
Elementary Functions and Calculators

The mathematical content of these pages is not original. Despite being accessible in journal
articles for several years, however, it seems not to be well known. Teachers of trigonometry
and calculus thus may be surprised to learn what really happens when they ask their
calculators to �nd square roots, cosines, and logarithms. It is hoped that this paper will
help dispel a myth | that the calculus of in�nite power series is at work | and that
it will instead rekindle interest in the mathematics that lies at the heart of the versatile
CORDIC algorithm | namely, trigonometric addition formulas and hyperbolic functions.
It will also be seen that improvements are needed. Re�ning this algorithm is a topic of
current research.

A Trigonometric Fan

Imagine a fan built from a sequence of right triangles. The longest leg of each triangular
section is hinged to the hypotenuse of the preceding section. The angles that meet at the
vertex of the fan are all acute, and decrease steadily toward zero. The sizes of the �rst
�ve angles are approximately 45:00Æ, 26:57Æ, 14:04Æ, 7:13Æ, and 3:58Æ. The diagram shows
these sections. Notice that each angle is about half as large as its predecessor. This is
a consequence of the precise construction of these angles. What is actually being halved
at each stage is the tangent ratio: BC = BA, CD = 1

2
CA, DE = 1

4
DA, EF = 1

8
EA,

FG = 1

16
FA, and so on. The resulting in�nite sequence of angles is geometric in a limiting

sense.

The examples that follow employ only the �rst two
dozen terms of this sequence. In principle every term
is useful, however, for the accuracy of CORDIC is set
by the size of the last angle in the fan. The scope of
the algorithm is, as you might have guessed, limited to
those angles covered by the fan, which include all the
acute ones. The �rst four angles alone bring the total
to more than 90 degrees. No matter how many of these
sections are included, the total never quite reaches 100
degrees, by the way.
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A B

C

D

EFG

To apply this fan to the computation of trigonometric
values, the initial segment AB is placed on the posi-
tive x-axis, with A at the origin. The terminal segment
(which would be AG if the fan consisted of only �ve
sections, as in the diagram) points into the �rst or sec-
ond quadrant, depending on how the hinges are folded. To say that the scope of the fan
includes the �rst quadrant means that the terminal segment can be made to point in any
�rst-quadrant direction, to within a small tolerance. This is accomplished by folding the
fan along its hinges. In the diagram on the next page, you see the result of folding the
third section over the second (along hinge AD), and then the fourth and �fth sections over
the third (along hinge AE).
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Elementary Functions and Calculators

If the goal had been to create a 70Æ angle with the fan,
these would have been the �rst �ve stages. Because the
�rst two angles have a sum of more than 70Æ, the third
angle is subtracted by folding it back over the second.
This makes the subtotal 57:53Æ, so the fourth and �fth
angles must be added to bring the subtotal to 68:23Æ.

It is plausible that this process can be continued until
the terminal segment makes an angle with AB that is
as close to 70Æ as desired. In fact, it can be shown
that the terminal angle di�ers from the target angle by
no more than the last angle in the fan (as long as the
target angle lies within the scope of the fan). This is a
property of the special angles used to build the fan.
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From now on, all examples are based on a 24-section
fan. This guarantees that each angle in the �rst quad-
rant will be approximated by the folding process to within 0:00000683Æ (the size of the
24th angle, whose tangent is 2�23). The table below shows step-by-step how the special
angles are combined so that the terminal segment of the fan is always folded toward 70Æ.

Angle Subtotal Angle Subtotal

45.00000000(+) 45.00000000 0.01398823(+) 70.00614325
26.56505118(+) 71.56505118 0.00699411(�) 69.99914914
14.03624347(�) 57.52880771 0.00349706(+) 70.00264619
7.12501635(+) 64.65382406 0.00174853(�) 70.00089767
3.57633437(+) 68.23015843 0.00087426(�) 70.00002340
1.78991061(+) 70.02006904 0.00043713(�) 69.99958627
0.89517371(�) 69.12489533 0.00021857(+) 69.99980484
0.44761417(+) 69.57250950 0.00010928(+) 69.99991412
0.22381050(+) 69.79632000 0.00005464(+) 69.99996876
0.11190568(+) 69.90822568 0.00002732(+) 69.99999608
0.05595289(+) 69.96417857 0.00001366(+) 70.00000974
0.02797645(+) 69.99215502 0.00000683(�) 70.00000291

Next to each of the 24 special angles is shown an indication (+ or �) of how the angle
contributes to the folding process, as well as the subtotal that results. Notice that every
subtotal di�ers from 70Æ by less than the size of its special angle, by the way. The covering
property of the fan can be described another way: There are 23 hinges, each of which can
be folded in one of two ways. This means that there are 223 = 8388608 ways of folding the
fan, hence 8388608 positions for the terminal segment. These 8388608 terminal segments
are scattered throughout the �rst quadrant and part of the second, uniformly enough that
any radial segment makes an angle less than 0:00000683Æ with one of them.
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A key property of the special angles is that each one of them is exceeded by the sum of
those that follow it in the list. This means that every section of the fan can be covered by
the (smaller) sections that follow it (except possibly for a gap that is no larger than the
smallest angle).

