Stopping Distances

Name_____

Exploring Quadratic Functions

Date_____

1. Use the information found at **MJS Traffic Accident Investigations**, complete the following about the braking/stopping distances of a car at the speeds given.

MPH	Ft/Sec	Braking Distance	Perception- Reaction Distance	Total Stopping Distance
10	14.7			
20	29.3			
30	44			
40	58.7			
50	73.3			
60	88			
70	102.7			
80	117.3			
90	132			

- 1. The Perception-Reaction Distance is the distance that a car travels in the time it takes to recognize a need to stop and to begin to stop. Predict the type of function that would model the data.
- 2. Enter the MPH in L_1 and the Perception-Reaction Distances in L_2 . Set up a scatter plot of the Perception-Reaction Distances versus MPH. Sketch the results.
- 3. Find the equation of the line that best fits this data. Enter your equation in Y1.

Window:

- 4. What are the units of the slope? Interpret the meaning of the slope.
- 5. What are the units of the y-intercept? Interpret the meaning of the y-interpret.

17

- 6. The braking distance is the distance that a car will travel from the time the brakes are applied until the car stops. Enter the Braking Distance in L_3 . Set up a scatter plot of the braking distance versus MPH. Sketch the results.
- 7. Find the quadratic regression of the data. Enter your equation in Y_2 .

Window: _

- 8. From physics, the braking distance of a car is directly proportional to the square of the velocity. Write this statement mathematically.
- 9. How does your model compare to the theoretical model?
- 10. Graph the equation on the scatter plot of the braking distance versus MPH. How well does the equation fit the data?
- 11. The total stopping distance is the sum of the perception-reaction distance and the braking distance. Find an expression for the total stopping distance using the equations from questions 3 and 7. Enter your equation in Y_3 .

- 13. How well does your equation fit the data?
- 14. Use your model to predict the stopping distance of a car traveling 55 mph. Compare this to the value given at **MJS Traffic Accident Investigations**?
- 15. If it takes a car 280 feet to stop from the time an emergency is sighted, how fast was the car traveling?