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STEM ACTIVITIES WITH TI-NSPIRE

MATHEMATICS IN MOTION

INTRODUCTION
 Modelling things in motion –  
 with some smart TI-Nspire mathematical tools 

This book in the ‘STEM (Science, Technology, Engineering and Mathematics) 

activities with TI-Nspire’ series is, as they say, a game of two halves.

One half of the book, Section A, is a guide to some of the new exploratory 

tools now available for working with models and data using TI-Nspire software 

and/or handhelds.  Instead of having to learn the concepts and techniques 

of diff erential and integral calculus before using them to model ‘real-world’ 

applications such as objects in motion, the approach is to set up dynamic 

examples from which basic ideas of rate-of-change, and accumulated values 

can be explored numerically and graphically as an introduction to (and 

motivation for) the calculus.  It assumes that teachers and students have 

hands-on access to TI-Nspire technology.

The other half of the book, Section B, is a set of possibly free standing 

investigations into modelling motion based on diff erent forms of data 

collection: manual, video and data logging.  It uses examples of experiments 

which you perform outdoors or in a sports-hall – or model experimentally in 

the laboratory or classroom.  In each of these, the scientifi c principles (mainly 

from physics) and the mathematical modelling techniques are closely 

integrated.  The key link is with activities which students themselves like to 

engage – either putting themselves or some object into motion – and are 

thus intended to maximise the interest, relevance and understanding of 

what is going on.  The booklet by itself can suggest activities and approaches, 

but it needs to be accompanied by resources such as photographs, video 

clips, newspaper cuttings, data sets, TI-Nspire documents etc.  Some useful 

accompanying resources can be found at www.nspiringlearning.org.uk.
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 Introduction 

This booklet is aimed to introduce readers to some aspects of mathematics 

developed by key historical fi gures like Kepler (1571-1630), Galileo (1564-

1652), Newton (1642-1727) and Leibniz (1646-1716) to help solve some of 

the important problems about how things move.  Galileo is credited with a 

famous experiment in dropping things of diff erent size and weight from the 

top of the Leaning Tower of Pisa and recording that they all took the same time 

to hit the ground.  Newton is famous for coming up with a theory of constant 

gravitational attraction after an apple hit him on the head.  We will investigate 

the progress of a ball dropping to ground from the top of the Pisa tower – a fall 

of just under 56m.  How fast do you think it will be travelling when it hits the 

Earth, and how long will it take?  The number of accurate scientifi c instruments 

in Galileo’s time would have been rather limited!

In fact it was problems of this kind that led Newton and Kepler independently to 

invent a branch of mathematics called calculus.  We will use problems like this 

to fi nd out something about what calculus is and how it can be applied.  We will 

assume that you have come across some graphs of simple functions like: 

y = 10, y = 5x-3 and y = x2 – x.  Now mathematicians are known to have a love/

hate relationship with computing technology!  While they are often banned 

from exams, calculators and computers have been designed and used by 

mathematicians – for example both Pascal and Leibniz built mechanical 

calculators, and Alan Turing designed the Colossus computer at Bletchley Park 

to crack the German Enigma code during the Second World War.   

How would you fi nd the square root of 1000?  Well once upon a time children 

used to have to learn a pencil-and-paper process to do this themselves – but 

most mathematicians would have used things called “tables of logarithms” and 

most engineers would have used a ‘slide rule’ (some probably still do!).  I guess 

you’ve got an electronic calculator with a square root button?  The fi rst such 

calculator came out in the 1970s and cost nearly £100.

So we are going to explore some of the built-in functions of the TI-Nspire as 

our new scientifi c instruments. The main ones we will use are:

manipulation to change the shape and position of a linear, quadratic 

or sine graph;

regression to fi nd the equation of a function which gives a good fi t 

to some data points;

tangent to draw a line at a point on a graph which just touches the graph;

slope which measures the gradient of a line and

integral which measures the area under a graph between two points 

on the x-axis.

So let’s get back to the dropping ball. 
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Ready, steady, drop! 

Modelling a falling ball.
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We’ll assume we have a stop-watch set to zero which will be started at the time 

the ball is released.  Also that at the release the ball is momentarily still, and has 

fallen zero distance!  So the only force which acts upon the ball is the Earth’s 

attraction downwards, giving it an acceleration of g downwards.  

What units is g measured in, and how big is it?

We will assume that when the ball falls there are no other forces acting on it, 

like wind or air resistance, and also that the value of g does not change 

appreciably in 56m.  

So it feels like time to set up a spreadsheet on TI-Nspire.  While the processes 

illustrated here all work fi ne on the hand-held units, many of the screenshots are 

from the computer software display which can show more detail.

To begin, open a Lists & Spreadsheets page. First we have entered the text ‘g’ in 

cell A1, and the value ‘9.81’ in cell A2 (the acceleration in ms-2).  We will need to 

set up an interval by which the time ticks by – this is called ‘dt’ and initially holds 

the value 0.1 s.  fi g_01

Now we can store these values as variables.  With the cursor over cell A2, select 

the variables button var and from the menu select Store Var, then enter ‘g’.  

Similarly store the value in cell A4 as the variable ‘dt’.

At the top of the column ‘B’ enter ‘time’, and enter ‘0’ in cell B1.  Enter the formula 

‘=b1+dt’ in cell B2 – the ‘dt’ should turn bold to show it is the name of a variable.  

With the cursor over cell B2 from the Data menu select Fill Down.  Now move 

the cursor down over the set of cells you want to fi ll with this formula e.g. from 

B3 to B12.  

We have now defi ned the list ‘time’ to hold {0, 0.1, 0.2, ...., 1.1}.  Do the same for 

column C to store the list ‘accn’ – this time enter the formula ‘=g’ in cell C1 and fi ll 

down from C2 to C12.  Finally set up a list called ‘zero’ in column D – fi rst enter ‘0’ 

in D1 and then use it to fi ll down from D2 to D12.   Now we are ready to see the 

results graphically.  fi g_02

fi g_01

fi g_02
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On a new Graphs screen set the Window Settings as shown.  Select the Scatter 

Plot tool from the Graph Type menu, and select ‘time’ for the x-axis and ‘accn’ 

for the y-axis of the plot s1, and also ‘time’ for the x-axis and ‘zero’ for the y-axis 

of plot s2.

Now select Function from the Graph Type menu and enter ‘g’ for the value of 

the function f1(x).  Of course the graph of y=g should pass through one of the 

sets of data points.  If you want you can select the fi rst Scatter Plot and use 

Attributes to select a diff erent symbol for the data.  Use the Perpendicular tool 

from the Constructions menu to construct a line perpendicular to the x-axis 

through the fi rst data point P(dt, 0).  Construct the Intersection Point of the 

perpendicular with the graph y=f1(x) and call it Q.  Construct the Intersection 

Point G of the graph with the y-axis, and the Intersection Point O of the x- and 

y-axes.  Use the Polygon tool from the Shapes menu to click in turn on P, Q, G, 

O and P again.  Finally select Area from the Measurements menu and measure 

the area of the rectangle PQGO.  We know that the area is given by the base (dt) 

multiplied by the height (g) – and so we can check that its value is g.dt.  In fact 

in order to compute the speed (or velocity) after 1.2 seconds, say, we just need 

to fi nd the total area under the graph y=f1(x) from x=0 to x=1.2 . The speed will 

given by 1.2g.  The value 1.2 is in seconds, and g is in metres per second per 

second, so the resultant is in metres per second - the correct units for speed.  

Now it is time to go back to the spreadsheet.  You could copy the fi rst page of 

your document and paste it after the second page if you like.  fi g_03

fi g_03

We can set up column E to hold the list ‘iv’: the increments in the velocity after 

each time step.  Just enter ‘0’ in cell E1, ‘=g*dt’ in cell E2 and Fill Down from cells 

E2 to E12.  In order to fi nd the velocity at any time we just need to add up the 

appropriate number of increments – corresponding to adding up rectangles 

under the y = f1(x) graph.  There is a useful TI-Nspire list function called 

‘cumsum’, short for ‘cumulativesum’.  Enter ‘vel’ at the top of list F, and the formula 

‘cumsum(iv)’ into the formula cell below it.  
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As a check we also know this must give the same result as just multiplying the 

time values by g.  In column G enter the expression ‘g*time’ in the formula cell.

You will see that TI-Nspire isn’t sure which ‘g’ to use in a cell – either the variable 

‘g’ holding the value 9.81 or the column G itself – so a “Confl ict Detected” 

dialogue box appears.  Select ‘Variable Reference’ for g.  Now copy the Graphs 

page from page 2 and paste it below page 3 as page 4. 

Select Scatter Plot from the Graph Type menu, and select ‘time’ as the x-axis 

and ‘vel’ as the y-axis for the plot s3.  Surprise, surprise – the points all lie on a 

straight line through the origin O.  fi g_04

fi g_04

What is its slope? 

Can you suggest its equation y = ???  

This is the key graph for modelling motion – the velocity-time graph.  

The slope at any point on it measures the rate of change of the velocity – which 

is the acceleration – and the area underneath it measures the change in 

distance, as we shall see.

The graph f2(x) = g*x has been drawn.  (Note that we use the x-axis to represent 

time and the y-axis to represent diff erent things, like acceleration and velocity.)  

The points R (0.4, 0) and S (0.5, 0) have been constructed on the x-axis.  

Perpendiculars to the x-axis from each have been drawn to intersect the graph 

y = gx at points U, T, and the quadrilateral RSTU constructed.  What shape is 

RSTU?  We can measure the lengths of its sides RU, RS and ST, and also its area.  

We can change the Attributes of the polygon to shade it in.  The area is 0.441 – 

what units should that be measured in?  
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Maybe you know that the area of a trapezium is the base multiplied by the 

average of its two end heights – check that this agrees with the value TI-Nspire 

has found.   The average height is a velocity in metres per second, and the base 

is a time in seconds.  So their product is a distance measured in metres.  Areas 

of trapezia like RSTU represent the increases in distance in each time step dt.  

So again we can return to the spreadsheet to explore the distances travelled.  

