\qquad
\qquad

Practice 40

FOR USE WITH SECTION 7.1

Solve each system of equations.

1. $y=3 x$
$x+y=20$
2. $y-5 x=3$
$5 x+3 y=-7$
3. $x+4 y=12$
$3 x-y=10$
4. $2 x-y=10$
$3 x+\frac{1}{2} y=17$
5. $x=y-7$
$2 x+y=1$
6. $3 x+y=1$
$2 y-x=9$
7. $\begin{aligned}-3 x+y & =8 \\ 2 y-5 x & =13\end{aligned}$
$2 y-5 x=13$
8. $-y-4 x=6$
$3 x+y=5$
9. $2 x+3 y=4$
$x-3 y=5$
10. $y=-1.7 x$
$3 y+0.3 x=24$
11. $4.2 x+y=3$
$x-5 y=7$
12. $7 x+3 y=1$
$x-\frac{1}{3} y=7$

Use a graphing calculator or graphing software to solve each system of equations. Round the values of x and y to the nearest tenth. (Be careful: The graphs of the equations may intersect more than once.)
13. $y=3(1.5)^{x}$
$y=6-0.75 x$
14. $y=21(0.6)^{x}$
$y=-1.5 x+14$
16. $\begin{aligned} y & =x^{2}-5 x+4 \\ y & =2 x-6\end{aligned}$
$y=2 x-6$
17. $y=-x^{2}+3 x-7$
$y=0.8(x-1)^{2}$
15. $y=0.5 x^{2}$
$y=-3 x$
18. $y=x^{2}$
$y=1.6(1.05)^{x}$
19. Suppose a local movie theater charges $\$ 7$ for admission. Suppose, also, that a VCR costs $\$ 148$ and that movies cost $\$ 3$ to rent. How many movies would you have to see before the cost of seeing the movies in a theater equals the cost of seeing them on a VCR?
20. Before a basketball game, a player's free-throw percentage (percent of free throws made) was 60%. During the game the player made 4 out of 5 free throws and raised her average to 64%. How many free throws had she attempted before this game?
21. Pedro and Yoon He drew up models, based on past performance, to predict the annual profit P (in millions of dollars) of their company t years after 1995. Pedro used the equation $P=2.6(1.4)^{t}$ as his model. Yoon He used the equation $P=2.6+1.8 t$. For what year after 1995 will the two models predict the same profit? What will the profit be?
22. Open-ended Problem Given a system of equations, describe how you would decide whether to use graphing or substitution to solve the system.

