C++ Language Features

	
	
	Category
	Comment
	Specific Objectives
	Intro

	CLASSES
	
	Read, use, and modify classes.
	
	Write client programs that use classes.
	X

	
	
	
	
	Read class declarations.
	X

	
	
	
	
	Modify class member functions.
	

	
	
	
	
	Add class member functions.
	

	
	B
	Design and implement classes.
	
	Design classes.
	

	
	
	
	
	Implement classes.
	

	
	
	Read, use, and implement constructors, including initializer lists.
	Constructors should use initializer lists as opposed to assignments to data because sometimes initializers are required, so use them for uniformity.
	Use constructors.
	X

	
	
	
	
	Read constructors.
	X

	
	
	
	
	Implement constructors using initializer

Lists.
	

	
	
	Differentiate between public and private.
	No public data are used in classes. Since inheritance is not part of APCS, there is no reason to use protected functions/data.
	Do not use public data in classes.
	

	
	
	Read class definitions that include use of *this.
	
	Read class definitions that include use of *this.
	

	
	B
	Use, modify, and implement class member functions that include *this.
	
	Use class member functions that include *this.
	

	
	
	
	
	Modify class member functions that include *this.
	

	
	
	
	
	Implement class member functions that include *this.
	

	
	
	Implement overloaded functions; use overloaded operators.
	Students will NOT be tested on recognizing that functions differing in return type only are overloaded incorrectly.
	Use overloaded operators.
	X

	
	
	
	
	Implement overloaded functions
	

	
	B
	Implement overloaded operators, including operator<< (but friend not used)
	
	Implement overloaded operators, including operator<<.
	

	
	
	Use and implement const member functions.
	
	Use const member functions.
	

	
	
	
	
	Implement const member functions.
	

	
	B
	Recognize when to make a member function const.
	
	Recognize when to make a member function const.
	

	
	
	Use AP string class
	The AP string class is a limited, safe subset of the standard string class.
	Use AP string class.
	X

	
	
	Use templated AP vector and matrix classes.
	
	Use templated AP vector class.
	X

	
	
	
	
	Use templated AP matrix class.
	

	
	B
	Use and reimplement templated AP stack and queue classes.
	
	Use templated AP stack class.
	

	
	
	
	
	Reimplement templated AP stack class.
	

	
	
	
	
	Use templated AP queue class.
	

	
	
	
	
	Reimplement templated AP queue class.
	

	
	B
	Design and implement templated classes and functions.
	
	Implement templated functions.
	

	
	
	
	
	Design templated functions.
	

	
	
	
	
	Implement templated classes.
	

	
	
	
	
	Design templated classes.
	

	
	
	Differentiate interface and implementation of class (.h and .cpp file)
	C++ permits the ideas to be treated separately.
	Differentiate interface and implementation of class (.h and .cpp file)
	X

	
	
	Read, use, and implement structs, implementing constructors and initializer lists in structs when appropriate.
	A struct is a class in which all data is public. Constructors facilitate dynamic creation of structs.
	Use structs.
	

	
	
	
	
	Read structs.
	

	
	
	
	
	Implement structs, including use of constructors and initializer lists when appropriate.
	

	
	B
	Implement linked lists and trees using structs.
	
	Implement linked lists using structs.
	

	
	
	
	
	Implement trees using structs.
	

	PROPERTIES OF LANGUAGE
	
	Understand short circuit evaluation.
	Boolean expressions such as (a && b) are evaluated left-to-right; expression evaluation stops when the value of the entire expression can be determined. This means that constructs such as while(k<n && a[k]!=key) can be used safely.
	Understand short circuit evaluation.
	X

	
	
	Use built-in types: int, char, double, bool.
	For compilers that do not use 32 bit integers, long int may be used, otherwise no modifiers short, long, signed, unsigned.
	Use int.
	X

	
	
	
	
	Use char
	X

	
	
	
	
	Use double
	X

	
	
	
	
	Use bool
	X

	
	
	Read and use enum.
	
	Use enum.
	

	
	
	
	
	Read enum.
	

	
	
	Use operators.
	Use ++ and -- only as shorthand for +=1 and -=1; do NOT use these operators in expressions like a[k++]=0.
	Use arithmetic operators: + - * / %
	X

	
	
	
	
	Use increment/decrement operators: ++ --
	X

	
	
	
	
	Use logical operators: && || !
	X

	
	
	
	
	Use relational operators: == < > != <= >=
	X

	
	
	
	
	Use assignment operators: = += -= *= %= /=
	X

	
	
	
	
	Use I/O operators: << >>
	X

	
	
	Use break.
	Used in switch statements; can be used in loops. The continue statement will not be tested.
	Use break.
	X

	
	
	Use function syntax for typecasts, e.g., cout << double(x)/3.
	For some types, e.g., long int, another form of cast is necessary: (long int) x. When compilers support the static_cast< > operator it will be used.
	Use function syntax for typecasts, e.g., cout << double(x)/3.
	X

	
	B
	Use pointers: operators *, ->, new, delete; NULL preferred to 0; use == and != with pointers.
	The address of operator & is used to test for aliasing in operator=, but not used elsewhere. Pointer arithmetic, pointers to functions, and pointer comparison using < and > will NOT be tested.
	Use pointers: operators *, ->, new, delete; NULL preferred to 0; use == and != with pointers.
	

	
	
	Use [] [] in matrix class for indexing
	Reinforce vector of vectors and mimic notation for built-in arrays.
	Use [] [] in matrix class for indexing
	

	
	
	Use #include and #ifndef idiom in header files
	No other use of preprocessor; const variables used instead of #define.
	Use #include and #ifndef idiom in header files
	

	
	
	Use escape sequences,

\n, \t, \\, \’, \”
	
	Use escape sequences,

\n, \t, \\, \’, \”
	X

	
	
	Use value, reference, and constant reference parameters.
	
	Use value parameters.
	X

	
	
	
	
	Use reference parameters.
	X

	
	
	
	
	Use constant reference parameters.
	

	
	
	Recognize that values returned by operator [] for string and vector can be assigned to, e.g., s[0] = ‘a’ is allowed.
	
	Recognize that values returned by operator [] for string and vector can be assigned to, e.g., s[0] = ‘a’ is allowed.
	X

	
	B
	Read and use reference return types and understand the implications of returning reference to local variable.
	No testing of reference return types for APCS A students.
	Read and use reference return types and understand the implications of returning reference to local variable.
	

	
	
	Use the functions fabs, pow, and sqrt from <math.h>
	
	Use the functions fabs, pow, and sqrt from <math.h>
	X

	
	
	Use constants INT_MAX, INT_MIN from <limits.h>
	
	Use constants INT_MAX, INT_MIN from <limits.h>
	

	S

T

R

E

A

M

P

R

O

P

E

R

T

I

E

S
	
	Use cin, cout, <<, >>, endl
	Assume input data is “type-safe”, e.g., when int expected int is read.

cerr is not tested, but can be useful.
	Use cin, cout, <<, >>, endl
	X

	
	
	Use ifstream, ofstream.
	Students will use open, but it will not be tested since parameters to open may be compiler specific.
	Use ifstream, ofstream.
	

	
	
	Use getline.
	getline() is a free function in the AP string class, consistent with the standard string class function getline.
	Use getline.
	

	
	
	Use istream &, ostream & as formal parameters.
	Students should realize that different types of streams can be passed as arguments when formal parameter is istream &, but inheritance hierarchy of streams will not be tested.
	Use istream &, ostream & as formal parameters.
	