We’ll use a slightly diff erent means of setting up the increases in distance ‘id’ in 

column H. Enter the formula ‘=dt*(f1+f2)/2’ in cell H1 and use it to fi ll down from 

H2 to H11.  (Note that TI-Nspire uses lower-case names like f2 for the contents of 

cells like F2.)  fi g_05

fi g_05

fi g_06

The values in column H are the areas of the trapezia under the velocity-time 

graph and are equal to the average velocity in the interval multiplied by the time 

taken.  Now set up column I to hold the ‘dist’, for the distances fallen. Enter ‘0’ in 

cell I1 and the formula ‘=i1+h1’ in cell I2.  Use cell I2 to fi ll down from I3 to I12.  

Copy the latest Graphs page and paste it below the latest spreadsheet.  Set up a 

new Scatter Plot showing ‘time’ against ‘dist’.  fi g_06
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It looks as if the points on this latest scatter plot lie on the graph of a quadratic 

function.  Select Function Plot and enter f3(x) = x2.  Now you can manually 

manipulate this function to change the position of its vertex and/or the slopes 

of its ‘jaws’.  Try dragging a point on the graph not too close to O and see what 

happens to the formula for f3(x) as you fl ex the graph upwards towards the 

distance-time data points.  It looks like f3(x) = 5x2 is a good fi t (On the screen 

shot f3(x) = 3.82x2 currently.)

Another approach uses a statistical calculation, called a regression model, 

to fi nd the formula of a function which may be a good fi t to the data. Let’s use 

a Quadratic Regression on the ‘time’-‘dist’ data to see how well that fi ts.  

The result of doing a Stat Calculation, such as a quadratic regression, is that 

the equation of a ‘best fi t’ function is stored in a graphing function e.g. in f4(x), 

which we can graph in a Graphs page, and which we hope will match well to 

the data points which we can show on a Scatter Plot.  This technique will be 

frequently used when we’re exploring models, not just of motion.

So, once more unto the spreadsheet, dear friends!  Perhaps it’s time to insert 

a fresh one.  Set up ‘time’ in the A column and ‘dist’ in the B column.  From the 

Statistics menu select Stat Calculations and Quadratic Regression.  fi g_07

Now select the appropriate entries for the Dialogue Box: X List is ‘time’, Y List is 

‘dist’, Save RegEqn to f4, 1st Result Column c[].  You will see that cell D3 holds 

4.905, D4 holds -3.E-13, cell D5 holds 1.E-13 and cell D6 holds 1.  The ‘scientifi c 

notation’ -3.E-13 means -3 x 10-13, which is a very small number indeed (less 

than a trillionth!), so both b and c are eff ectively zero.  This leaves the quadratic 

function as f4(x)=4.905x2.  Where do you think the number 4.905 comes from?  

The value of 1 in cell D6 is a statistical measure of how close a fi t the function is 

to the data, with 1 being a perfect fi t!  

So let’s go back to the (copied and pasted) Graphs page to review what we 

have found.

First hide unwanted detail.  Enter f4(x) = ½*g*x2, and hide the graph of f3(x).  

So we have the acceleration function f1(x) = g, the velocity function f2(x) = 

g*x and the distance function f4(x) = ½*g*x2.  At any time, like x = 0.8s, the 

intersections with the perpendicular to the x-axis meet the graphs in W, X 

and Y.  The point X lies on the velocity-time graph showing a velocity of 

7.85 ms-1.  We can construct the Tangent to f2(x) at X from the Points and Lines 

menu.  Measuring its Slope we get a value of 9.81, which is the corresponding 

value of the acceleration in ms-2.  Measuring the Integral under f2(x) from O to 

V we have the shaded area as 3.14 u2.  This corresponds to the distance travelled, 

in metres. The u2 is shown because it shows the area is measured in square units 

– we need to look at the number and appreciate that the physical quantity it 

represents is a distance in metres. The slope 9.81 of the segment OX gives the 

gradient of the velocity graph which corresponds to the acceleration (i.e. g).  

The integral of f1(x) from O to V gives the area 7.85 under the acceleration 

graph corresponding to the velocity, which is also the slope of the tangent to 

f4(x) at W.  fi g_08

fi g_07
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So now we can solve our problem about timings in Pisa using graphs rather 

than spreadsheets.  

The problem was to fi nd how long it takes a ball to fall 56m to the ground from 

the top of the Leaning Tower of Pisa, and the velocity with which it hits the 

ground.  Use a suitable Window, show the graphs of f1(x), f2(x) and f4(x) and 

draw the graph of f5(x) = 56.  fi g_09

fi g_08

fi g_09
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Construct the Intersection Point D of the graphs of f4(x) and f5(x), and the 

Perpendicular line through it to the x-axis.  Construct its Intersection Points 

V, A with the graphs of f2(x) and f1(x) and also the x-axis.  Now can you read 

off  the answers from the graphs?  As an alternative to a graphical solution, 

we could use algebra, and solve the equation f4(x)=56 i.e.  ½ g x2 = 56, 

so x2 = 112/g = 11.42, and x = 3.38 to 2 d.p., indicating it takes 3.38 seconds 

to fall 56 metres.  

Substituting this value for x in f2(x) gives y = 3.38 g = 33.15 which means 

33.15ms-1.  Remember the acceleration function is constant, the velocity 

function is linear and the distance function is quadratic.  

So now we have met the main modelling tools available to us in TI-Nspire.  

Next we will look at some TI-Nspire techniques to put models into motion.   
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Ready, steady, go.  

Setting things in motion.
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We now know the predicted values of the velocity and distance fallen at any 

time t – still assuming no air resistance, wind, or ball-catching birds! We can put 

this into action by using the Animation feature in TI-Nspire.

To start you might want to use a copy of the last page from section 1.1 and hide 

the coordinates, D and V and graph f1. Now construct a Segment OX between 

the origin O and the point on the x-axis at the end of the fall, X. Construct a Point 

T on it.  Construct the Perpendicular to OX at T to meet the velocity graph f2 at 

D and the distance graph f4 at V.  Construct the Vector DT.  G is where Galileo is 

standing!  So OG represents the tower.  (You need a vivid imagination.)  From the 

Transformations menu select Translation and use the vector DT to translate the 

point G to the point B (for ball) on the y-axis.  fi g_10

fi g_10

You can change the Attributes of B to make it a bigger shape.  Now check that 

as you slide T on AX so the point B slides on GO.  Open the Attributes for point T 

and enter ‘2’ for the ‘unidirectional animation speed’.  Press Enter to confi rm, and 

then use the Animation Controller to set it going.  If things work OK you should 

see point B speed up as it falls.

In fact we now have the basis of an animation for any kind of projectile.  

That is something which when moving is only acted on by the single force 

of gravitational attraction downwards.  This should apply (ignoring spin, air 

resistance etc) to throwing a ball (netball, basketball, cricket,...), hitting a ball 

(cricket, tennis, hockey, golf,...), kicking a ball, throwing other objects, fi ring 

objects etc.  Of course the object (e.g. ball) may not be at rest – in which case 

the increases in velocity will be added on to the initial velocity, u say, rather 

than the 0 we assumed for Galileo.  Similarly the distances may not be 

measured from 0, but from an initial position, P, say.  So let’s explore what 

diff erence this makes to the acceleration, velocity and distance functions.  

Well, it won’t make any diff erence to the acceleration, which we assume is 

still constant: f1(x) = g.  Actually it will, since we have been rather loose about 

upwards and downwards, positive and negative.
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Motion upwards makes distances get bigger and motion downwards makes 

them get smaller.  If you hit a tennis ball upwards the acceleration due to gravity 

causes it to slow down and to stop climbing, then to start to come back to Earth.  

So the initial velocity was positive, but the eff ect of acceleration was to make the 

upward (positive) velocity get smaller, then become zero and then to become 

increasingly negative.

So now we say that the acceleration due to gravity is g = -9.81 ms-2.  With that 

in mind we can build a diff erent picture on a new Graphs page.  In fact it would 

make sense either to start a New Problem (which will stop us getting mixed up 

with any variables we defi ned but no longer use), or, perhaps better, Close the 

current File and start a new one.  fi g_11

fi g_11

Use Text to enter -9.81 and then Store it as the variable g.  

Defi ne the function f1(x)=g.

This should now be a horizontal line (constant) below the x-axis.  Find its 

Intersection G with the y-axis.  You will want to change the graph window to suit.

In order to set up an initial velocity, u, Construct a point U on the y-axis, use 

Coordinates & Equations to show its coordinates, and Store its y-coordinate in 

the variable u.   The velocity function is now f2(x)=u+g*x.  This is a straight line 

with negative slope, since g is negative.  

The increases in distance will be given by the areas between the graph of this 

function and the x-axis.  

Construct two Points A,B on the x-axis, construct Perpendiculars to the x-axis 

through them, and their Points of Intersection C, D with the graph of f2(x).  

Either use Integral (from the Analyze menu) to fi nd the area under f2 from 

A to B, or construct the polygon ABCD and measure its area.  In either case 

we have a trapezium and we can check that the area is indeed the base 

multiplied by the average of the end heights, as before.  From now on it will 

be safer to use ‘Integral’ rather than ‘Area’ for measuring areas under a graph.  
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This is because when an area is completely below the x-axis it needs to be 

measured as a negative number, but ‘area’ only computes positive numbers. 

Construct a Point S on the y-axis to set up the initial distance and store its 

y-coordinate as s0.  fi g_12

fi g_12

fi g_13

So now we can rebuild a spreadsheet with our new data.  Enter ‘=g’ in cell A2, 

‘=u’ in A4, ‘=s0’ in A6 and a value for dt, e.g. ‘0.5’ in A8.  Store the value in this 

cell as the variable dt.  The cell D1 holds ‘=g*dt’ and this is copied down to D8.  

(Equally we could have entered ‘g*time’ in the formula box above D1.)  Enter ‘=u’ 

in E1, ‘=d1+e1’ in E2 and copy this down to E9.  So now we have the velocities – 

which are indeed decreasing.  To fi nd the increases in distance in column F enter 

‘=(e1+e2)/2*dt’ in F1 and copy down to F8.  Enter ‘=s0’ in G1, ‘=f1+g1’ in G2 and 

copy down to G9.  fi g_13
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Returning to the Graphs screen we can show the scatter plots of ‘time’ against 

‘vel’ and also ‘time’ against ‘dist’.  The velocities agree with our linear function f2, 

and the distances look like a quadratic function but passing through S (0,s0).  