A familiar property of powers of 2

Take any group of consecutive terms from the in�nite series

� � �+ 16 + 8 + 4 + 2 + 1 +
1

2
+

1

4
+

1

8
+

1

16
+ � � �

and calculate its sum. The result equals the di�erence between the last term and the term
that precedes the �rst term. For instance, 8+ 4+ 2+ 1+ 1

2
+ 1

4
= 16� 1

4
. In other words,

any term in the series is equal to the sum of any block of terms that follows it, the last
term in the block counting twice. (If in�nite series are allowed, then any term equals the
sum of all the terms that follow it.)

With the help of the Mean-Value Theorem from Calculus, this familiar result can be used
to show that the special angles (whose tangents are powers of 2) used to build the fan have
the necessary covering and accuracy properties. From now on, let An denote the acute
angle whose tangent is 2�n.

For any nonnegative integers m and n, with m < n, Am is at most equal to
Am+1 + Am+2 + � � �+ An + An.

Let T be a target value, with 0 < T < A0 + A1 + � � �+ An. De�ne a sequence
as follows: T0 = 0 and, for 0 � m, let Tm+1 = Tm + Am if Tm < T and
Tm+1 = Tm �Am if T � Tm. Then jTn+1 � T j � An.

See [2] for proofs of these results, which formalize the angle-approximation scheme de-
scribed above. Each Tm is the subtotal after special angle Am�1 has been included.

Trigonometric calculations

The time has come to actually calculate something. Let us �nd the sine and cosine of
a 70-degree angle. The primary computational tools are the well known trigonometric
addition formulas

cos(u� v) = cos(u) cos(v)� sin(u) sin(v)

sin(u� v) = sin(u) cos(v)� cos(u) sin(v)

3
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Because 70Æ is approximated by T24 = A0+A1�A2+A3+A4+A5�A6+� � �+A21+A22�A23,
it is inviting to build up the desired answers in stages. First �nd

cos(A0) = 0:70710678

sin(A0) = 0:70710678

cos(A1) = 0:89442719

sin(A1) = 0:44721360

...

cos(A23) = 1:00000000

sin(A23) = 0:00000012:

Incidentally, these values can be found by Pythagorean methods (the tangents of these
angles are known, remember), and it is only necessary to calculate them once, for the
same angles will be applied to every target angle.

Next use the addition formulas to calculate

cos(T1) = cos(T0 + A0) = cos(A0) = 0:70710678

sin(T1) = sin(T0 + A0) = sin(A0) = 0:70710678;

cos(T2) = cos(T1 + A1) = cos(T1) cos(A1)� sin(T1) sin(A1) = 0:31622777

sin(T2) = sin(T1 + A1) = sin(T1) cos(A1) + cos(T1) sin(A1) = 0:94868330;

then use the subtraction formulas to calculate

cos(T3) = cos(T2 � A2) = cos(T2) cos(A2) + sin(T2) sin(A2) = 0:53687549

sin(T3) = sin(T2 � A2) = sin(T2) cos(A2)� cos(T2) sin(A2) = 0:84366149;

and so on. This naive, recursive approach will yield the desired sine and cosine values,
but at great cost. Every round requires four multiplications and two additions, so the
whole task requires 92 multiplications and 46 additions. This is time-consuming, even
for a state-of-the-art electronic device. There is a better way | one that requires no

multiplications!

No multiplications?

The clever trick is to rewrite the addition formulas as follows:

cos(u� v) = cos(v) [cos(u)� tan(v) sin(u)]

sin(u� v) = cos(v) [sin(u)� tan(v) cos(u)]
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The recursive calculations now take the form

cos(T1) = cos(A0);

sin(T1) = cos(A0);

cos(T2) = cos(A1)

�
cos(T1)� 1

2
sin(T1)

�
= cos(A1) cos(A0)

�
1

2

�
;

sin(T2) = cos(A1)

�
sin(T1) +

1

2
cos(T1)

�
= cos(A1) cos(A0)

�
3

2

�
;

cos(T3) = cos(A2)

�
cos(T2) +

1

4
sin(T2)

�
= cos(A2) cos(A1) cos(A0)

�
7

8

�
;

sin(T3) = cos(A2)

�
sin(T2)� 1

4
cos(T2)

�
= cos(A2) cos(A1) cos(A0)

�
11

8

�
;

and so on. The powers of 1

2
are the tangent values of the special angles. Because the

cosines have been factored out, the powers of 1

2
occur where the sine values once were. It

is easy to look ahead to the desired answers,

cos(T24) = cos(A23) cos(A22) � � � cos(A1) cos(A0)[C24];

sin(T24) = cos(A23) cos(A22) � � � cos(A1) cos(A0)[S24];

where C24 and S24 are dyadic rationals, calculated recursively as follows:

C0 = 1 and S0 = 0

Cm+1 = Cm � 2�mDmSm

Sm+1 = Sm + 2�mDmCm

Each Dm is either 1 or �1, depending on whether special angle Am appears with a positive
or negative sign in the approximation of the target angle. The variable names Cm and
Sm are meant to suggest cosine and sine, respectively, even though their values are not

cos(Tm) and sin(Tm).

