Practice 22

Write each expression in terms of $\log_3 a$, $\log_3 b$, and $\log_3 c$.

1. $\log_3 a^5$ **2.** $\log_3 b^{1/2}$ **3.** $\log_3 ac^2$ **4.** $\log_3 \frac{b^{2/3}}{c^5}$ **5.** $\log_3 a^6 b^{1/4}$ **6.** $\log_3 \frac{ab^3}{c^4}$ **7.** $\log_3 \frac{a^7}{b^3c}$ **8.** $\log_3 \frac{(ab)^{1/4}}{c}$

Write as a logarithm of a single number or expression.

9. $\frac{1}{2}\log_5 144$	10. $5 \log_b 2 + \log_b 3$
11 . log ₇ 10 – 4 log ₇ 5	12. $3(\log_6 2 + \log_6 5)$
13 . $\frac{3}{4}\log_3 16 + \log_3 6$	14. $2 \log_{11} x^3 - \log_{11} x^2$
15. $5 \log a + 2 \log b - 3 \log c$	16. $\frac{3}{2}\log_2 a^2 - \frac{5}{3}\log_2 b^3$

Let $x = \log_b 3$ and $y = \log_b 5$. Write each expression in terms of x and y.

17 . log _b 15	18. $\log_b \frac{1}{5}$	19 . $\log_b \frac{5}{3}$	20 . log _b 25
21 . log _b 81	22 . $\log_b 3\sqrt{5}$	23 . $\log_b 5b^2$	24 . $\log_b \frac{b}{3}$

25. The *magnitude* of a star is a measure of how bright the star appears in the night sky. Brighter stars have *smaller* magnitudes, and the magnitudes of the brightest stars are negative. Let B_0 = the brightness of a star of magnitude 0. Then the magnitude *M* of a star of brightness *B* is given by the formula

$$M = 2.5 \log \frac{B_0}{B}$$

- **a**. Suppose a star has a brightness $0.01B_0$. (That is, the star is 100 times dimmer than a star of magnitude 0.) What is its magnitude?
- **b.** Two of the brightest stars, Canopus and Vega, have magnitudes of -0.72 and 0.04, respectively. How many times brighter is Canopus than Vega? (Hint: Let B_1 and B_2 be the brightnesses of Canopus and Vega. Subtract.)