So enter f3(x)=s0+u*x+1/2*g*x2 as the distance equation and check it passes 

over the scatter plot.

The important thing to remember about all our graphs so far is that the x-axis 

tells us about ‘time’ and so the graph f3(x) is the distance-time graph etc.  

Now these functions can model someone hitting or throwing a ball upwards.  

The next trick is to combine two forms of motion!  If you throw, hit or kick a ball 

at angle upwards it will have two kinds of motion in one!  Horizontally, gravity 

has no eff ect, and the only force would be a resistive force of friction – which 

we will assume to be negligible (for now, at least) – so the motion will just be 

that of constant velocity horizontally.  Vertically we assume it has the form of 

motion we just investigated.  If we now change variables so that x represents 

horizontal distance, y represents vertical distance and t represents time, then 

we can use y = y0 + uy*t + ½*g*t2 for the vertical distance function, where 

y0 is the initial vertical height and uy is the initial vertical velocity.  Similarly we 

can use x = x0 + ux*t for the horizontal distance function.  The mathematical 

trick which allows us to combine both these functions is called a parametric 

equation.  We have to specify a set of values for the parameter t, such as 0≤t≤5.

In order to bring a bit more realism to the task we will now try to model a throw 

at netball or basketball.  fi g_14 

On a new Graphs page, Zoom Square, then create a Point to represent the thrower 

and measure its coordinates.  Store these as x0 and y0.  You can construct the 

Perpendicular from the point to the x-axis, fi nd the Intersection, construct the 

Segment and hide the line – to show a ‘stick’ person.  The y-coordinate represents 

the height 2m of the release of the ball from the hand – so it can be higher than 

the thrower.  Insert two sliders to set the values of the initial velocities ux and uy.  

Adjust the Properties of ux so that it is negative – i.e. so that the ball is thrown 

towards the y-axis (right to left).  Construct a Point B on the y-axis and drag it to 

represent the height of the net/basket. Insert the formulae for the Parametric 

function x1(t),y1(t) – using values for t from 0 to 1 in steps of 0.1.  fi g_15

fi g_15

fi g_14
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With luck you should get a graph which starts from the thrower’s hand and 

looks as if it might land quite close to the target.  Edit the upper value for t, 

e.g. to 1.5 to see more of the fl ight-path (also called the trajectory).  fi g_16

fi g_16

Now we can slide to change either ux or uy or both to see what might make a 

good throw.  Construct a Point C on the graph and draw the Tangent at P.  Measure 

the slope and Store it as s.  Find the Coordinates of C and store them as x and y.  In 

order the fi nd the value of t we are going to have to solve an equation.  Use Text 

to enter the expression ‘(x-x0)/ux’ and then select the Calculate tool.  Highlight the 

text expression and each time it asks for a value to use, press ‘L’ to use the stored 

values.  Press Enter to show the result and Store it to the variable t.  Check you can 

slide C along the curve.  In order to make a more realistic ball Construct a Segment 

RS.  Use the Compass Construction tool with the Point C and the Segment RS to 

draw a circle centre C.  Adjust the length of RS to modify the radius.  If the ball 

doesn’t look circular use Zoom Square.  Finally you can change the Attributes of 

Point C to give it an animation speed.  Can you calculate the maximum height 

reached and at what time?  Collect some x- and y-coordinates from points on the 

parametric graph and see if you can fi t a Quadratic Regression to them of the form 

y = ax2+bx+c.  Can you fi nd any relationships between the coeffi  cients a, b, c and 

our given variables like g, x0, y0, ux, uy?

The initial velocities seem rather large, don’t they?  We can use the Text tool to 

enter the expressions ‘ux’ and ‘uy’ and the Calculate tool, with L to retrieve the 

values of the variables ux and uy.  Use the Measurement Transfer Construction 

tool to make a Point X on the x-axis at (ux,0) and a Point Y on the y-axis at (0,uy).  

Construct Vectors OX and OY.  Construct Perpendiculars to the axes at X and Y 

to meet at Z, and then construct the Vector OZ.  The Length of OZ is the launch 

speed of the ball, and the Angle XOZ is the launch angle.

Can you adapt the ideas to make more accurate simulations of balls (and other 

objects) in motion?  At what sort of speed does a basket ball player launch a free 

throw?  How about a lob at tennis?  How fast is a long-jumper’s launch, or a shot-

putter’s throw?  Can you redesign the approach so that it is the launch speed and 

angle which you vary, and from which you calculate ux and uy?
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a curve with a kink. 
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Before we go further, it will useful to add another kind of function and its 

graph to our armoury to go along with constant, linear and quadratic functions.  

We’ll start with a quadratic function of the form y = ax2+bx+c and investigate 

areas between a few points.  Actually Archimedes did something similar well 

over 2,000 years ago (http://en.wikipedia.org/wiki/The_Quadrature_of_

the_Parabola) as did Johannes Kepler (1571-1630), Bonaventura Cavalieri 

(1598-1647), James Gregory (1638-1675) and Thomas Simpson (1710-1761)!  

All of which suggests that quadratic curves are pretty important tools in our 

understanding of physical science.

We’ll make a fresh start with a Spreadsheet.  In column A enter labels and 

values for a, b and c and Store them.  In column B enter a few x-values.  

In column C apply the quadratic function y = ax2+bx+c to the ‘xd’ list.  Set up 

column D with zeros.   fi g_17

Now bring up a new Graphs page.  Draw Scatter Plots of xd against yd and of 

xd against zero.  Enter the formula f1(x) = ax2+bx+c and measure the Integrals 

under f1 between each pair of data points on the x-axis.  Store the areas as 

variables a1, a2 and a3.  fi g_18
fi g_17

fi g_18

Enter these as the values of the cells in column E which will be the increases in 

areas.  Enter an initial value of 0 in cell F1, then ‘=f1 + e1’ in F2, and copy down 

to E4.  So we now have just four points on the graph of the integral of the 

quadratic.  Following the pattern we will assume the result is a cubic, and then 

seek to confi rm it.  So carry out a Cubic Regression on ‘xd’ and ‘zd’ – which will 

be stored in f2(x).  Do any of the values of the coeffi  cients of the cubic in column 

H look familiar?  Can you convert H3 and H4 into fractions?  Do either have any 

connections with cells A2, A4 or A6?  fi g_19
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fi g_19

fi g_20

Well the x3 coeffi  cient of the regression cubic is 2/3 which looks like 1/3 a, 

the x2 coeffi  cient is -5/2 which looks like ½ b and the x coeffi  cient is 3 which 

looks like c.  

So let’s check out the cubic f3(x) = 1/3*a*x3 + ½*b*x2 + c*x for size. Of course 

it passes through the four data points.

The quadratic function, f1(x), Intersects the x-axis in the points A and B.  The 

perpendicular bisector of AB cuts the x-axis in C, cuts the graph y=f1(x) in D 

and cuts the graph y = f3(x) at G. Perpendiculars to the x-axis through A and 

B cut y=f3(x) in E and F.  Tangents are constructed at D, E, F, G and their Slopes 

measured.  What can you say about each of these points?  fi g_20

At A and B the values of f1(x) are both zero.  Since y = f1(x) is the graph of 

the slopes of y = f3(x) this means that E and F must have zero gradient, and 

hence correspond to a maximum or minimum (usually!).  Now think of the 

traversing the graph of y=f3(x) from left to right like a climbing roller coaster!  

From O to E the climb is getting less steep until at E we start to descend for a bit 

until the steepest descent at G.  Then we switch to continue to descend 
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less steeply until F where we start to climb again.  This special point G is called 

a point of infl ection and corresponds to a slope of zero on y = f1(x) i.e. the 

vertex of the quadratic – which is where the acceleration would be zero.   

Experiment with diff erent values of a, b and c to check that we have indeed 

got the correct function in f3(x). Calculate some more values for the lists xd, yd, 

zeros and zd.  Check that the cubic regression still gives a value of 1 in H7 (or 

very nearly).  Will every cubic function have (a) a maximum, (b) a minimum, 

(c) an infl ection?

That little excursion into graphs, tangents, slopes, areas and integrals was 

intended to give a taste for the branch of mathematics which Newton and 

Leibniz independently created, known as calculus.  If you are taking AS, A2 or 

Higher mathematics you have probably met some calculus already – in which 

case we hope maybe that these explorations help make more sense of it.  If you 

haven’t yet met any calculus we hope it might whet your appetite to fi nd out 

some more.  However people like Archimedes, Kepler and Cavalieri worked out 

ways of fi nding integrals (area functions) for quadratic curves using geometry – 

the basis of a technique now called Simpson’s Rule.

You can see this for yourself by inserting a New Problem and opening a 

Graphs page.  Insert Sliders to control the values of the variables a, b and c.  

Adjust their Settings so that they can be negative, zero or positive.  Graph the 

Function f1(x)=a*x2+b*x+c.  Construct two Points A, B on the x-axis together 

with Perpendiculars to the axis through them.  Construct their Midpoint C 

and Perpendicular Bisector of AB.  Construct the Intersection Points D, E, F 

of the three vertical lines with the graph y=f1(x).  Construct a Perpendicular 

line through F, the middle of these, to the y-axis and fi nd its Intersection 

Points G, H with the other two verticals.  fi g_21

fi g_21
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Construct the Polygons ABHG and ABED (what shapes are they?), measure 

their Areas and store them as r and t.  Measure the Integral of f1 from A to B 

and store it as i.  The discovery was that the area under the quadratic graph 

from A to B is 2/3 of ABHG plus 1/3 of ABED – i.e. the weighted average of the 

rectangle and trapezium in the ratio 2:1.  Use the Text tool to enter the formula 

‘(t+2*r)/3’ and the Calculate tool to evaluate this using the stored variables 

(just press L each time you are prompted).  Store the coordinates of D in dx 

and dy, and similarly for E and F.  Can you fi nd the area i in terms of these 6 

coordinates?  It’s that formula which is known as Simpson’s rule.