It should now be clear why the tangent function was chosen to set up the fan. It is perhaps
also clear that choosing to work with powers of two is about to pay a dividend.

Multiplying and dividing by 2 is easy for computers

Because numbers are usually represented in base-10 notation, it is an easy matter to divide
a number like 0.70710678 by 10| just shift the point one space to the left. The same princi-
ple applies to numbers expressed in base-2 notation, as is usually internally the case in elec-
tronic calculators. It is thus easy to divide cos(A0) = 0:101101010000010011110011001 : : :
by two=10 (but not by ten=1010).
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In other words, the recursion above involves only addition, subtraction, and point-shifting
| no multiplication or division | when done in binary scale.

This leaves only the �nal product cos(A23) cos(A22) � � � cos(A1) cos(A0) to worry about. It
is eliminated next.

The fan revisited

One obvious and important feature of the fan is that the lengths of its hinges do not
change, no matter how it is folded. These lengths are related in a simple way: First
AC = sec(A0)AB, then AD = sec(A1)AC = sec(A1) sec(A0)AB, and so on | each one
being larger than its predecessor. In particular, the length of the terminal segment of
the 24-section fan is sec(A23) sec(A22) � � � sec(A1) sec(A0)AB. This is useful information,
because looking for cosine and sine values is equivalent to looking for x- and y-coordinates
of points on the unit circle. In order that the terminal segment of the fan be of unit
length, it is necessary that AB = cos(A23) cos(A22) � � � cos(A1) cos(A0). From now on, this
constant, which is about 0.607252935, will be denoted by P . Whenever the 24-section
fan is used to approximate angles, the value of P is essential, for it is used to seed the
recursion. This is how multiplication is avoided entirely.

In other words, if the recursion is rede�ned

C0 = P and S0 = 0

Cm+1 = Cm � 2�mDmSm

Sm+1 = Sm + 2�mDmCm;

then C24 and S24 will be cos(T24) and sin(T24), respectively. Making the length of fan
segment AB exactly P thus eliminates all the multiplications from the process.

It remains only to de�ne the numbers Dm carefully. These coeÆcients are determined
by the target angle. For the �nal version of the algorithm, it is convenient to modify
the angle-approximation recursion slightly. Instead of starting with T0 = 0 and building
toward the target value T , it is customary to start the process with the target value and
reduce this value to zero. In other words, instead of checking to see whether Tm is less
than T , we check to see whether Zm = T � Tm is greater than zero. This does not a�ect
the calculations; it simply means that the process is guided by the sign of Zm. Here is the
�nal version of the algorithm:

Z0 = T , C0 = P , S0 = 0

Zm+1 = Zm �DmAm

Cm+1 = Cm � 2�mDmSm

Sm+1 = Sm + 2�mDmCm;

where Dm = �1 is chosen to have the same sign as Zm. We say that Zm is driven toward

zero. In the process, Cm and Sm are driven toward cos(T ) and sin(T ), respectively.
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This is known as the CORDIC algorithm, which stands for COordinate Rotation DIgital

Computer. The method was published in 1959 by J. Volder. See [2] for more details
of its historical and mathematical evolution. It is still used today, because of its speed
and eÆciency. To calculate sine and cosine values for any of the 8388608 angles that
can be exactly represented by the 24-section fan, it is only necessary to have twenty-�ve
permanently stored constants (A0, A1, : : : , A23, and P ), which are combined using only
addition, subtraction, and point-shifting. These 8388608 sine and cosine values are used
in place of the correct values for all other (nearby) angles.

The table below shows all the details of the (simultaneous) calculation of cos(70Æ) and
sin(70Æ). Each row of the table shows the values of Z, C, S, and D at the end of a
computation cycle. Each row of the table is produced by looking back at the previous row.
Once the sign of D is set (by the sign of the old value of Z), all else follows. Except for A,
each row of the table replaces the previous row in the calculator memory.

