\qquad
\qquad

Practice 48

FOR USE WITH SECTION 8.2

Evaluate each radical expression, or state that it is undefined.

1. $-\sqrt{1}$
2. $\sqrt{49}$
3. $\sqrt[3]{-0.125}$
4. $\sqrt[3]{0}$
5. $\sqrt[4]{-\frac{1}{16}}$
6. $\sqrt[3]{-\frac{1}{27}}$
7. $\sqrt[5]{-100,000}$
8. $\sqrt{-\frac{1}{9}}$
9. $\sqrt[5]{0.00032}$
10. $\sqrt[4]{810,000}$
11. $\sqrt[6]{-1}$
12. $\sqrt[3]{-\frac{125}{8}}$

State the domain and range of each function.
13. $y=\sqrt{x-5}$
14. $y=\sqrt[3]{x+4}$
15. $y=\sqrt{x+1}-2$
16. $y=\sqrt{3-x}$
17. $y=\sqrt[4]{x+2}+3$
18. $y=5-\sqrt{x-1}$

Simplify each expression.
19. $\sqrt{192}$
20. $\sqrt[3]{-500}$
21. $\sqrt[5]{96 x^{6}}$
22. $\sqrt[4]{162 y^{8}}$
23. The formula for the volume V of a cylinder of height h and radius r is $V=\pi r^{2} h$.
a. A cylindrical container is to have a height that is 3 times its radius. Express the radius of such a container in terms of its volume.
b. Suppose the container in part (a) is to have a volume of $1000 \mathrm{~cm}^{3}$. What should the radius of the container be?
24. The length of a planet's year T (its orbit time around the sun) in Earth days is given by

$$
T=k d^{3 / 2},
$$

where d is the planet's mean distance from the sun (in miles) and k is a constant.
a. Find the value of k using the fact that Earth takes 365.26 days to orbit the sun and that its mean distance from the sun is $92,960,000 \mathrm{mi}$.
b. Jupiter's mean distance from the sun is $483,600,000 \mathrm{mi}$. Find the approximate length of its year.
25. Writing Are the expressions $(\sqrt[n]{x})^{m}$ and $\sqrt[n]{x^{m}}$ always equivalent for all positive integers m and n and all real numbers x ? Explain why or why not.