Now it’s time to put our skills and tools to the test in modelling various kinds 

of (mainly) human movement including something far less well explored and 

documented – that of human athletic performance in the 100m sprint.
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Newton’s First Law of motion states that when a body is in motion it will 

continue to move at a constant speed in the same direction unless acted on by 

a force.  So, can we fi nd potential examples of constant velocity?  These could 

include walking, running, cycling, sailing, swimming etc. at a constant speed – 

but in each case there is a propulsive force overcoming some form of frictional 

force.  An extreme example is someone descending on a parachute, or of a 

snowfl ake, where the vertical force of gravitational attraction is exactly balanced 

by the air-resistance – and so the object has reached its ‘terminal velocity’.

So we might look for areas where frictional forces are more or less negligible, 

such as in a vacuum – or more practically on ice or snow, or maybe on roller 

blades?  YouTube has a BBC science video ‘P039: Forces’ which shows some 

examples where the presenter roller-skates down a ramp and appears then 

to travel with steady speed for a few metres: http://www.youtube.com/

watch?v=RQwYXYhUsgg.  

This is something you could easily set up and test for yourselves.  You could 

mark lines at 1m intervals and use stop watches to measure times taken to 

reach 1m, 2m, 3m etc.  The data recorded could then be entered directly into 

a spreadsheet, such as a Lists & Spreadsheet page of a TI-Nspire document.  

You could also set up a data logger, such as one or two CBR2s, to record the 

distances travelled at a set time interval e.g. 1/20 s. 

In the following example we have downloaded the video from YouTube to 

RealPlayer in a Flash video format (.swf) and converted it to an Apple Quicktime 

movie format (.mov).  Then we can play it back in the free Tracker 3.1 video 

analysis Java applet (or other video capture software) to track the position of the 

roller-skater (http://www.cabrillo.edu/~dbrown/tracker/). Tracker was written 

for the US Open Source Physics Project by Doug Brown of Cabrillo College and 

can be used either locally or web-based.

The video clip is recorded at 25 frames per second and the full clip has nearly 

2500 frames. The fi rst step is to load your video and then to use the Clip 

Controller (the rightmost icon under the screen) to set the start and fi nish 

frame numbers for the analysis, and the number of frames to advance between 

each data capture.  The values chosen were to use every fi fth frame between 

frames #877 and #977, i.e. 20 frames in all at steps 0.2 s apart.   This corresponds 

to a section showing her from overhead travelling a distance of about 8m 

horizontally from the foot of the ramp.   fi g_22

The next step is to calibrate the scene using the Ruler icon shown on the

 toolbar above the video area as a blue double-arrowed line.  Drag the icon 

to where you want the measure to be.  Drag out the ends and adjust the 

direction (change the colour if necessary). Replace the existing measurement 

with your own measurement e.g. 8.0 m.

The fi nal bit of preparation is to insert axes (shown in purple on the toolbar) 

so that the origin is in the desired place and the direction of the axes accords 

with your own choice.  Now you collect the data.

fi g_22
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Select New Track, and Point Mass.  You can collect data manually by pressing 

shift-click at a point in a frame.  The video then advances to the next selected 

frame, inserts the current (t, x, y) data into a table and plots the current data 

in the t- and x-lists.   You can select other variables to be collected and other 

variables to be graphed.  You can also collect data automatically (auto-tracking) 

by selecting an easily identifi able part of the moving scene, such as the skater’s 

helmet, and the software will then scan for nearest match in the next selected 

frames.   We have also selected an off set so that the tracked points start in line 

with the foot of the ramp.

Once data has been recorded successfully it can be copied and pasted into other 

software for analysis.  At the moment the numerical data format used in Tracker 

cannot be read directly by TI-Nspire, so fi rst paste the data into an Excel or Open 

Offi  ce spreadsheet.  The data has been pasted into columns A, B and also D, E.  

The latter data has been reformatted to contain numeric data to 3 d.p.

The data can be plotted in Excel and a ‘trendline’ fi tted – which suggests that 

a constant speed model looks reasonable, although at a little slower rate than 

suggested in the original video.  fi g_23  The data in columns D and E can now 

be copied and pasted into TI-Nspire for further display and analysis.

The data has been entered as lists t and d in the spreadsheet.  We can defi ne 

column C to hold the list of results obtained by dividing each value of the 

distance covered, d metres, by the corresponding time, t seconds.  A dialog box 

will open in which we will declare t and d to be the names of variables, rather 

than columns.

The cell D1 has been set to the mean of the cells C2 to C21.  So the numeric 

evidence from a slightly wobbly kind of video capture is more or less a constant 

value for speed = distance divided by time.  fi g_24

fi g_23 fi g_24
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The data can be displayed as a scatter plot in a Data & Statistics page and a 

Regression line plotted over it.  As we can see, the slope is very similar to that 

computed in Excel, but the graph does not pass through the origin.  fi g_25

As an alternative, we can draw the scatter plot in a Graphs page and then plot 

the linear function f1(x) = x over it.  Now we can use manual manipulation to 

change the slope of the graph without moving it away from the origin.  So a 

good fi t, by eye, appears to be f1(x) = 1.89 x.  fi g_26

fi g_25

fi g_27

fi g_26

fi g_28

But while the program is suggesting that the skater has a constant velocity we 

know that actually there is a frictional force at work which will be slowing her 

down, however slightly.  If we try a Quadratic Regression on the data we see 

that the coeffi  cient, a, of x2 is small but not negligible.  fi g_27

Over the 4 seconds observed, the slowing up is not very noticeable, but we 

can see that our quadratic model suggests she would come to rest after about 

2 minutes (actually 116 seconds) during which time she would have covered 

about 110 m.  fi g_28  Can you set up your own roller skating experiment, with 

video capture and/or manual timing with stopwatches to explore just how far 

you can glide on a roller blade?



32

5Chapt
e
r

Juggling some balls 

in the air. 



33

In Section A, we worked at describing motion just from a theoretical model.  

We assumed that a ball dropped from a height would just be subject to a single 

constant force, that of gravitational attraction downwards.  Here we use another 

video clip, this time of someone juggling, to capture and analyse data about 

displacement, velocity and acceleration.

You can download some sample activities and resources from the ‘Physics with 

Video Analysis’ section of the Vernier website at http://www.vernier.com/cmat/

pva. html.  These include a Quicktime video clip jugglerclip3.mov of a young 

man juggling three balls vertically.  You can use Vernier’s Logger Pro or Tracker 

3.0 or other video software to capture data for the middle ball, say.   fi g_29

The data for the height of the bottom of the middle ball from the point of 

release have been copied and pasted into TI-Nspire. The page is split between 

a Lists & Spreadsheets region and a Data & Statistics region.  The scatter plot 

of vertical displacement against time certainly looks very quadratic and the 

Regression Quadratic gives a very good fi t.  We can compare the x2 coeffi  cient 

with that obtained in section 1, where in the absence of air resistance its value 

was – ½ g.  So the evidence from this particular clip suggests that the value of g 

is about -10.1 ms-2, compared with the usual one of -9.8 ms-2.  One explanation 

for this could be that the video was taken down a deep mine where the value of 

g was greater than that at sea level, but a more likely one is that the margin of 

error (about 3%) is accounted for by errors in the data-capture process, such as 

parallax, misreading, wobbling etc.!  fi g_30

fi g_29

fi g_30
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If we use a Graphs page instead, we can draw the scatter plot and a function 

like f1(x) = -5*(x-0.3)2+0.5, where the values have been read approximately 

from the previous screen.  Now you can manually manipulate the graph to 

make a good fi t to the data.  Using the Geometry menus we can fi nd the 

intersection points L and R of the graph with the x-axis.  We can also fi nd the 

point of intersection V of the graph with the perpendicular bisector of LR.  

We want to try to maintain L to be at the origin while adjusting the quadratic 

curve (a parabola) to fi t the data well, as shown.  fi g_31

Now we get a better approximation for g as -9.74 ms-2, but probably more 

through luck than judgement! We can read off  that the maximum height of 

0.53m was achieved after a time of 0.33s from release.  We can also draw the 

tangent to the curve at L and measure its slope to estimate the initial velocity 

of the ball as 3.21 ms-1.

Reversing the theory of section 1, we can say that if the displacement is given 

by the quadratic function f1(x) = a(x-b)2+c, then the velocity will be given by 

the linear function f2(x) = 2a(x-b) and the acceleration by the constant function 

f3(x) = 2a.  Draw the graphs of these functions.  At what time is the velocity zero?  

Interpret this in terms of the video clip.  When is the velocity negative?  What 

does this mean in terms of the ball?  At what speed will it land in the juggler’s 

hand (at the point R)? 

Investigate dropping, throwing and catching diff erent types of balls.  Can you 

collect and analyse your own data?  Can you fi nd any types of balls for which 

air-resistance cannot be neglected?

fi g_31
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It should be becoming clear that mathematical modelling (i.e. the fi tting of 

functions and graphs to data) is not an exact science, and that we must be 

very careful about making hard and fast statements such as “the velocity/

acceleration is constant”.  We must also exercise care in interpreting graphs.  

We have stuck with the general convention in mathematics about using x- and 

y-graphs, but in our examples the variable plotted on the x-axis is time (usually 

in seconds), while we have plotted displacements (in metres), velocities (in 

metres per second) and accelerations (in metres per second per second) at 

diff erent times on the y-axis.

When we have motion in two dimensions, such as throwing and catching 

a ball, then we have to take care to distinguish between a displacement-time 

graph and the actual path in space (the trajectory) of the ball.
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the trajectory.   
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 As usual, the data have been copied and pasted into a TI-Nspire List & 

Spreadsheets page after video data capture in Tracker  fi g_32.  Scatter plots, 

quadratic regression and a moveable line have been used in a Data and Statistics 

page to show how each of the coordinates varies with the time t.  fi g_33

As expected, in the horizontal direction we appear to have constant velocity 

and in the vertical direction we have constant acceleration.  fi g_34  In a Lists 

& Spreadsheets page we can compute the linear (x-t) and quadratic (y-t) 

regressions and store them in f1(x) and f2(x). Then in a Data & Statistics page 

we can plot all the variables on the same page by selecting t as the independent 

variable and after selecting x as the dependent variable, right click on the box 

to add a second variable.  fi g_35

fi g_32

fi g_33

fi g_34

fi g_35
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In a new Graphs page we can draw the scatter plot of y against x – which gives 

us a glimpse of the geometrical trajectory  fi g_37.  But now it is imperative 

we have equal units on each axis, so once the image is in a reasonably central 

position we must use Zoom Square.  Now we can plot the trajectory as a 

Parametric curve using the linear regression function f1(t) for the x-coordinate 

and the quadratic regression function f2(t) for the y-coordinate.  The values 

of t range from t = 0 when the ball is released to t = 0.75 just after the ball has 

entered the net.  Can you now calculate the angle and velocity with which the 

ball was released?  What value does this analysis suggest for the acceleration 

due to gravity g?

