\qquad
\qquad

Practice 17

FOR USE WITH SECTION 3.4

Suppose a bank offers interest compounded continuously. Use the formula $A=P e^{r t}$ to find the value of $\$ 2000$ after 12 years at each interest rate.

1. 4.5%
2. 3.25%
3. 8%
4. 10.75%

Find the value of $\left(1+\frac{1}{n}\right)^{n}$ for each value of n. Round each answer to six decimal places.
5. 2
6. 20
7. 20^{2}
8. 20^{3}

For each equation in Exercises 9-11, find an equivalent equation of the form $y=a b t$.
9. $y=e^{0.05 t}$
10. $y=25.4\left(\frac{1}{2}\right)^{t / 250}$
11. $y=150 e^{-0.16 t}$
12. 100 mg of Neptunium-236 decays radioactively according to the equation $y=100 e^{-0.0308 x}$ where x is in hours.
a. Use a graphing calculator to graph this function. Sketch the graph.
b. Estimate how many hours it takes for an amount of Neptunium-236 to be reduced by half.
13. The logistic function

$$
y=\frac{12.2}{1+65 e^{-0.435 x}}+14.7
$$

gives an approximate model for the average fuel efficiency (in mi/gal) of cars produced in the U.S. between 1970 and 1993, where $x=$ number of years after 1970.
a. Use a graphing calculator to graph the function. Sketch the graph.
b. Use the function to find the average fuel efficiency of cars produced in the U.S. in 1980 and 1985.