m Zm Cm Sm Dm Am

0 70.00000000 0.60725294 0.00000000 1 45.00000000
1 25.00000000 0.60725294 0.60725294 1 26.56505118
2 �1:56505118 0.30362647 0.91087940 �1 14.03624347
3 12.47119229 0.53134632 0.83497279 1 7.12501635
4 5.34617594 0.42697472 0.90139108 1 3.57633437
5 1.76984157 0.37063778 0.92807700 1 1.78991061
6 �0:02006904 0.34163537 0.93965943 �1 0.89517371
7 0.87510467 0.35631755 0.93432137 1 0.44761417
8 0.42749050 0.34901816 0.93710510 1 0.22381050
9 0.20368000 0.34535760 0.93846846 1 0.11190568
10 0.09177432 0.34352465 0.93914298 1 0.05595289
11 0.03582143 0.34260752 0.93947846 1 0.02797645
12 0.00784498 0.34214879 0.93964575 1 0.01398823
13 �0:00614325 0.34191938 0.93972928 �1 0.00699411
14 0.00085086 0.34203410 0.93968754 1 0.00349706
15 �0:00264619 0.34197674 0.93970842 �1 0.00174853
16 �0:00089767 0.34200542 0.93969798 �1 0.00087426
17 �0:00002340 0.34201976 0.93969276 �1 0.00043713
18 0.00041373 0.34202693 0.93969015 1 0.00021857
19 0.00019516 0.34202334 0.93969146 1 0.00010928
20 0.00008588 0.34202155 0.93969211 1 0.00005464
21 0.00003124 0.34202066 0.93969243 1 0.00002732
22 0.00000392 0.34202021 0.93969260 1 0.00001366
23 �0:00000974 0.34201998 0.93969268 �1 0.00000683
24 �0:00000291 0.34202010 0.93969264
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It is sometimes suggested that the computational process could be improved by taking the
sizes of Am and Zm into account. For example, in the 70-degree computation, it would
seem advantageous to leave out special angles A2, A3, and A4, for they are all much larger
than the remainder Z2. Even if one disregards the logical complications that such decision-
making would introduce into the algorithm, the answer is clear: This would mean removing
sections from the fan, thereby making it impossible to predict the length of the terminal
segment in advance. It is an essential feature of the CORDIC method of building with
special angles that every special angle is used in every application. All intermediate stages
of the simultaneous computation of cos(70Æ) and sin(70Æ) are shown in the preceding table
(in base-10 notation, of course). The 24 cycles of this algorithm are suÆcient to guarantee
better than 6-place accuracy. This is because the angle-approximation process creates an
error of at most 0:00000683Æ, and because the sine and cosine functions themselves shrink
this error further (to at most 0.00000012, as can be proved with calculus).

CORDIC has a reverse gear, too

Now that you have thoroughly examined the sine and cosine buttons on your calculator,
turn your attention to some of the others. Because tangents are just ratios of sines to
cosines, it is clear that the tangent button needs no further attention. The time has come
to see what happens when CORDIC is run backwards. In other words, it is time to take
up the inverse trigonometric functions.

As it turns out, the simplest one to understand is the inverse tangent. You might think
that this is because the contruction of the fan features tangent ratios; actually, it is because
tangent ratios provide the simplest way to describe an angle. As an example, consider the
problem of �nding the acute angle whose tangent is 2. This will illustrate the angle-�nding
capability of CORDIC.

You are now in the position of knowing the terminal ray of the fan, but of not knowing
the combination of special angles that produced it. The obvious solution is to apply the
angle-approximation algorithm again and keep an eye on the target angle. The diÆculty
is deciding how to deal with variable Z; how to seed it or how to know when it is close to
its target value. The trick is to turn the fan over and place the initial AB on the terminal
line. This in e�ect provides initial values for S and C. The folding process is now directed
toward the positive x-axis. Variable Z will approach the desired angle, provided that it is
initialized to be zero.

Which variable | C or S | should control the process? In other words, should C be
driven toward 1 or S be driven toward 0? The correct choice is to drive S toward 0. The
reason is that it is not necessary to worry about the size of the fan for this problem. The
seed values for C and S should be of no concern individually | they need only be chosen
so that S=C = 2. Thus, because C and S need not represent actual cosine and sine values,
it would be incorrect to drive C toward 1.
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All the intermediate stages of the computation of arctan(2) are shown below. Notice that
the initial values C0 = 0:25 and S0 = 0:5 de�ne the angle.

m Zm Cm Sm Dm Am

0 0.00000000 0.25000000 0.50000000 �1 45.00000000
1 45.00000000 0.75000000 0.25000000 �1 26.56505118
2 71.56505118 0.87500000 �0:12500000 1 14.03624347
3 57.52880771 0.90625000 0.09375000 �1 7.12501635
4 64.65382406 0.91796875 �0:01953125 1 3.57633437
5 61.07748968 0.91918945 0.03784180 �1 1.78991061
6 62.86740029 0.92037201 0.00911713 �1 0.89517371
7 63.76257400 0.92051446 �0:00526369 1 0.44761417
8 63.31495983 0.92055559 0.00192783 �1 0.22381050
9 63.53877033 0.92056312 �0:00166809 1 0.11190568
10 63.42686465 0.92056638 0.00012989 �1 0.05595289
11 63.48281755 0.92056650 �0:00076910 1 0.02797645
12 63.45484109 0.92056688 �0:00031961 1 0.01398823
13 63.44085287 0.92056696 �0:00009486 1 0.00699411
14 63.43385875 0.92056697 0.00001751 �1 0.00349706
15 63.43735581 0.92056697 �0:00003867 1 0.00174853
16 63.43560728 0.92056697 �0:00001058 1 0.00087426
17 63.43473302 0.92056697 0.00000347 �1 0.00043713
18 63.43517015 0.92056697 �0:00000356 1 0.00021857
19 63.43495158 0.92056697 �0:00000004 1 0.00010928
20 63.43484230 0.92056697 0.00000171 �1 0.00005464
21 63.43489694 0.92056697 0.00000083 �1 0.00002732
22 63.43492426 0.92056697 0.00000039 �1 0.00001366
23 63.43493792 0.92056697 0.00000018 �1 0.00000683
24 63.43494475 0.92056697 0.00000007