In a Graphs page we can draw the scatter plots and superimpose the regression 

curves.  Remember that in this view, the x-axis is used for time.  fi g_36

fi g_36

fi g_37
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tell us?
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Birmingham Town Hall has two remarkable sculptures below it in the main 

square.  The upper one is called The River, but is usually known as “the Floozie 

in the Jacuzzi”!  fi g_38

The lower one, by the same sculptor, Dhruva Mistry, is known as Youth and the 

fi gures at either side are more or less life size.  Many items of mathematical 

software can now accept photographs as the background for graphing 

and drawing.  These include Excel, Autograph, Cabri Geometry, Geometer’s 

Sketchpad and the Mathematical Toolkit (Skoool).  You can take your own 

digital photographs, fi nd them on the Internet using e.g. Google Image 

search, or purchase them on CD from sources such as http://www.

problempictures.co.uk/.

A gallery of mathematical images was sent free on CD to all English maintained 

secondary schools in 2005 by the DfES together with a book “Integrating ICT 

into the Mathematics Classroom” from the ATM.  This is still available from 

the ATM at: http://www.atm.org.uk/shop/products/rea025.html.  We have 

attached the image from the photo gallery to a line segment in Cabri II Plus 

fi g_39.  What mathematics can we do on a still image of objects in motion 

such as water spouts?

fi g_38

fi g_39

First we collect a minimal amount of data from the photograph by rescaling 

axes.  The distance from the knee to the buttock of the male adolescent on 

the right should be around 0.5m.  So we set up axes and adjust scales so that 

coordinate distance AB is 0.5.

Then with this set of axes we have placed points at three critical positions on 

one of the water spouts.  P is at the source, Q is at the vertex and R is at the point 

of entry to the basin.  With a bit of ingenuity we should be able to use this data 

in TI-Nspire to fi nd out more than the obvious from the picture.
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This time we can just type in the coordinate data for our 3 points in a Lists & 

Spreadsheet page.  A quadratic function ax2+bx+c has just has three coeffi  cients, 

a, b, c, so with 3 points we would have to solve 3 simultaneous equations in 

these 3 unknowns to fi nd them.  So if, instead we get TI-Nspire to compute a 

Quadratic Regression function it must be the unique function which passes 

through each of the 3 points.  Of course this technique works for any polynomial 

– 2 points defi ne a line, 3 points defi ne a quadratic, 4 points fi x a cubic etc.  When 

we draw the scatter plot and the quadratic function on a Graphs page we can 

see that the Q is not exactly at the vertex.  For comparison we have entered f2(x) 

= 0.56 – 2*(x-0.26)2 which we know will have its vertex at Q (0.26, 0.56) and used 

manual manipulation to adjust the slopes – and as we see it just misses P and R 

by a small amount.  fi g_40 / 41

fi g_40

fi g_42

fi g_41

So what have gained from this exercise?  Surprise, surprise – we have found, 

yet again, a reasonable approximation to g – as twice the x2 coeffi  cient or 

g = -9.7 ms-2.  We can also draw tangents to f1(x) at P, Q and R and measure 

the slopes.  So, for example, we now know that water leaves the spout at P 

at a speed of 1.39 ms-1, and lands in the basin at R at a speed of -3.15 ms-1 – 

where positive speeds are upwards and negative speeds are downwards.

The point about this example is that we are looking at a continuous stream 

of water droplets all assumed to be moving under the same forces, and so we 

have same eff ect as we would have done if we had taken three photographs 

of the netball throw in quick succession (keeping the camera still, of course).  

That is basically what we have with a video clip – a set of still images taken at 

very short intervals apart.

One of Richard Phillips’s images on the ATM CD is a stroboscopic picture 

of a bouncing ball (in 2 dimensions)  fi g_42.  Can you fi nd some way to 

take measurements from this photograph to insert data into a TI-Nspire 

Lists & Spreadsheet page?  
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We have no reference measurements, but the ball just might be a standard 

table tennis ball? If not, and we assume the value of g is -9.8 ms-2, do you think 

you could estimate the size of the ball from this data?  What do you think is 

the time interval between the camera shots?  What percentage of the energy is 

lost at each bounce?  How fast was the ball travelling when it hit the ground?

So for things moving very fast, like rockets say, we need a means of getting 

a short video clip with a very short time gap between frames.  Most current 

forms of digital cameras, webcams and mobile phones will record video clips 

at frame rates between 15 and 30 frames per second (fps).  Those of you who 

watch sport on television will now be used to seeing slow motion clips in 

extreme detail, e.g. of a cricket bat hitting a ball.  Such cameras have been 

extremely expensive until recently, but now there are cameras on the market 

for under £300 which will take good quality videos at 210 fps, slightly poorer 

ones at 420 fps and even provide low resolution output at 1,000 fps.  

(For example the Casio Exilim range has such cameras at between £200 and 

£300.)  This means we now collect video data from quite fast moving objects.
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Can you spot the ball in each of the frames above?  In fi g_43 it is just leaving the 

bowler’s hand and in fi g_44 it is just about to leave the fi eld of view.  If we know 

that the frames were taken about 1/20 s apart, and we guess that the ball has 

travelled around 2 stumps’ lengths (1.5m) then we have a way to estimate the 

speed of the ball as about 30ms-1 or around 100 kph.  But can we do better?

fi g_43

fi g_46

fi g_44

fi g_47

fi g_45

In cell C2 we have calculated the approximate value of 1/210, which confi rms 

the time steps shown in the t list.  fi g_46

A scatter plot in a Data & Statistics view shows the data to be well-fi tted by a 

line, and the linear regression equation shows that the ball is travelling with a 

more or less constant velocity of about 28.6 ms-1 from an initial point of release 

some 1.9m in front of the stumps  fi g_47.  The so-called ‘popping crease’ is 1.2m 

in front of the stumps and the bowler aims to have his back foot just behind this 

crease.  So the other 0.7m must be accounted for by his bowling action where 

he leans forward and his arm is ahead of his body.  The speed of about 28.6 ms-1 

or just over 100 kmh-1 compares well with the range of 136-150 kmh-1 suggested 

for adult fast bowlers in: http://en.wikipedia.org/wiki/Fast_bowling.

The video clip: ‘fast ball.avi’ was recorded at 210 frames per second using a 

Casio Exilim EX-FH20 high speed camera with telephoto lens and imported into 

the Tracker 2 software.  The ‘tape measure’ tool was used to mark the height of 

the stumps as 0.711m.  Axes were added through the base of the stumps, and 

tilted through an angle of 2.2° to the horizontal.  The path of the ball was tracked 

as a ‘Point mass’ from the point of release by the bowler  fi g_45.  The data has 

been copied and pasted into a TI-Nspire Lists & Spreadsheet page for analysis.
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One of us had a good seat ringside at the O2 arena in London in December 2009 

when Juan Martin Del Potro played Fernando Verdasco during the Barclays 

ATP Men’s World Tour Finals  fi g_48.  They had my compact Casio Exilim 

EX-FC100 camera with them, but no tripod – and no fl ash allowed.  Using 

the High Speed video capture at 210 frames per second they were able to 

shoot and edit an AVI clip at 480 x 320 pixels.  With auto-tracking in Tracker 

they were able to get a good set of data values for one of del Potro’s many fi rst 

serves.  Can we use the data to see how the speed of serve compares with the 

speed generated by a fast bowler? 

The distance from the base line to the service line is marked as 5.5m. The axes 

are placed just below the point where del Potro fi rst hits the ball.  The x and y 

data lists have been adjusted so that the ball leaves the racket at (0, 0) at time 

t = 0s.  A new column of data, d, has been computed from d = √(x2 + y2) to 

measure the distance travelled by the ball  fi g_49.  The resulting scatter plot 

of d against t again shows a very close fi t to a linear function  fi g_50.

Here are just four values extracted from the time t and displacement d lists.  

fi g_51

Using these can you fi nd a good approximation to Juan del Potro’s service 

speed in ms-1? 

Can you convert the result from ms-1 into mh-1 (as used by the speed gun 

at the O2)?

Think about some other athletic, sporting and leisure activities where an 

object is launched.  Could you use the techniques we’ve been working with 

to analyse them?  Some possibilities include: javelin, shot, discus, hammer, 

archery, golf, hockey, football, rugby, high jump, long jump, triple jump, 

badminton, squash, basketball, volleyball, table tennis, Frisbee, paper aircraft, 

Stomp rocket, fi reworks…

fi g_48

fi g_49

fi g_50

fi g_51
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Sophie in the snow 

– forces on a toboggan. 
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Thanks to the inclement weather in December 2009 many students were able to 

take to the slopes with all manner of toboggans.  Our colleague Pip took a video clip 

of her daughter Sophie coming downhill on her 0.91m red sled  fi g_52.  

fi g_52

fi g_53 fi g_54

This was taken on a Casio Exilim digital camera at 30 fps and analysed using the 

Tracker 3 software. Using the Clip Settings button the video clip has been set to run 

from frame 0 to frame 80 taking data from every third frame at 30 fps.  The auto-

tracking has successfully picked up Sophie’s foot and the front of the toboggan 

as target. The Tracker variable r measures the displacement of the object from the 

origin, so we can export the (t, x, y, r) data for further analysis.  We can copy and paste 

the data to a Lists & Spreadsheets page in TI-Nspire  fi g_53.  If we draw the scatter 

plot of xm and ym we need to take care over the scales.  This graph is a geographical 

one where xm and ym are measurements of position of the toboggan in metres, 

so we need to use the same scales on each axis if the positions are to resemble the 

downward sloping hillside  fi g_54.  We can see that there is quite a good linear fi t, 

but not as accurately as in our previous models of constant velocity or acceleration.  

