$\qquad$
$\qquad$

## Practice 42

## FOR USE WITH SECTION 7.3

Rewrite the following systems in matrix form, and solve for $x$ and $y$.

1. $3 x-5 y=17$
$7 x-11 y=21$
2. $2 x+9 y=12$
3. $5 x+9 y=11$
$-2 x+3 y=88$
4. $7 x-8 y=43$
$6 x-7 y=32$
5. $3 x+5 y=24$
$2 x-9 y=53$
6. $4 x+5 y=45$
$6 x+7 y=39$

Use matrices to solve each system for $x$ and $y$. Round the values to the nearest hundredth.
7. $y=15 x+9$
$y=37 x-4$
8. $y=6.2 x-17.4$
$y=-3.8 x$
9. $y=-29 x+47$
$y=-12$

Use matrices to solve each system for $x, y$, and $z$. Round the values to the nearest hundredth.
10. $3 x+5 y-6 z=22$
$2 x-8 y+7 z=15$
$-9 x+y-4 z=23$
11. $5 x-3 y=12$
12. $1.5 x-2.3 y-0.8 z=3.9$
$0.6 x+4.5 y-1.4 z=-0.7$
$3.0 x-1.6 y+2.5 z=1.8$
13. $11 x-3 y+17 z=52$
$-8 x+10 y-5 z=28$
$19 x-13 y+18 z=-12$

Find an equation of the parabola passing through each set of points. Round the coefficients to the nearest hundredth.
14. $(-2,5),(1,3),(3,8)$
16. $(-3,10),(2,11),(5,-4)$
18. Josefina pledged different amounts for 3 friends, Carlos, Alvin, and Manchu, in a charity walkathon. The sum of her per-mile pledges was $\$ .70$, and her pledge for Manchu equaled the sum of her other two pledges. Carlos, Alvin, and Manchu walked distances of $5.4 \mathrm{mi}, 7.2 \mathrm{mi}$, and 8.6 mi , respectively, and Josefina's total contribution to the charity was $\$ 5.08$.
a. Write a system of equations that models the situation.
b. Write the system of equations as a matrix equation.
c. Solve the system for Josefina's per-mile pledges.
19. Open-ended Problem Suppose you are given a system of two equations in two variables, $x$ and $y$. Describe how you would decide which method to use to solve the system, based on the nature of the equations in the system.

