\qquad
\qquad

Practice 16

FOR USE WITH SECTION 3.3

For each function in Exercises 1-6, do the following:
a. Find the y-intercept of the graph.
b. Tell whether the graph represents exponential growth, exponential decay, or neither.
c. Sketch the graph.

1. $y=160(0.85)^{x}$
2. $y=-2.5(1.14)^{x}$
3. $y=-370(0.6)^{x}$
4. $y=18.4(1.08)^{x}$
5. $y=3.8(0.75)^{x}$
6. $y=-145(1.6)^{x}$
7. a. Sketch the graph of $y=2.8(1.1)^{x}$.
b. On the same axes sketch the reflection of the graph in part (a) over the y-axis and give the equation of the reflected graph.
c. On the same axes sketch the reflection of your original graph over the x-axis and give the equation of the reflected graph.
8. A certain arthritis medication is eliminated from the bloodstream at the rate of about 20% per hour in adults. The original dosage of the medication is 40 mg .
a. Write an equation of the form $y=a b^{x}$ for the amount of the medication that remains in the bloodstream after x hours.
b. How many hours will it take for half the medication to be eliminated?
c. Write an equation of the form $y=a \cdot\left(\frac{1}{2}\right)^{x / h}$ for the amount remaining after x hours.
9. $\$ 1500$ is invested in a bank at 2.5% interest, compounded annually.
a. Write an equation of the form $y=a b^{x}$ for the amount in the account after x years.
b. How many years will it take for the original amount to double?
c. Write an equation of the form $y=a \cdot(2)^{x / d}$ for the amount of money in the account after x years.
10. Find the doubling time of money in a bank account offering interest compounded annually at each rate. Round each doubling time to the nearest whole number of years.
a. 7%
b. 10%
c. 2%
d. 14%
