Science Tools

Concepts

- Using the SciTools APP to perform conversions between different types of units
- Using the SciTools APP to perform calculations that result in the correct number of significant figures

Materials

Overview

SciTools is a powerful calculator application (APP) with many features useful for science. This activity demonstrates how to use SciTools (1) to do unit conversions and (2) to do calculations that result in the correct number of significant figures.

- TI-84 Plus
- SciTools APP

Unit Conversions

1. Press the APPS key on the TI-84.

Scroll down (or press ALPHA "S") to SciTools, and press ENTER (Figure 1).
2. Pressing ENTER again brings up the SELECT A TOOL menu.

- Scroll down to 2:UNIT CONVERTER, and press ENTER (Figure 2).

†SGTOU1ES
: SoToulFr
-SoiTouls
Stiralied
: Stirdesf
: Stirofras
+Start-tF

Figure 1
sELECT it TIDL

 4: VECTOF: CHLCULATDF
[EXIT]
Figure 2

: P LEПİTH	7: $\mathrm{Has} \mathbf{3}$
E: AFEA	-rumer
3: YOLUM	9: FFESSUFE
S: TEAF	
6: YELDCITY	C:SIPREFIMES
[CIISTAIIT]	

Figure 3

FRIESIDTE

Fid kFo bur mmitammis

1E0 atmp

Figure 4
2. Move the cursor back to ' mmHg ', and press ENTER again (Figure 5).

kPa to atm

1. To find out how many kPa is equivalent to a pressure of 1.0 atm , move the cursor to 'atm' and press 1 ENTER.
2. Now move back to ' kPa ', and press ENTER again (Figure 6).

Constants

1. To determine the value of a constant, such as Avogadro's number N_{A}, select CONSTANT (press the WINDOW key-see Figure 6).
2. Scroll to highlight ' N_{A} ' (Figure 7).
3. Move the cursor to \mathbf{R} to get the universal gas law constant.

- Notice that the units for R are J/K-mol (Figure 8).

Volume of One Mole of Gas at 1 atm

1. To determine the volume of one mole of a gas at 1 atm and $25^{\circ} \mathrm{C}(=298 \mathrm{~K})$, use the ideal gas equation

$$
\begin{gathered}
\mathrm{V}=\mathrm{nRT} / \mathrm{P} \\
(=\mathrm{RT}, \text { since } \mathrm{n}=1 \mathrm{~mol} \text { and } \mathrm{P}=1 \mathrm{~atm})
\end{gathered}
$$

2. To express R in terms of L-atm/K-mol, copy R and convert from J to L -atm.

- Select COPY (press the TRACE key).
- Select A:ENERGY/WORK.
- Scroll to 'J' (the symbol for joules).

Press ENTER (Figure 9).

- Scroll to ' 1 -atm'.
- Press ENTER (Figure 10).
- Export (EXPT) this value of R by pressing the ZOOM key.

FRESESTITE
Fit kfi bur mmicadmill inhen inhs lbiniz atm

1E0 Itmp

$7 . \operatorname{GEE}$ mmH:

Figure 5
FFisesulit
Fu HFO bur mmHEDmmHs inHED iniHg lbrinas atm
1E0 Itrif
$1 . \mathrm{OH}_{2} \mathrm{EEE} \mathrm{EFO}$ CDISTȦIT |EMFT|CDFT|EDIT]

Figure 6

CuIETHITS				
[10	kE	k:	4^{-}	F
¢	9	Mr	MF-	Mir
H!	E0	h	C	U
6.02c14199E23 m017 				
[EDINEFT] [EMFT]EDFT]				

Figure 7

CIIETAIITS				
fid	LE	k:	$\underbrace{-}$	\%
\square^{5}	3	mis	mF	min
-10	E0	h	c	U
日.31447をE Jimo1H HOLAF Gess Constént				
[CDINERT] [EMFT\|GIFT]				

Figure 8

Figure 9

Figure 10
3. Press [2nd [QUIT] and 2nd [QUIT] again and then Y to exit SciTools.

- The value of R in $\mathrm{L}-\mathrm{atm} / \mathrm{K}-\mathrm{mol}$ should now appear on the calculator screen (Figure 11).
- Multiply R by 298 K to determine the volume in L of one mole of a gas at 1 atm and 298 K (Figure 12).
- Recall that $\mathrm{V}=\mathrm{RT}$ for $\mathrm{n}=1$ mole and $\mathrm{P}=1 \mathrm{~atm}$.

Practice with Conversion

Practice using the unit converter (select 2: UNIT CONVERTER in SciTools) to convert the following:
a. $1 \mathrm{~m}^{3}$ to L
b. 3.0 in to cm
c. $\quad 1000 \mathrm{kwh}$ to J
d. $25^{\circ} \mathrm{C}$ to K
e. $25^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$
f. 1 cup to tablespoons

Introduction to Significant Figures

Significant figures indicate how accurately something is measured.

1. Only one digit (the last one) is uncertain.

- Looking at Figure 13, circle and label the number below the figure which is the measurement for the liquid in the graduate to the "A" line.
- Circle and label the number below the figure for the "B" line.

