$\qquad$ Date: $\qquad$ Period: $\qquad$

## Impulse \& Momentum Worksheet I

Contributed by Jane Bray Nelson

| Type and Sample | Equation | Diagram and Values | Graph and Values |
| :---: | :---: | :---: | :---: |
| Impulse | $\mathrm{F} \Delta \mathrm{t}=\mathrm{m} \Delta \mathrm{v}$ |  |  |
| 1) A 5.0 N force is applied on an 8.0 kg cart at rest. The carts ends up going $0.25 \mathrm{~m} / \mathrm{s}$. How long was the force applied? $\qquad$ |  |  |  |
| 2) A force applied to a 2.0 kg cart traveling at $3.0 \mathrm{~m} / \mathrm{s}$ for 0.02 s causes it to stop. How big was the force? $\qquad$ |  |  |  |
| Momentum | $\begin{gathered} \mathrm{m}_{1 \mathrm{i}} \mathrm{v}_{1 \mathrm{i}}+\mathrm{m}_{2 \mathrm{i}} \mathrm{v}_{2 \mathrm{i}}=\mathrm{m}_{1 \mathrm{f}} \mathrm{~V}_{1 \mathrm{f}}+\mathrm{m}_{2 \mathrm{f}} \mathrm{v}_{2 \mathrm{f}} \\ \text { After } \end{gathered}$ |  |  |
| 3) A 3.0 kg cart moving at $8.0 \mathrm{~m} / \mathrm{s}$ rams into a 2.0 kg cart setting still. They move off together. What is their speed now? $\qquad$ |  |  |  |
| 4) A cart with a mass of 1.5 kg going $3.0 \mathrm{~m} / \mathrm{s}$ to the right hits a cart going $3.0 \mathrm{~m} / \mathrm{s}$ to the left. The second cart has a mass of 8.0 kg . It continues left at $2.0 \mathrm{~m} / \mathrm{s}$. What is the new velocity of the first cart? |  |  |  |

## Momentum Worksheet I (Teacher Notes)

| Type and Sample |  |
| :--- | :--- |
| Impulse |  |

