

13.
$$y = \sqrt{x-5}$$
14. $y = \sqrt[3]{x+4}$ **15.** $y = \sqrt{x+1}-2$ **16.** $y = \sqrt{3-x}$ **17.** $y = \sqrt[4]{x+2}+3$ **18.** $y = 5 - \sqrt{x-1}$

Simplify each expression.

19 . $\sqrt{192}$	20. $\sqrt[3]{-500}$	21 . $\sqrt[5]{96x^6}$	22. $\sqrt[4]{162y^8}$
--------------------------	-----------------------------	-------------------------------	-------------------------------

- **23**. The formula for the volume *V* of a cylinder of height *h* and radius *r* is $V = \pi r^2 h$.
 - **a.** A cylindrical container is to have a height that is 3 times its radius. Express the radius of such a container in terms of its volume.
 - **b.** Suppose the container in part (a) is to have a volume of 1000 cm³. What should the radius of the container be?
- **24**. The length of a planet's year T (its orbit time around the sun) in Earth days is given by

$$T = kd^{3/2}$$
,

where d is the planet's mean distance from the sun (in miles) and k is a constant.

- **a.** Find the value of k using the fact that Earth takes 365.26 days to orbit the sun and that its mean distance from the sun is 92,960,000 mi.
- **b.** Jupiter's mean distance from the sun is 483,600,000 mi. Find the approximate length of its year.
- **25.** Writing Are the expressions $(\sqrt[n]{x})^m$ and $\sqrt[n]{x^m}$ always equivalent for all positive integers *m* and *n* and all real numbers *x*? Explain why or why not.