The entries in the S column are approaching 0; the entries in the Z-column are approaching
arctan(2). It is left as an exercise for you to identify the number that is being approached
by the entries in the C column. (The answer is useful and will appear in a few pages.)
The recursive CORDIC approach to calculating arctan(T ) is de�ned as follows:

Z0 = 0 , S0 = C0T

Zm+1 = Zm �DmAm

Cm+1 = Cm � 2�mDmSm

Sm+1 = Sm + 2�mDmCm

where Dm = �1 is chosen so that DmCm and Sm have opposite signs. This drives Sm
toward 0. In the process, Zm is driven towards arctan(T ). This algorithm can be applied
to any angle within the scope of the fan, which includes all acute angles and some obtuse
ones.
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As for inverse sines and cosines, they can be dealt with similarly. In fact, any such problem
can be converted into an inverse tangent problem by means of a preliminary Pythagorean
computation. For instance, �nding arcsin(0:6) is equivalent to �nding arctan(0:75), and

�nding arccos(u) is equivalent to �nding arctan

 p
1� u2

u

!
.

If this were all that CORDIC could perform for us, it would be a remarkable invention.
There is still much more, however.

Exponents and logarithms

The utility and elegance of mathematics resides in its ability to exploit formal connections
between apparently distinct problems. A case in point is the system of hyperbolic functions,
namely sinh, cosh, tanh, csch, sech, and coth. Recall that

cosh(u) =
1

2

�
eu + e�u

�
and sinh(u) =

1

2

�
eu � e�u

�
;

and that tanh(u) = sinh(u)/cosh(u), sech(u) = 1/cosh(u), and so on. Despite the appear-
ance of these functions, their very names suggest that there are important similarities with
the circular functions. For CORDIC, the most useful identities are the following:

[cosh(u)]2 � [sinh(u)]2 = 1
cosh(u� v) = cosh(u) cosh(v)� sinh(u) sinh(v)
sinh(u� v) = sinh(u) cosh(v)� cosh(u) sinh(v)

The calculator does not actually know of any geometric signi�cance to the numbers Am
and P that it combines to evaluate circular functions. All it has to work with are the
formal identities, applied in a recursive way. There is every reason to hope, therefore,
that the CORDIC approach will be able to evaluate hyperbolic functions as easily as it
evaluates circular functions. De�ne Bm provisionally by the equation tanh(Bm) = 2�m

for m = 1, 2, : : : , n, let Q be the product cosh(B1) cosh(B2) � � � cosh(Bn), and consider
the equations

Z1 = T , C1 = Q , S1 = 0

Zm+1 = Zm �DmBm

Cm+1 = Cm + 2�m�1DmSm

Sm+1 = Sm + 2�m�1DmCm

where Dm = �1 is always chosen to have the same sign as Zm. It is necessary to look at
the �ne details of this proposal to see whether there are subtle aws. You have probably
already noted slight departures from the circular model. The sign change in the addition
formula for cosh(u�v) has been incorporated into the recursion; it is not expected to cause
any diÆculty. On the other hand, because the equation tanh(u) = 1 has no solutions, the
list of special arguments Bm begins with the solution to tanh(B1) = 1=2. The indices in
the recursion have been adjusted accordingly.
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Approximating hyperbolic arguments is not routine

The table below shows the results of trying to approximate the value 0.549 by combining
the special arguments B1, B2, ..., B24:

Arg Subtotal Arg Subtotal

0.54930614(+) 0.54930614 0.00012207(+) 0.54452168
0.25541281(�) 0.29389333 0.00006104(+) 0.54458271
0.12565721(+) 0.41955055 0.00003052(+) 0.54461323
0.06258157(+) 0.48213212 0.00001526(+) 0.54462849
0.03126018(+) 0.51339230 0.00000763(+) 0.54463612
0.01562627(+) 0.52901857 0.00000381(+) 0.54463994
0.00781266(+) 0.53683123 0.00000191(+) 0.54464184
0.00390627(+) 0.54073750 0.00000095(+) 0.54464280
0.00195313(+) 0.54269062 0.00000048(+) 0.54464327
0.00097656(+) 0.54366719 0.00000024(+) 0.54464351
0.00048828(+) 0.54415547 0.00000012(+) 0.54464363
0.00024414(+) 0.54439961 0.00000006(+) 0.54464369

The problem is that B2 is greater (by more than 0.00466) than the sum of B3, B4, : : : ,
B24. This is a situation where it seems desirable to skip one of the special terms, for
subtracting B2 has left the subtotal much farther from the target than it was before B1

was subtracted | so far, in fact, that the di�erence can not be closed with later terms.

The inadequacy of this sequence of special arguments casts some doubt on the ability of
CORDIC to evaluate exponential functions. Because the special arguments Bm lack the
essential covering property discussed earlier, the algorithm can not approximate arguments
such as T = 0:549 with suÆcient accuracy to permit computation of usable values for
cosh(T ) and sinh(T ).

The remedy is simple, however | make duplicate entries in the list of special arguments.
In other words, allow the algorithm to reuse certain arguments, in order that it be able
to close all gaps such as in the example. This selection of duplicates must be made once
and for all, so that the constant Q can be calculated and stored along with the arguments
Bm. One solution is presented on the next page, together with a demonstration of its
correctness. The proof consists of verifying that every argument in the list is at most
equal to the sum of all the arguments that follow it in the list, except for an allowable gap
equal to the last argument in the list.

