\qquad
\qquad

Practice 56

FOR USE WITH SECTION 9.3

Use a graphing calculator or graphing software to graph each polynomial function. For each function:
a. Describe the end behavior using infinity notation.
b. Find all local maximums and local minimums. Round answers to the nearest tenth.

1. $f(x)=-2 x^{2}+8 x+7$
2. $f(x)=\frac{1}{2} x^{2}+3 x-5$
3. $f(x)=2 x^{3}-3 x^{2}-12 x+2$
4. $f(x)=x^{4}-8 x^{2}+x+16$
5. $g(x)=-3 x^{4}+8 x^{3}$
6. $g(x)=8 x^{5}-5 x^{4}-20 x^{3}$
7. $g(x)=3 x^{4}-\frac{4}{3} x^{3}-18 x^{2}+36 x$
8. $h(x)=x^{5}+4 x^{4}-14 x^{3}-36 x^{2}+45 x$
9. $h(x)=-6 x^{5}+4 x^{4}+3 x^{3}-x^{2}+5$
10. $h(x)=0.1 x^{5}-0.8 x^{4}-0.9 x^{3}+9.6 x^{2}$
11. $f(x)=-x^{6}+11 x^{4}-x^{2}+50 x$
12. $f(x)=2 x^{6}-11 x^{4}+5 x^{3}-3 x^{2}+x+10$
13. A cardboard box with a top is to be made from a piece of cardboard measuring 16 in . by 10 in . Rectangles (shaded in the diagram) are to be cut away and the cardboard folded along the dotted lines to form the box.
a. Express w and l in terms of x, the length of the sides of the small squares.
b. Write the volume of the folded box as a function of x. (Hint: The volume of a rectangular prism is given by the formula $V=l w h$.)

c. Graph the function you wrote in part (b) using a graphing calculator or graphing software. Find all local maximums and local minimums.
d. On what domain does it make sense to consider this function as a volume function? What is the maximum value of the volume function on this domain?
14. Open-ended Problem How many times can the graph of a polynomial cross the x-axis? Answer this question by graphing polynomials of several different degrees. Relate your answer to the degree of the polynomial.
