

Solve each system of equations.

1. $y = 3x$	2. $x = y - 7$	3. $2x + 3y = 4$
x + y = 20	2x + y = 1	x - 3y = 5
4. $y - 5x = 3$	5. $3x + y = 1$	6. $y = -1.7x$
5x + 3y = -7	2y - x = 9	3y + 0.3x = 24
7. $x + 4y = 12$	8. $-3x + y = 8$	9. $4.2x + y = 3$
3x - y = 10	2y - 5x = 13	x - 5y = 7
10. $2x - y = 10$	11. $-y - 4x = 6$	12. $7x + 3y = 1$
$3x + \frac{1}{2}y = 17$	3x + y = 5	$x - \frac{1}{3}y = 7$

Use a graphing calculator or graphing software to solve each system of equations. Round the values of x and y to the nearest tenth. (Be careful: The graphs of the equations may intersect more than once.)

13. $y = 3(1.5)^x$	14. $y = 21(0.6)^x$	15. $y = 0.5x^2$
y = 6 - 0.75x	y = -1.5x + 14	y = -3x
16. $y = x^2 - 5x + 4$	17. $y = -x^2 + 3x - 7$	18. $y = x^2$
y = 2x - 6	$y = 0.8(x-1)^2$	$y = 1.6(1.05)^x$

- **19**. Suppose a local movie theater charges \$7 for admission. Suppose, also, that a VCR costs \$148 and that movies cost \$3 to rent. How many movies would you have to see before the cost of seeing the movies in a theater equals the cost of seeing them on a VCR?
- **20**. Before a basketball game, a player's free-throw percentage (percent of free throws made) was 60%. During the game the player made 4 out of 5 free throws and raised her average to 64%. How many free throws had she attempted before this game?
- **21.** Pedro and Yoon He drew up models, based on past performance, to predict the annual profit *P* (in millions of dollars) of their company *t* years after 1995. Pedro used the equation $P = 2.6(1.4)^t$ as his model. Yoon He used the equation P = 2.6 + 1.8t. For what year after 1995 will the two models predict the same profit? What will the profit be?
- **22. Open-ended Problem** Given a system of equations, describe how you would decide whether to use graphing or substitution to solve the system.