The hill isn’t a man-made structure and it isn’t surprising that it’s not perfectly fl at.  
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The regression line has a slope of -0.19 which corresponds to a downhill angle 

of 11°.  We can also look to see how well a quadratic fi t approximates the 

displacement-time graph.  Once again we have the choice of taking a Quadratic 

Regression, or manually manipulating the graph of a quadratic function.  fi g_55

If f1(x) gives our quadratic fi t for the displacements, then we can easily fi nd the 

corresponding linear fi t f2(x) for the velocity using the technique of section 1.  

Similarly we can fi nd the constant fi t f3(x) for the acceleration.  On a Graphs page 

we can plot all three functions.  The point T is set up as a slider on the horizontal 

(time) axis.  Its intersection with the three graphs are D, V and A.  The tangent to 

the displacement-time graph f1(x) has been drawn at D and its slope measured – 

which we can see corresponds with the velocity at V.  The area under the velocity-

time graph has been measured as the integral under f2(x) from O to T and we can 

see that this corresponds with the Displacement at D.  It was this fundamental link 

between slopes and areas which both Newton and Leibnitz developed into what 

we now call “calculus”.

fi g_55 fi g_56

fi g_57
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fi g_58

We computed the slope of the hill as being about a constant angle α = 11° 

downwards and we can now use it to fi nd an estimate for the coeffi  cient of 

friction λ between the toboggan’s runners and the icy snow.

The force down the hill is proportional to g cos α and this is opposed by a frictional 

force in the opposite direction proportional to λ g sin α.  The equation of motion of 

the toboggan, ignoring air-resistance, bumps and the like is:

 a = g (cos α - λ sin α)

With our experimental value of a as 1.6 we fi nd that we get a value of λ = 0.028 

for the coeffi  cient of friction between the toboggan and the icy dry snow. 

And, yes, we have used a Graphs page from TI-Nspire to draw the force diagram 

for the toboggan.   

In this approach we are, as usual, making many assumptions, like that the slope 

is straight, that air-resistance/wind is negligible etc.  There is only one real source 

of possible data error – the calibration of the video.  Can you fi nd out the eff ect 

on calculating λ of, say, a 10% error either way in picking up the 0.91m length 

of the toboggan in the video?  How can we best compensate for perspective 

distortion of lengths between the centre and the edges of the video frame – 

or are such eff ects negligible?

The main point here is that we are not in the realm of absolutes and right 

answers.  This is modelling with real data and as such is how mathematics is 

regularly applied to complex problems.  Video capture provides a cheap, 

portable, reliable and visual means of collecting data in the fi eld. TI-Nspire 

can both help us perform complex calculations supporting mathematical 

modelling, but also provide means of displays and interactions which enable 

us to understand better the close relationship between physical quantities 

such as displacement, velocity and acceleration.

Now see if you can think of other examples of motion where friction is a critical 

force, and see if you can use video capture and TI-Nspire analysis to investigate it.
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Our fl exible friends 

– Snoopy and Ellie 

go bungee jumping.
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Snoopy and Ellie are wooden toys condemned to spend their lives bouncing up 

and down suspended on the end of springs.  Health and Safety stopped us using 

real kids for this part of the book!  fi g_59

We made a video of Snoopy bouncing up and down over the stairs alongside a 

metre rule, and, as usual, ran the clip through Tracker to digitise data from a set 

of bounces.  Now we have a diff erent kind of force model where the downward 

force of the weight is increasingly opposed by the stretched spring until Snoopy 

comes to rest and then starts to accelerate upwards.  As the tension in the spring 

decreases so the upwards force starts to decrease until Snoopy again comes to 

rest, and then starts to accelerate downwards.

The motion then repeats, more or less.  So this gives an approximation to what 

is known as Simple Harmonic Motion.  We shall see what the data has to tell 

us now.  Here the video clip was taken at 30 fps and we see that we have nice 

smooth wavy ripples – looking like a sort of sine wave.  In the menu of possible 

regression types to use there is one called “sinusoidal”.   fi g_60

Here we see that we get more or less 4 completed bounces up and down in 

a space of about 4 seconds.  So Snoopy is bouncing up and down at the rate 

of about 1 cycle per second – which is known as a frequency of 1 Hertz, 

written 1 Hz.  The time between successive bounces is called the period and

it is about 1 s.  fi g_61

fi g_59

fi g_60

fi g_61 fi g_62

We can also see that the maximum height of Snoopy is around 0.66m, and 

his lowest is about 0.37m.  These are each about 0.14m above and below the 

mean value of 0.51m – this variation of 0.14m is called the amplitude of the 

oscillation. We can examine the function more closely in a Graphs page.  fi g_62  

Snoopy’s velocity will be given by the slope at each point P on the displacement-

time graph – and this varies between positive and negative small values with 

slopes of zero at the maximum and minimum.
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In a Lists & Spreadsheets page we can use the function ‘nderiv(f1(x),x)|x=a1’ 

in the cell D1 to compute the numerical values of the derivative (i.e. the slope) 

to the function f1(x) at the value where x equals the contents of cell A1. 

Filling down the D column with these values gives us the list of numerical 

velocity values v.  Again we can compute a Sinusoidal Regression to fi t this 

data set.  fi g_63

Now we can see that the last, constant, term of f2(x) is really, really tiny (about 

4 divided by 100 million million) and can be ignored.  So the mean value of the 

velocity appears to be zero.  What can you say about its period, frequency and 

amplitude?  fi g_64

Also the maxima and minima of the displacement correspond to the zeros 

of the velocity.  To what do the maxima and minima of the velocity correspond 

on Snoopy’s trips up and down?  So now we have quite a diff erent kettle of 

fi sh from our previous sorts of motion.  The slopes of the velocity-time graph 

are also continually changing.  So to study the acceleration we can use the 

same technique of numerical diff erentiation to compute approximate 

accelerations at each interval.  We can use the same formula as before, 

but this time on the function f2(x): ‘nderiv(f2(x),x)|x=a1’.  fi g_66

We have computed a list of accelerations, a, and a Sinusoidal Regression f3(x) 

from them.  What can you say about the shape of the acceleration graph?  

What is its mean value?  What is its period, frequency and amplitude?  How 

do its maxima, minima and zeroes relate to the shapes of the velocity and 

displacement graphs?  At what point on Snoopy’s trip up and down does 

he experience the greatest upward pull?  When does he feel the greatest 

downwards pull?  fi g_65

So now we have met the main features of what is called ‘simple harmonic 

motion’ (SHM).  We just need to explain the roles of each of the four numbers 

a, b, c, d which TI-Nspire computes as the coeffi  cients of the Sinusoidal 

Regression function y = a*sin(b*x + c) + d.  So let’s start with the displacement 

data and try a manual manipulation of the graph y = sin x.  Now we have to 

get to grips with a possibly new piece of mathematics called the radian.  

This is quite a diff erent way of measuring angles to our familiar system of 

degrees.  In the toolbar File menu there is an entry for Document Settings 

where you can change the angle measurement between Degrees and Radians.  

For this problem you will need to select Radians.  In a Graphs page select 

Function Graph and type sin(x) as the defi nition e.g. for f4(x).  Now, just like 

linear and quadratic graphs, this basic sine graph can be manually manipulated.  

Before we do so, let’s look at some of its features.  You can use Graph Trace to 

drag a point along it and read off  values, such as the maximum.  You can also 

fi nd the Intersection Point(s) between the graph and the x-axis.  The fi rst crest 

of a wave appears at (1.57, 1) and the next zero of the function at (3.14, 0).  

Do these numbers look familiar?

fi g_63

fi g_65

fi g_64

fi g_66
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fi g_67

fi g_68

fi g_69

fi g_70

fi g_71

Now we are used to sin(x) being maximum (=1) when x is 90° and to 0 when 

x is 180°.  That, then, gives the clue to how radians are measured.  There are 

π/2 radians in a right-angle, π radians in a straight line and 2π radians in a 

full circle.  So, in radians, the sine function has a period of 2π, a mean value 

of 0 and amplitude of 1.  In order to model Snoopy’s displacement data we 

need a shorter period (greater frequency), a smaller amplitude, a greater mean 

value and a bit of nudge sideways!  In the second of this sequence of screen 

shots we have fl exed the curve to reduce the amplitude leaving the other 

features unaltered and in the third screen we have raised the curve up to a 

higher mean value.  fi g_67/68

Zooming in for greater detail we can carry on sliding and fl exing until we 

have a pretty good fi t.  Now most of the coeffi  cients are self explanatory.  The 

fi rst coeffi  cient, a, controls the amplitude, and the last coeffi  cient, d, controls 

the mean value.  The second coeffi  cient, b, tells us about how long it takes to 

complete a full cycle.  For the simple sine graph, with b = 1, the period (time to 

repeat) is 2π radians, or about 6.28.  Explore the graphs of the functions sin(2x), 

sin(3x) etc.  These “beat” twice as fast, three times as fast etc.  So their periods 

are π radians, 2π/3 radians etc.  So in general the period is 2π/b radians, and 

the frequency is b/(2π).  fi g_69/70

Which just leaves the ‘c’ coeffi  cient.  This is called the phase shift or lag.  

Explore the graphs of sin(x+c) for various values of c.  What happens when 

c is π/2, π, 3π/2, 2π?  In eff ect these tell us how far to move the y-axis forward 

or back to pass through a zero of the function at which the slope is positive 

(a ‘climbing zero’?).  fi g_71

So what is it about the experiment which has determined these various 

characteristics of the motion?  To get Snoopy swinging we had to pull him 

down so that the spring was in tension, and then let him go.  So if we had been 

able to start the video clip at the time of release he would have been at his 

lowest point (minimum displacement), with a zero velocity, and just about to 

start moving upwards with maximum positive acceleration.  The mean position 

would have been were Snoopy would have hung from the spring in equilibrium 

if we had not pushed him downwards.  He passes the equilibrium level going 

upwards with his maximum velocity (and zero acceleration).  If the point of 

release was not too far below the equilibrium level than when he reaches 

his maximum height the spring still has some tension in it. His velocity now 

becomes zero and he starts his downward motion with maximum negative 

acceleration, and so on.  In order to change the period of oscillation we need 

to use a diff erent spring (or elastic rope).  It was the great British scientist, 

Robert Hooke (http://en.wikipedia.org/wiki/Robert_Hooke), who fi rst fully 

investigated this kind of motion in the 17th century.
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In order to see how the parameters change with the kind of spring-mass system 

we will swap from Snoopy the dog to Ellie the elephant.  She is much more 

massive and her spring is longer, heavier and more tightly wound.  She is also 

capable of carrying an interesting payload!  Her photo shows a Vernier wireless 

dynamic sensor system (WDSS) attached between the spring and her head.  

