}+3$
15. $y=-\sqrt{x-4}$
16. The manufacturer of a toy race car track wants to create a circular loop, as shown. The cars will start a distance h above the top of the loop, of radius r.
a. In order for a car to hug the track at the top of a loop, its weight must equal the force the car exerts against the track by virtue of its motion:

$$
m g=m \frac{v^{2}}{r} .
$$

Solve this equation for v.
b. The velocity v of a car at the top of the loop is given by the equation
$\frac{1}{2} m v^{2}=m g h$, where g is the acceleration due to gravity, which is $32 \mathrm{ft} / \mathrm{s}^{2}$
on Earth. Use this equation and the equation in part (a) to express h in terms of r.

