\qquad
\qquad

Practice 22

FOR USE WITH SECTION 4.3

Write each expression in terms of $\log _{3} a, \log _{3} b$, and $\log _{3} c$.

1. $\log _{3} a^{5}$
2. $\log _{3} b^{1 / 2}$
3. $\log _{3} a c^{2}$
4. $\log _{3} \frac{b^{2 / 3}}{c^{5}}$
5. $\log _{3} a^{6} b^{1 / 4}$
6. $\log _{3} \frac{a b^{3}}{c^{4}}$
7. $\log _{3} \frac{a^{7}}{b^{3} c}$
8. $\log _{3} \frac{(a b)^{1 / 4}}{c}$

Write as a logarithm of a single number or expression.
9. $\frac{1}{2} \log _{5} 144$
10. $5 \log _{b} 2+\log _{b} 3$
11. $\log _{7} 10-4 \log _{7} 5$
12. $3\left(\log _{6} 2+\log _{6} 5\right)$
13. $\frac{3}{4} \log _{3} 16+\log _{3} 6$
14. $2 \log _{11} x^{3}-\log _{11} x^{2}$
15. $5 \log a+2 \log b-3 \log c$
16. $\frac{3}{2} \log _{2} a^{2}-\frac{5}{3} \log _{2} b^{3}$

Let $x=\log _{b} 3$ and $y=\log _{b} 5$. Write each expression in terms of x and y.
17. $\log _{b} 15$
18. $\log _{b} \frac{1}{5}$
19. $\log _{b} \frac{5}{3}$
20. $\log _{b} 25$
21. $\log _{b} 81$
22. $\log _{b} 3 \sqrt{5}$
23. $\log _{b} 5 b^{2}$
24. $\log _{b} \frac{b}{3}$
25. The magnitude of a star is a measure of how bright the star appears in the night sky. Brighter stars have smaller magnitudes, and the magnitudes of the brightest stars are negative. Let $B_{0}=$ the brightness of a star of magnitude 0 . Then the magnitude M of a star of brightness B is given by the formula

$$
M=2.5 \log \frac{B_{0}}{B} .
$$

a. Suppose a star has a brightness $0.01 B_{0}$. (That is, the star is 100 times dimmer than a star of magnitude 0 .) What is its magnitude?
b. Two of the brightest stars, Canopus and Vega, have magnitudes of -0.72 and 0.04 , respectively. How many times brighter is Canopus than Vega? (Hint: Let B_{1} and B_{2} be the brightnesses of Canopus and Vega. Subtract.)