This sends data from a force sensor and 3 accelerometers wirelessly to a laptop 

running the Vernier Logger Pro 3 software.  That software can also be set up to 

control a video camera, or to synchronise with a video clip taken independently 

of the same motion.  We could also set up a CBR2 or Vernier Go!Motion data-

logger underneath her to record displacement.  So we have a variety of ways 

we can use to collect data from her motion.  fi g_72

For a change we will use data collected using a CBR2 and a TI-Nspire handheld.  

This stores data from each capture into pre-named lists such as ‘dc01.time’ for 

the fi rst data collected about time.  Although TI-Nspire captures time and 

distance from the CBR2 it also computes its own numerical values for velocity 

and acceleration.  However we will use the same techniques as before to 

compute our own numerical derivatives.  The lists t and d hold the data from 

our 4th attempt to get Ellie bouncing smoothly! In a Data & Statistics we can 

see how well a Sinusoidal Regression fi ts the displacement-time data.  

In a Lists & Spreadsheets page we can compute the regression function f2(x) 

and use it to fi nd the velocities, v, as the numerical derivatives of f2(x) using 

the formula v:=nderiv(f2(x),x)|x=t, which substitutes in turn each value of t into 

the formula for x fi g_73.  Similarly we can fi t a sinusoidal regression to the 

v data and store it as function f3(x), ready to fi nd its numerical derivatives as 

the acceleration a and to fi nd their sinusoidal regression function f4(x).  fi g_74

fi g_72

fi g_73
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Graphing f2(x), f3(x) and f4(x) over the same (time) axis in a Graphs page we can 

see how the displacements, velocities and accelerations change as Ellie bounces 

sedately up and down for 5 seconds or so  fi g_75.  

fi g_74

fi g_75
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Apparatus on a children’s playground, or for gymnastics, gives plenty of 

opportunity for your own study of repeating motion such as swings, see-saws, 

roundabouts, rings etc. Our next study will be that of a trampoline.

Now, as they say, for something completely diff erent.  So far we have looked 

at kinds of motion for which there are “classical” explanations, once certain 

simplifying assumptions have been made.  For the next couple of examples we 

will look at more complicated motions, that of a rolling ball and a rocket car.  

Study the graphs carefully and answer the following questions.

What is the mean value of Ellie’s displacement?

What is her lowest height?

What is the amplitude of her oscillations?

What is her maximum velocity?

What is her maximum acceleration?

What is the period of her oscillations?

The points P, Q, R, S, T and U have been marked, and their coordinates shown.

For each of these points describe whereabouts Ellie is on that current bounce and 

what are the time t, displacement d, velocity v and acceleration a at that time.

Below are two representations of the same diagram  fi g_76/77.  It shows 

the scatter plot of velocity v against displacement d.  This kind of diagram is 

known as a phase plane diagram.  Ideally (with no loss of energy) the points 

will lie on an ellipse.  You have to stretch your imagination to imagine a third, 

time, axis, coming out of the paper towards you and think about a screw 

formed by cutting a groove evenly around a cylinder.  Each point in space 

has a coordinate (t, x, y) and we have projected all the points down into the 

plane where  t = 0.  The screw thread will have a particular direction.  See if you 

can identify how the points L, U, H, and D relate to each of Ellie’s bounces and so 

determine whether the arrow on the curve should be clockwise or anticlockwise.

fi g_76 fi g_77
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Sophie on the trampoline.
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Proud mum Pip has made another video of Sophie in action  fi g_78 – not 

bungee jumping but, more safely bouncing about on a trampoline.  Once again 

we have used Tracker 3 to capture data, taking Sophie’s height as 1.5m.  You can 

see the shape of the graph of her height y against time t.  Does it look familiar?

fi g_78

fi g_79 fi g_80

Well the data certainly seems to repeat regularly – something we call periodic 

motion. So let’s copy and paste into a TI-Nspire document to carry out some 

analysis.  We have stored time in the list t and vertical displacement in the list y.  

A quick scatter plot and sinusoidal regression reveals that the sine wave is not a 

very good fi t to this data.  While repetitive, it can’t seem to cope with rounding 

the corners at the bottom!  fi g_79/80
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Once again we need to use our imagination to describe just how Sophie’s 

movements match with the information on the scatter plots.  When she lands 

on the trampoline she doesn’t stop moving, but she starts to stretch the 

trampoline’s membrane.  This is like an archer pulling back the string on a bow, 

or a bungee jumper pulling down an elastic rope or Snoopy/Ellie stretching their 

springs.  So she slows down until she reaches the lowest point at which she is in 

equilibrium with zero velocity.  The trampoline then acts like a catapult to give 

her an upward acceleration.  So the lower part of the motion looks as if it might 

well be sinusoidal.  So let’s try the manual manipulation technique to bend and 

stretch a sine curve.   We can certainly get the right sort of amplitude and period, 

but not the actual shape!  Why?  fi g_81/82

Once Sophie’s feet have left contact with the trampoline she has become 

yet another projectile!  So she now moves (ignoring air-resistance etc.) with 

constant acceleration under gravity – and so has linear velocity and quadratic 

displacement.  If we extract a section of data corresponding to her motion 

clear of the trampoline into lists t2 and y2 we can perform a Quadratic 

Regression to see if now have a good fi t to the upper parts of the motion.  

Yes – we do!  So all we have to do is to do stitch together smoothly lower 

sections of a sine graph with sideways-shifted versions of the same quadratic 

function.  The screens below give the basic idea.  So here the displacement-

time graph is a piecewise defi ned repeating mixture of sections of a sine 

wave and a parabola.  Can you sketch the corresponding velocity-time 

and acceleration-time graphs?  fi g_83/84

fi g_81 fi g_82
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See if you can capture some of your own data for this kind of experiment 

and produce a smoother set of mathematical results than we have achieved 

here so far.

fi g_83 fi g_84
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Sophie’s rocket car.
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In the January sales, a well-known supermarket chain was selling a range of 

TopGear toys for half-price.  This included a rocket propelled car – which as you 

can see, Snoopy was hoping to drive – presumably in place of the ‘Stig’!  fi g_85 

Instead Sophie got to half-fi ll the plastic bottle with water and to put it under 

considerable pressure with the foot pump – sensibly out of doors!  As ever, Pip 

was there with her high-speed Casio Exilim video camera to capture the car 

speeding away from an only slightly soaked Sophie  fi g_86.  Knowing the car’s 

length as 0.26m we can calibrate the motion in Tracker 3.  What sort of shape 

curve do you think the horizontal displacement against time looks like? 

Copying and pasting the t and x data into TI-Nspire’s lists  fi g_87  t and d we 

can draw a quick scatter plot  fi g_88  and test a regression model, such as a 

cubic – which seems to give a good fi t, at least to start with.

fi g_85

fi g_86

fi g_87 fi g_88
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Once again we can compute the (cubic) regression function as f1(x), fi nd its 

numerical derivatives and fi t a quadratic regression f2(x) to the velocity data, fi nd 

its numerical derivatives and fi nally fi t a linear regression f3(x) to acceleration 

data.  The result is shown  fi g_89.  

fi g_89

It suggests our clip from Pip’s video didn’t quite catch the standing start when 

the trigger was pressed to launch the car – but it does look as if Snoopy would 

have felt more than 2g initial acceleration.  The frictional forces will at fi rst be 

overcome by the thrust from the water-jet engine, but as the ‘fuel’ gets spent 

so the thrust diminishes until it is all spent.  Then the only force acting will be 

friction (plus air-resistance) which will bring the car to rest.

Can you predict from the graph how long this might take, and how far the 

car would have travelled?  Of course this is quite a complex form of motion 

because initially at least the mass of the vehicle is changing as the water gets 

used.  So we have a perfect kind of experimental situation for using a variety 

of data logging.  You can use a stop-watch and a tape measure to record the 

actual duration and range of the trip.  You can use video capture to gather 

data about displacement and time.  You could use some form of remote 

data-capture (like F1 cars’ telemetry) to record acceleration, say, and maybe 

a radar speed gun to record some velocities? 
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Rolling a ball – 

a do-it-yourself 

experiment.
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In this very simple example a solid rubber ball is released to roll down an 

inclined ramp – a section of plastic drain pipe  fi g_90.   We can capture the 

data with a data-logger like the CBR2  fi g_91 and also from a video clip.

The displacement data is recorded by the CBR2 at a sample rate of 50 per 

second.  We can see that a quadratic regression gives a pretty good fi t for the 

data  fi g_92.

fi g_92

fi g_93

fi g_90

fi g_91

So this a chance for you to put into practice the techniques of this book, using 

some cleaned-up data from this experiment.  The ball was quite close to the 

CBR2 at the point of release, and so the data may not have been captured 

cleanly initially.  So we can extract data every 0.2s from time 0.2s to time 1.4s 

to get a better set to work with.  These are stored in t1 and d1.  fi g_93 
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You can now copy this data manually into your own Lists & Spreadsheets page 

and carry out the analysis on the assumption that the displacement is quadratic, 

hence the velocity is linear and the acceleration constant – perhaps rather like 

Sophie tobogganing downhill?

For belt and braces we might also record a video clip of the same motion and 

use Tracker to extract it for comparison.