11



Elementary Functions and Calculators

The illustration below shows the eighteen special arguments tanh�1(2�m) for m = 1, 2,
: : : , 18. Next to each is tabled the sum of all the special arguments that follow it in the
list. Notice that every entry exceeds the corresponding sum by more than the allowed
0.00000381.

Argum Sum Argum Sum

0.54930614 0.50615941 0.00097656 0.00097275
0.25541281 0.25074660 0.00048828 0.00048447
0.12565721 0.12508939 0.00024414 0.00024033
0.06258157 0.06250782 0.00012207 0.00011826
0.03126018 0.03124764 0.00006104 0.00005722
0.01562627 0.01562137 0.00003052 0.00002670
0.00781266 0.00780871 0.00001526 0.00001144
0.00390627 0.00390244 0.00000763 0.00000381
0.00195313 0.00194931 0.00000381

The next table shows the e�ect of duplicating six chosen entries (which are marked). Now
every special argument is exceeded by the sum of the arguments that follow it in the
list. This veri�es the covering property that is necessary for the CORDIC algorithm to
approximate arguments to a predictable degree of accuracy.

Argum Sum Argum Sum

0.54930614 0.57712204 0.00048828 0.00105286
0.25541281 0.32170922 0.00048828* 0.00056458
0.12565721 0.19605201 0.00024414 0.00032043
0.06258157 0.13347044 0.00012207 0.00019836
0.06258157* 0.07088887 0.00006104 0.00013733
0.03126018 0.03962869 0.00006104* 0.00007629
0.01562627 0.02400242 0.00003052 0.00004578
0.00781266 0.01618976 0.00001526 0.00003052
0.00781266* 0.00837710 0.00001526* 0.00001526
0.00390627 0.00447083 0.00000763 0.00000763
0.00195313 0.00251770 0.00000381 0.00000381
0.00097656 0.00154114 0.00000381*

Every argument that lies within the scope of the table (from 0.0 to about 1.12642818) can
be approximated to within 0.00000381 (the last entry in the list). The next page shows a
new, successful attempt on the example T = 0:549.
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How to accurately represent T = 0:549 as a combination of special arguments Bm:

Arg Subtotal Arg Subtotal

0.54930614(+) 0.54930614 0.00048828(�) 0.54911683
0.25541281(�) 0.29389333 0.00048828(�) 0.54862855
0.12565721(+) 0.41955055 0.00024414(+) 0.54887269
0.06258157(+) 0.48213212 0.00012207(+) 0.54899476
0.06258157(+) 0.54471369 0.00006104(+) 0.54905580
0.03126018(+) 0.57597387 0.00006104(�) 0.54899476
0.01562627(�) 0.56034760 0.00003052(+) 0.54902528
0.00781266(�) 0.55253494 0.00001526(�) 0.54901002
0.00781266(�) 0.54472228 0.00001526(�) 0.54899476
0.00390627(+) 0.54862855 0.00000763(+) 0.54900239
0.00195313(+) 0.55058168 0.00000381(�) 0.54899858
0.00097656(�) 0.54960511 0.00000381(+) 0.54900239

Now the provisional de�nition of the list of special arguments can be put in a reliable form.
The 24 special values will be denoted B0, B1, : : : , B23 (in the interest of uniformity), even
though no simple formula for tanh(Bm) is available (because of the duplications). All that
needs to be stored is a list of binary-point shifts, however; see the example below. The
CORDIC algorithm for the hyperbolic functions cosh and sinh is

Z0 = T , C0 = Q , S0 = 0

Zm+1 = Zm �DmBm

Cm+1 = Cm +EmDmSm

Sm+1 = Sm +EmDmCm;

where Dm = �1 is always chosen to have the same sign as Zm (thus driving Zm toward 0),
Q is the constant cosh(B0) cosh(B1) � � � cosh(B23) = 1:20753406:::, and Em = tanh(Bm) is
an integral power of 1/2 (represented by the shift entry listed below).

Tabled on the next page is a table of all the intermediate stages of a 24-cycle computation
of cosh(1:0) and sinh(1:0), using this algorithm.
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All the intermediate stages of a 24-cycle CORDIC computation of cosh(1:0) and sinh(1:0)
are shown below.

