\qquad
\qquad

Practice 57

FOR USE WITH SECTION 9.4

Use technology to approximate all real solutions of each equation to the nearest hundredth.

1. $x^{3}-3 x^{2}-10 x+4=0$
2. $-\frac{1}{2} x^{3}+5 x^{2}-8 x-6=0$
3. $\frac{2}{3} x^{3}+4 x^{2}-7 x-11=0$
4. $2 x^{3}-7 x^{2}+x+4=0$
5. $-3 x^{3}-13 x^{2}+10 x+29=0$
6. $0.4 x^{3}-2 x^{2}-7 x+17=0$

Find an equation for each cubic function whose graph is shown. Assume that all x-intercepts are integers.
7.

9.

Find the zeros of each function.
10. $f(x)=3(x+4)(2 x-7)(x-9)$
11. $f(x)=(5 x+2)(x-5)(3 x-4)$
12. $g(x)=x^{3}-2 x^{2}-13 x-10$
13. $g(x)=x^{3}+4 x^{2}-9 x-36$
14. $h(x)=-x^{3}-3 x^{2}+16 x-12$
15. $h(x)=x^{3}-8 x^{2}+x+42$
16. $f(x)=2 x^{3}+9 x^{2}+3 x-4$
17. $f(x)=-6 x^{3}+13 x^{2}-4$

Write each function in intercept form.
18. $f(x)=(4 x-1)(5 x+2)(x+3)$
19. $f(x)=6 x^{3}+x^{2}-10 x+3$
20. Writing Do you think it is possible for a cubic equation to have no real roots? Describe the possible numbers of real roots a cubic equation can have, based on your knowledge of the possible graphs of cubic equations.