Here is a video clip taken at 210 fps, but captured at every 5th frame – so 

eff ectively a 40 fps movie.  fi g_94

In a New Problem the data extracted from the Tracker software video analysis 

of the ball rolling down the ramp are copied and pasted into the lists t1 and 

vid.  Similarly the data captured from the CBR2 are copied and pasted into 

the lists t2 and cbr.  The lists d1 and d2 are made from vid and cbr by subtracting 

the fi rst values in each list, so that both measures of distance start with d=0 

at t=0.  The fi gure below shows the comparative scatter plots of the two data 

sets, each with their quadratic regression fi t.  Here the scatter plots are shown 

on the same axes, and a quadratic function is manually manipulated to make 

a good ‘by eye’ fi t.  fi g_95/96

fi g_94
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Of course most schools will have access to proper laboratory equipment such 

as dynamics tracks and carts, but the great thing about the approaches to data 

capture considered here is that they are easy and cheap to set up and do not 

require much technical expertise.  The following photograph shows the laptop 

connected to a webcam on the big tripod and a CBR2 on the small tripod on the 

chair.  The operator can then sit at the laptop and use the yellow folding ruler to 

nudge the ball down the track while simultaneously starting the data capture.  

In this instance Logger Pro 3 is being used to synchronise the video capture and 

the data logging.  fi g_97/98/99

fi g_97

fi g_95 fi g_96

fi g_98

fi g_99
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Going for gold – 

a Bolt from the blue.
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Here are photographs of two recent holders of the world record for the 100m 

men’s sprint.  Can you identify them?  What have they in common? 

fi g_100 fi g_101

fi g_102

They are Asafa Powell  fi g_100 and Usain Bolt  fi g_101, both from Jamaica.  

Although Powell only fi nished fi fth in the 2004 Olympics in Athens, he returned 

there the following year and broke the World Record with a time of 9.77s.  Usain 

Bolt of Jamaica won the Olympic Gold Medal in Beijing in 2008 and also broke 

the world record with a time of 9.69s.  In Berlin in 2009 he went on to reduce 

this to 9.58s.  So just how fast might the World record be when the games come 

to London in 2012?  In order to model the speed and acceleration of a sprinter 

we need more data than just the overall time.  With a little hunting on the Web 

you can fi nd so-called “split” times for how long they took to cover 10m, 20m, 

..., 90m and 100m.  These are gathered together in the table fi g_102, together 

with values for Carl Lewis in 1991 and Maurice Greene in 1997.

Their average speed in each case was a little over 10m-1.  How fast is this 

in kh-1 and in mh-1?
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It turns out the typical reaction time for an international athlete is about 

0.13s i.e. the delay between the starting gun fi ring and the athlete responding.  

So they actually run a bit faster than the times in the table suggest.  They also 

have to be still at the start, so their initial speed is 0 ms-1.  Their maximum speed 

must also be rather greater than the average.  When do you think the speed 

will be a maximum?  What happens after that?  

We have drawn scatter plots of the split times for the four athletes, and they 

all show the same pattern – with the steepest rise happening just about the 

start, but quickly settling down to a fairly constant speed.  We can fi nd the 

average speed in each interval by fi nding the diff erence in times at the end 

and start of each interval.  These will be average times in the interval and so 

our fi rst guess is they will occur at the middle of each interval.  Can you set 

up a spreadsheet for this, e.g. using Bolt’s data?  How about a scatter plot for 

the average speed?  fi g_103/104

Clearly the speed (aka velocity) is neither constant nor linear throughout 

the sprint.  So we could try fi tting a quadratic regression.  But this is not a 

very good fi t to most of the data points, and it doesn’t pass through (0,0) 

– a rather important failure!  fi g_105

fi g_104

fi g_105 fi g_106

fi g_103
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fi g_107

We could create our own designer version of a quadratic which always passes 

through (0, 0): 

y = p*x*(q-x).   We could set up sliders to fi nd values of p and q so that it the 

graph passes through the end-points from our table.  But this is a worse fi t for 

most of the points!

As we have seen, the velocity-time graph is a particular important one from the 

modelling viewpoint.  The slope at any point tells you about the rate at which 

the velocity is changing – i.e. the acceleration there.  The area under the graph 

between any two times tells you about the distance covered in that time.  We 

can see that the area under the regression quadratic between t=0 and t=9.69 is 

approximately 97.2m, rather less than the 100m required!  

We might conjecture that Bolt runs rather like Sophie’s rocket car!  He has got 

himself into the peak of condition and when he bursts off  from the starting block 

he will have zero displacement, zero velocity and maximum acceleration.  As he 

runs he burns up energy (fuel) and cannot maintain a constant acceleration, so 

the slope of his acceleration-time graph won’t stay constant but will be negative 

– unless, that is, he can fi nd some reserve of energy to put in a ‘kick’ in the way 

Oxford and Cambridge try to do during the Boat Race.  But if we try a linear model 

for the acceleration we will just get another quadratic for the velocity.  We could 

try either a piecewise function e.g. two diff erent sections of line graphs – but these 

can’t be smoothly joined – or a higher order polynomial, such as a cubic.  fi g_106

The great advantage of a cubic function for modelling is that it can have a 

‘wiggle’ i.e. a point of infl ection as well as possible maxima and minima.  A 

cubic is determined by just four points.  So let’s try a simple cubic function for 

acceleration and see if we can push it forward to realistic models for velocity and 

acceleration?  If we had a cubic acceleration model we would expect a quartic 

(degree 4) velocity model, so let’s start with fi tting a Quartic Regression to the 

data for the average velocities in the splits.  Pretty good, eh?

We could now fi nd the slopes at some or all of the data points to fi nd the 

accelerations, and then perform a Cubic Regression on them.  If we know a little 

about derivatives then we could use nderiv as before, but we could also use 

some calculus directly to fi nd the cubic’s coeffi  cients.  If f1(x) = ax3 + bx2 + cx + d 

is the velocity model, then its derivative f2(x) = 3ax2 + 2bx + c is the acceleration 

model.  Also we could integrate it to fi nd f3(x) = ¼ ax4 + 1/3 bx3 + ½ cx2 + dx 

as the displacement model (no constant of integration required as the initial 

displacement is zero).  fi g_107
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But we cannot just leave it like that – we need to interpret what we have done 

and to see if it is realistic. The fi rst thing to note is that Bolt seems to have set off  

with an acceleration of over 7ms-2.  All the time his acceleration is positive he is 

increasing his velocity.  At the point ZA (zero acceleration) after 7.35s he reached 

his maximum speed MV of 12.3 ms-1.   But then, when we think most sprinters 

would now continue at this maximum speed until the fi nishing line, we see that 

he slows up, since his acceleration becomes negative.  His fi nal velocity, at FV, 

is 9.78 ms-1, meaning he lost about 20% of his peak velocity in the last 2.4s of 

his run.  How can we account for this? Just go back to the photo at the start of 

this section and look at the margin of Bolt’s lead towards the fi nish.  Checking 

with eye-witness reports this is just what Bolt achieved – a new World Record 

while slowing down!  Clearly it was the Gold medal, rather than the World 

Record, which was uppermost in Bolt’s mind.  Notice that we have not made 

any scientifi c attempt here to explain the mechanics of sprinting. 

The trouble is that sprinting is a very complex form of movement – nothing is 

moving steadily!  The legs pump and down, and hit the track around 40-45 times 

in the 100m.  The arms swing forward and back, while the body arches forward 

towards the fi nish.  So a mechanical analysis is extremely hard.  It would help 

to get greater amounts of data – either with many more split times, or using 

several high speed video cameras or with the athlete carrying accelerometers.  

Maybe a police radar speed gun would also be useful.  Even tracking data from 

video clips is tricky because of the diffi  culty of fi nding a steady and visible part 

of the body to track.  So here is a STEM challenge to your school.  Can you set up 

an experiment to get better data for 100m sprinting – particularly in the fi rst 2 

seconds, and can you use it to make a better model than we have done here? 

It would be a good idea for someone with a bicycle and speedometer fi rst to 

run over the course at a steady 10ms-1 so you have a reference reading. 

If you have the CAS (computer algebra system) version of TI-Nspire it will 

perform these manipulations for you.  The screens below show the graphs 

of the resulting functions.  The quartic f1(x) is a good model for the average 

velocities.  Its derivative f2(x) is a cubic which is a good model for the 

acceleration.  Its integral f3(x) is a quintic (degree 5) which is a good model for 

the displacement.  But what does this tell us about the run?  fi g_108/109
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 STEM activities with TI-Nspire 

The coming decade will see an increasing need for a 

fl exible work force possessing a wide range of skills in 

Science, Technology, Engineering and Mathematics 

(STEM) in order to meet the needs of the new high level 

industries and to be able to produce technologically 

complex products. The booklets in this series were 

developed with this need in mind. They aim to provide 

stimulating activities which link aspects of STEM and 

at the same time encourage the use of technology 

and an awareness of its potential. 

 Why use TI-Nspire for STEM subjects? 

TI-Nspire provides a learning platform which dynamically 

links a variety of ICT applications including documents, 

graphs, geometry, statistics, spreadsheets, data logging 

and a calculator. This dynamic linking assists students in 

making connections not only between diff erent areas of 

mathematics but also with other areas of the curriculum 

and STEM subjects in particular.

There is now a wealth of data available on the Internet 

in a variety of forms which can be copied directly into 

TI-Nspire. Data can also be captured by linking to a variety 

of data logging devices such as motion sensors or by 

recording manually or using video analysis.  It is then 

possible to manipulate, display and analyse this data 

in a variety of ways or to try to model the data using 

a variety of data handling and function plotting tools. 

 About the booklets 

All the activities contain some background scientifi c 

or other information together with links to appropriate 

websites. Many of the activities are suitable for a range 

of ages and aptitudes with more challenging ideas being 

suggested as extension activities. Further information 

and TI-Nspire fi les for the activities can be found at 

www.nspiringlearning.org.uk.

There are fi ve booklets in the series:

Introduction - contains a brief introduction and 

instructions for getting started using some of the features 

of TI-Nspire that are used frequently in the other booklets.  

Capturing data: Modelling and Interpretation - contains 

activities which use a variety of data logging probes to 

collect real data and analyse it further.  

Using real world data - contains activities which investigate 

and analyse data in a variety of ways from ready-made or 

easily generated data sets in a variety of contexts.

Mathematics in motion - contains investigations into 

modelling motion based on diff erent forms of data 

collection: manual, video and data logging. 

Computer graphics - brings together a number of 

diff erent mathematical approaches which are used by 

computer programmers to create and manipulate images; 

techniques that have now found their way into “virtual 

reality”.  These activities make use of TI-Nspire applications 

especially Graphs and Geometry.