m Zm Cm Sm Dm Shift Bm

0 1.00000000 1.20753406 0.00000000 1 1 0.54930614
1 0.45069386 1.20753406 0.60376703 1 2 0.25541281
2 0.19528104 1.35847581 0.90565054 1 3 0.12565721
3 0.06962383 1.47168213 1.07546002 1 4 0.06258157
4 0.00704226 1.53889838 1.16744015 1 4 0.06258157
5 -0.05553931 1.61186339 1.26362130 �1 5 0.03126018
6 -0.02427913 1.57237523 1.21325057 �1 6 0.01562627
7 -0.00865286 1.55341819 1.18868221 �1 7 0.00781266
8 -0.00084020 1.54413161 1.17654613 �1 7 0.00781266
9 0.00697245 1.53493984 1.16448260 1 8 0.00390627
10 0.00306618 1.53948860 1.17047846 1 9 0.00195313
11 0.00111306 1.54177469 1.17348527 1 10 0.00097656
12 0.00013649 1.54292067 1.17499091 1 11 0.00048828
13 -0.00035179 1.54349440 1.17574429 �1 11 0.00048828
14 0.00013649 1.54292030 1.17499063 1 12 0.00024414
15 -0.00010765 1.54320717 1.17536732 �1 13 0.00012207
16 0.00001442 1.54306369 1.17517894 1 14 0.00006104
17 -0.00004661 1.54313542 1.17527312 �1 14 0.00006104
18 0.00001442 1.54306368 1.17517894 1 15 0.00003052
19 -0.00001609 1.54309955 1.17522603 �1 16 0.00001526
20 -0.00000083 1.54308162 1.17520248 �1 16 0.00001526
21 0.00001442 1.54306368 1.17517894 1 17 0.00000763
22 0.00000679 1.54307265 1.17519071 1 18 0.00000381
23 0.00000298 1.54307713 1.17519659 1 18 0.00000381
24 -0.00000083 1.54308162 1.17520248

The values C24 and S24 are good approximations to cosh(1.0) and sinh(1.0), respectively.
Their sum is 2.71828410, which has a familiar look to it:

CORDIC evaluates ex by calculating cosh(x)+sinh(x).

The approximation of arguments within the scope of this algorithm is accurate to within
0.00000381. The cosh and sinh functions can magnify any error by as much as 1.4 or 1.7,
respectively, so the results are accurate only to within 0.00000534 or 0.00000648. This in
turn makes the calculation of ex reliable only to within 0.00001182 (although the value for
e found above was actually within 0.0000023 of being correct).

Remember that the above calculations, when carried out in base 2 arithmetic, involve
addition, subtraction, and point-shifting only | there is no multiplication or division.
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Back into reverse gear

Now that you have seen how CORDIC produces exponential values, it is time to explore
the very interesting inverse process. As you would expect, the function of central impor-
tance is the inverse hyperbolic tangent. The illustration below shows the computation of
tanh�1(1=3), which is initialized by setting Z0 = 0, C0 = 1, and S0 = 3. As Sm is driven
toward 0, Zm is driven toward the answer.

m Zm Cm Sm Dm Shift Bm

0 0.00000000 3.00000000 1.00000000 �1 1 0.54930614
1 0.54930614 2.50000000 �0:50000000 1 2 0.25541281
2 0.29389333 2.37500000 0.12500000 �1 3 0.12565721
3 0.41955055 2.35937500 �0:17187500 1 4 0.06258157
4 0.35696898 2.34863281 �0:02441406 1 4 0.06258157
5 0.29438740 2.34710693 0.12237549 �1 5 0.03126018
6 0.32564758 2.34328270 0.04902840 �1 6 0.01562627
7 0.34127385 2.34251663 0.01241460 �1 7 0.00781266
8 0.34908651 2.34241964 �0:00588631 1 7 0.00781266
9 0.34127385 2.34237366 0.01241385 �1 8 0.00390627
10 0.34518012 2.34232516 0.00326395 �1 9 0.00195313
11 0.34713325 2.34231879 �0:00131090 1 10 0.00097656
12 0.34615669 2.34231751 0.00097652 �1 11 0.00048828
13 0.34664497 2.34231703 �0:00016719 1 11 0.00048828
14 0.34615669 2.34231695 0.00097652 �1 12 0.00024414
15 0.34640083 2.34231671 0.00040466 �1 13 0.00012207
16 0.34652290 2.34231666 0.00011873 �1 14 0.00006104
17 0.34658393 2.34231665 �0:00002423 1 14 0.00006104
18 0.34652290 2.34231665 0.00011873 �1 15 0.00003052
19 0.34655342 2.34231665 0.00004725 �1 16 0.00001526
20 0.34656868 2.34231665 0.00001151 �1 16 0.00001526
21 0.34658393 2.34231665 �0:00002423 1 17 0.00000763
22 0.34657631 2.34231665 �0:00000636 1 18 0.00000381
23 0.34657249 2.34231665 0.00000258 �1 18 0.00000381
24 0.34657631 2.34231665 �0:00000636

The recursive CORDIC approach to calculating tanh�1(T ) is

Z0 = 0 , S0 = C0T

Zm+1 = Zm �DmBm

Cm+1 = Cm + EmDmSm

Sm+1 = Sm +EmDmCm

where Dm = �1 is chosen so that DmCm and Sm have opposite signs. This drives Sm
toward 0. In the process, Zm is driven toward tanh�1(S0=C0).
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Our interest in the values of the inverse hyperbolic tangent stems from its connection with
logarithms:

tanh�1(u) =
1

2
ln

1 + u

1� u

This can be rewritten in a form more useful to CORDIC:

ln(x) = 2 tanh�1
x� 1

x+ 1

In particular, the calculation above shows that 2 tanh�1(1=3) = 0:69315262, a good ap-
proximation to ln(2) = 0.69314718: : :This is how CORDIC directly evaluates logarithms
that lie within the scope of the above algorithm.