To tell how many significant figures are in a number, consider the following:

1. Non-zero digits are always significant.
2. Zeros in middle are always significant. (3.05 has 3 S.F., 1005 has 4 S.F.)
3. Leading zeros (those on the left) are never significant; they are placeholders (e.g . 0072 has only 2 S.F.)

Figure 11
$8.205745867 \mathrm{E}-2 * 2$
24.45312268

Figure 12

Figure 13
17 mL
17.0 mL
17.7 mL
15.4 mL
4. Trailing zeros (those on right) are only significant if they are both to the right of the decimal point and to the right of a non zero digit. (e.g. 350.00 has 5 S.F., 350 has only 2 S.F.)

- Some conventions put a decimal point at the end of a number that ends in zero if they want to indicate the zero is significant (e.g. 350 . has 3 S.F.)
- In numbers like 965000 , use scientific notation to tell the number of places of accuracy in the measurement (the number of S. F.):

$$
9.65 \times 10^{5}(3 \text { S.F. }) \text { or } 9.650 \times 10^{5}(4 \text { S.F. })
$$

5. Exact numbers have an infinite number of S.F. These would be counting numbers or defined quantities (e.g. 24 students or $100 \mathrm{~cm}=1$ meter)

Operations

1. When multiplying or dividing, count the total number of S.F. in each factor.
2. Round off the answer to have the same number of S.F. as the factor with the least number of S.F. in the entire number.

$$
\begin{aligned}
842 \times 41.01 & =34120.32 \\
& =34100
\end{aligned}
$$

3. When adding or subtracting, round the answer to have the same number of places after the decimal point as the number with the least number of digits after the decimal point.

$$
32.04
$$

$$
+\underline{1.062} 32.102=33.10 \mathrm{~g}
$$

Significant Figures

1. Determine how many significant figures are in the examples given below.

967 g	9.670
9067 cm	9.0670
2640 mL	9.00072 g
$2640 . \mathrm{mL}$	0.041 m
$350,000 \mathrm{~kg}$ (put in Sci Notation using SciTools)	6.02×10^{23} atoms (use the EE tab on the screen)
0.0967 m	37 marbles

2. Check your answers using your TI-84 Calculator.

- Press the APPS button, and select SciTools.
- Press any key, and select 1 : SIG-FIG CALCULATOR (see Figure 14).
- Input the number, and press ENTER. The number of significant figures is indicated in the brackets, e.g. [3] for 2640 (Figure 15).
- Select EXACT to indicate numbers without errors, e.g. 37 marbles.

Practice

The following are some opportunities to use SciTools and the Significant Figure Calculator on the TI-84 Plus to solve typical chemistry problems expressing the answer in the correct number of S.F.

1. $\quad 159.72 \mathrm{~g} / 24.0 \mathrm{~cm}^{3}$
2. $\left(6.63 \times 10^{-34} \mathrm{Jsec}\right)\left(4.530 \times 10^{14} 1 / \mathrm{sec}\right)$
3. 26 student $\times 127.3 \mathrm{~kg} /$ student
4. Calculate the atomic weight of Argon to three decimal places given the relative atomic masses and percent abundance of its isotopes:

Ar-36	35.968 u	0.337%
Ar-38	37.963 u	0.063%
Ar-40	39.962 u	99.600%

5. Find the molar mass of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ to one place after the decimal point. Remember that atoms are an exact number.

- How many moles are in 38.4 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?

6. Find the volume of 1.456 moles of gas that is stored in a cylinder at a pressure of 6.23 atm and a temperature of $25.0^{\circ} \mathrm{C}$.

- Use the Ideal Gas Law PV=nRT where

$$
\mathrm{R}=.0821 \mathrm{Latm} /(\mathrm{mol} \cdot \mathrm{~K})
$$

7. What volume of CO_{2} at STP can be produced from the combustion of 752 g propane $($ Molar Mass $=44.1)$?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

SELECT in TIDL
 z: Unit conluekter

[ERIT]
Figure 14

$2 \overline{640}$	[इ]
$\begin{aligned} & 2640 \\ & \div 2640 \end{aligned}$	[3]

Figure 15

Answers

1. $6.66 \mathrm{~g} / \mathrm{cm}^{3}$
2. $3.00 \times 10^{-19} \mathrm{~J}$
3. $3310 . \mathrm{kg}$
4. 39.947 u
5. A. $40.1+(14.0 \times 2)+(16.0 \times 6)=164.1 \mathrm{~g} / \mathrm{mol}$
6. B. $(38.4 \mathrm{~g}) /(164.1 \mathrm{~g} / \mathrm{mol})=0.234$ moles
7. $\mathrm{V}=\underline{1.456 \times .0821 \times 298.1}=5.72 \mathrm{~L}$
8. 6.23
9. $752 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}\left[\frac{1 \mathrm{~mole}_{3} \mathrm{H}_{8}}{44.1 \mathrm{~g}}\right]\left[\frac{3 \mathrm{~mole} \mathrm{CO}_{2}}{1 \mathrm{~mole} \mathrm{C}_{3} \mathrm{H}_{8}}\right]\left[\frac{22.4 \mathrm{~L}}{1 \mathrm{~mole} \mathrm{CO}_{2}}\right]=$ 1150 L
