Linear Regression

Concepts

• Fitting data to a linear regression line

Materials

- TI-84 Plus
- EasyData™
- DataMate

Overview

The sample data in this activity was collected in the °C to °F activity. Alternate data sets may by used. The procedure described below is the "standard" way to fit data to a linear regression line. Linear regression lines can also be determined using *EasyData*TM and *DataMate*.

Procedure

1. Use the <u>STAT</u> editor to enter the following data into lists L1, L2, and L3 OR use your data from the °C to °F activity (Figure 1).

L1 (Time, sec)	L2 (Temp, ^o F)	L2 (Temp, ^o C)
0	34.4	1.8485
10	53.825	11.846
20	65.771	19.881
30	69.886	21.738
40	75.786	24.023
50	78.473	25.318
60	80.349	26.14

- 2. Press 2nd [STAT PLOT] ENTER to open the Plot1 Menu (Figure 2).
- 3. Make the changes shown in Figure 3.

4. Press ZOOM 9:ZoomStat to see a graph of °F vs. °C (L2 vs. L3) (Figure 4).

Figure 1

Figure 3

Figure 4

T³ PROFESSIONAL DEVELOPMENT SERVICES FROM TEXAS INSTRUMENTS

- 5. The next step is to calculate the linear regression line.
 - Press STAT → to the CALC menu, and select 4:LinReg(ax+b) (Figure 5).
- 6. Press ENTER 2nd [L3] , 2nd [L2] , VARS ▶ (to Y-VARS) ENTER (for 1:Function) ENTER (for 1:Y1) (Figure 6).
- 7. Press ENTER to do the linear regression fit (Figure 7).

- 8. Then press GRAPH to see the graphical fit (Figure 8).
 - The experimental results are close to the standard conversion equation for $^{\circ}C$ to $^{\circ}F$, $^{\circ}F = 1.8(^{\circ}C) + 32$.
 - Considering the experimental setup and how the data was collected, how might you explain the differences?

T³ PROFESSIONAL DEVELOPMENT SERVICES FROM TEXAS INSTRUMENTS

 $Vernier^{\circledast}/T^3 \ Science \ Institute$