Square roots

A few pages back, a question was raised about the inverse tangent algorithm; namely, what
is the eventual value of the C-variable? (Recall that Z is driven toward the desired angle
while S is driven toward 0.) The answer is that C is driven towards 1=P times the initial
value of

p
C2
0 + S20 . The is because the 24-step folding process always magni�es the length

of the initial segment by a factor of 1/P .

A similar question can be raised about the CORDIC algorithm for the inverse hyperbolic
tangent; namely, what is the signi�cance of the terminal value C24 = 2:34231665 in the
preceding table? It should come as no surprise that it is just 1/Q times the initial value
of
p
C2
0 � S20 (which is

p
8). There is no geometric model (fan) to make this clear, but it

is not hard to verify that

C2
m+1 � S2

m+1 =
C2
m
� S2

m

[cosh(Bm)]2

by using the hyperbolic identities; this provides an inductive proof.

In other words,
p
8 = C24Q. This is in fact how CORDIC evaluates square roots, as a

byproduct of the calculation of inverse hyperbolic tangents:

If the inverse hyperbolic tangent algorithm is applied to the seed values
C0 = x+ 0:25 and S0 = x� 0:25, then

p
x = C24Q, because C

2
0 � S20 = x.

In contrast to many of the other evaluations of elementary functions, it is interesting that
this application of CORDIC does require a postmultiplication to complete.
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Summary

The preceding examples demonstrate the utility and eÆciency of the three recursive equa-
tions

Zm+1 = Zm �DmAm

Cm+1 = Cm � kEmDmSm

Sm+1 = Sm + EmDmCm

for evaluating the standard elementary functions. In the above display, the letter k stands
for either 1 (circular function mode) or �1 (hyperbolic function mode). The meanings
of the symbols Am depend on the setting of the mode indicator k. Each set of values is
permanently stored in the hardware, along with the product of all the cosine values of
these special arguments. The meaning of the symbols Em also depends on the value of k;
in either case, however, they are powers of 1/2, and thus represent binary-point shifting in
the actual arithmetic. The remaining numbers are variables whose values depend on the
immediate application.

The actual implementation of this theory requires considerable re�nement, and there are
features that no doubt vary from one calculator to another. For example, achieving satis-
factory accuracy requires that the calculator process more than just two dozen terms; how
many of course depends on the number of signi�cant digits the calculator is designed to
display.

Another issue that a�ects the implementation is the conversion of numerical data from
decimal form to binary form or from binary form to decimal form. The time that this
takes can be viewed as the price (not insigni�cant) that must be paid for the ease of using
the above algorithms. There are other options, however. For instance, it is not necessary
to work in binary scale. The preceding approach could be reworked using powers of 1/10
instead of powers of 1/2; it is only necessary (as was done for the hyperbolic examples) to
work with lists that contain many duplicate entries.

Another detail that has been largely ignored in the whole discussion is the question of
scope. As described, CORDIC can only handle requests for trigonometric values that
are found in the �rst quadrant. This is seen to be an easy hurdle to get over, thanks
to (among other things) the periodicity of the circular functions. The question becomes
conspicuous, however, when the mode is switched to hyperbolic. In the simple version
described above, CORDIC can evaluate ex only for x-values between 0.0 and 1.1264, and
ln(x) only for x-values between 1.0 and 9.5149. It is thus clear that there must be additional
algorithms at work when a calculator evaluates ln(100) = 4.605170186 or when it evaluates
e10 = 22026:46579 These algorithms are beyond the scope of this paper.

Extending the range of convergence of CORDIC is a signi�cant challenge. As reference [3]
illustrates, it is a topic of current research. The optimal solution has not yet been found.
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A �nal surprise

There is no obvious reason for doing so, but setting the mode variable k equal to 0 has
interesting consequences, if the associated list of special arguments is given by Am = 2�m.
The recursive equations now look like

Zm+1 = Zm � 2�mDm

Cm+1 = Cm

Sm+1 = Sm + 2�mDmCm

Suppose that initial values C0 and Z0 are given, S0 is initialized at 0, and that the Dm are
chosen (as usual) to drive Zm to 0. In the process, Sm will be driven toward Z0C0. This
is how CORDIC does ordinary multiplication! In reverse gear, Z0 is initialized at 0 and
values C0 and S0 are given. As Sm is driven toward 0, Zm is driven toward S0=C0. This
is how CORDIC does ordinary division!

It is not hard to see why this works. Take multiplication, for example: The result of
driving Zm toward zero is to generate a binary expansion

Z0 = D02
0 +D12

�1 + � � �+D232
�23 + Z24

in which the coeÆcients Dm are all �1. As above, this approximates Z0 to a known degree
of accuracy. Meanwhile, the algorithm is generating the value

S24 = D0C02
0 +D1C02

�1 + � � �+D23C02
�23 = (Z0 � Z24)C0

which approximates Z0C0.

Thus the CORDIC mode k = 0 (which might be called the linear mode, in contrast to the
circular mode k = 1 and the hyperbolic mode k = �1) also provides the basic arithmetic
services of multiplication and division. For further details (and additional references), see
the references.

Richard Parris
Phillips Exeter Academy
Exeter, NH 03833-2460
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