\qquad
\qquad

Practice 23

FOR USE WITH SECTION 4.4

Solve each equation. Round your answers to the nearest hundredth.

1. $10^{2 x}=57$
2. $e^{4 y / 3}=18$
3. $2 \cdot 10^{r-1}=39$
4. $7 e^{x / 4}=56$
5. $5^{t}=26$
6. $4 e^{n+2}+3=45$
7. $3(0.8)^{2 a}-5=19$
8. $5 \cdot 3^{x}=4 \cdot 2^{x}$

Evaluate each logarithm. Round your answer to the nearest hundredth.
9. $\log _{3} 14$
10. $\log _{8} 93$
11. $\log _{12} 5$
12. $\log _{14} 87$
13. $\log _{1 / 2} 9$
14. $\log _{5} \frac{3}{4}$
15. $\log _{6} 0.28$
16. $\log _{1.5} 6.3$

Solve each equation. Be sure to check your solutions. Round decimal answers to the nearest hundredth.
17. $\log _{2} x=-4$
18. $5 \ln \frac{3 x}{4}=2$
19. $\log _{3}(1-8 v)=2$
20. $4 \log _{7}(3 w+1)=14$
21. $\log _{5}(a+3)-\log _{5}(a-1)=1$
22. $\log _{2}(y+1)=3+\log _{2}(y-6)$
23. $\log _{9}(4 x+1)-\log _{9}(2 x-7)=\frac{1}{2}$
24. $\log _{3}\left(\log _{5} x\right)=1$
25. A mortgage is a kind of loan that is usually repaid in equal monthly installments. The following formula gives the monthly payment M in terms of the amount of the loan P, the number of months n before the loan is fully repaid, and the monthly interest rate r :

$$
M=\frac{r P}{1-(1+r)^{-n}}
$$

a. Ariella borrows $\$ 150,000$ at 8.5% annual interest for 25 years, or 300 months. Calculate her monthly payment.
b. Suppose Ariella would like to have $\$ 1150$ as a monthly payment. With the same interest rate as in part (a), how many months would it be before the loan was repaid?

