Science Tools

Concepts

- Using the SciTools APP to perform conversions between different types of units
- Using the *SciTools* APP to perform calculations that result in the correct number of significant figures

Materials

- TI-84 Plus
- SciTools APP

Overview

SciTools is a powerful calculator application (APP) with many features useful for science. This activity demonstrates how to use *SciTools* (1) to do unit conversions and (2) to do calculations that result in the correct number of significant figures.

Unit Conversions

- Press the <u>APPS</u> key on the TI-84.
 Scroll down (or press <u>ALPHA</u> "S") to *SciTools*, and press <u>ENTER</u> (Figure 1).
- 2. Pressing ENTER again brings up the SELECT A TOOL menu.
 - Scroll down to 2:UNIT CONVERTER, and press ENTER (Figure 2).
- **3.** Press the 9 key to select 9:PRESSURE (Figure 3).

Hg to atm

To find out how many mm Hg is equivalent to a pressure of 1.0 atm, move the cursor to 'atm' and press 1 ENTER (Figure 4).

Figure 1

Figure 2

Figure 3

(CONSTANT)EXPT)COPY(EDIT)

Figure 4

T³ PROFESSIONAL DEVELOPMENT SERVICES FROM TEXAS INSTRUMENTS

2. Move the cursor back to 'mmHg', and press ENTER again (Figure 5).

kPa to atm

- To find out how many kPa is equivalent to a pressure of 1.0 atm, move the cursor to 'atm' and press 1 ENTER.
- 2. Now move back to 'kPa', and press ENTER again (Figure 6).

Constants

- 1. To determine the value of a constant, such as Avogadro's number N_A , select CONSTANT (press the WINDOW key—see Figure 6).
- 2. Scroll to highlight 'N_A' (Figure 7).
- 3. Move the cursor to **R** to get the universal gas law constant.
 - Notice that the units for R are J/K-mol (Figure 8).

Volume of One Mole of Gas at 1 atm

1. To determine the volume of one mole of a gas at 1 atm and 25° C (= 298 K), use the ideal gas equation

V = nRT/P(= RT, since n = 1 mol and P = 1 atm)

- 2. To express R in terms of L-atm/K-mol, copy R and convert from J to L-atm.
 - Select COPY (press the TRACE key).
 - Select A:ENERGY/WORK.
 - Scroll to 'J' (the symbol for joules). Press ENTER (Figure 9).
 - Scroll to 'l-atm'.
 - Press ENTER (Figure 10).
 - Export (EXPT) this value of R by pressing the ZOOM key.

PRESSURE		
Pa 1990 bar mmH20mmH9		
inH20 inH9 1b/in2 atm		
1EV dtmp		
1.01325E2 kPd		
((CONSTANT)EXPT)COPY(EDIT)		

Figure 6

CONSTANTS				
Πa	kB	k¢	e 1	R
G	9	me	MP	MD
μ0	60	h	¢ –	U
6.02214199E23 mo1-1 <u>Avdgadro Constant</u> (Convert) (Expt)(Copy)				

Figure 7

CONSTANTS				
Na	kB	ke	e 1	8
G	9	me	MP	mn
μ0	60	h	¢.	U
8.314472E0 J/mo1K Molar Gas Constant (Convert) (Expt) (Copy)				

Figure 8

	ENER	iGY/	HORK	
eV	er9		ft-1bf	ca1
1-atm	Btu I	kwh		
0.246	67250			
0.517	77660			
(CONSTANT)EXPT(COPY(EDIT)				

Figure 9

Figure 10

T³ PROFESSIONAL DEVELOPMENT SERVICES FROM TEXAS INSTRUMENTS

- **3.** Press [2nd] [QUIT] and [2nd] [QUIT] again and then [Y= to exit *SciTools*.
 - The value of R in L-atm/K-mol should now appear on the calculator screen (Figure 11).
 - Multiply R by 298 K to determine the volume in L of one mole of a gas at 1 atm and 298 K (Figure 12).
 - Recall that V = RT for n = 1 mole and P = 1 atm.

Practice with Conversion

Practice using the unit converter (select 2: UNIT CONVERTER in *SciTools*) to convert the following:

a.	1 m^3 to L	d. 25°C to K
b.	3.0 in to cm	e. 25°C to °F
c.	1000 kwh to J	f. 1 cup to tablespoons

Introduction to Significant Figures

Significant figures indicate how accurately something is measured.

- 1. Only one digit (the last one) is uncertain.
 - Looking at Figure 13, circle and label the number below the figure which is the measurement for the liquid in the graduate to the "A" line.
 - Circle and label the number below the figure for the "B" line.

To tell how many significant figures are in a number, consider the following:

- 1. Non-zero digits are always significant.
- 2. Zeros in middle are always significant. (3.05 has 3 S.F., 1005 has 4 S.F.)
- 3. Leading zeros (those on the left) are never significant; they are placeholders (e.g. 0072 has only 2 S.F.)

Figure 12

Figure 13

17 mL 17.0 mL 17.7 mL 15.4 mL

- 4. Trailing zeros (those on right) are only significant if they *are both to the right of the decimal point and to the right of a non zero digit.* (e.g. 350.00 has 5 S.F., 350 has only 2 S.F.)
 - Some conventions put a decimal point at the end of a number that ends in zero if they want to indicate the zero is significant (e.g. 350. has 3 S.F.)
 - In numbers like 965 000, use scientific notation to tell the number of places of accuracy in the measurement (the number of S. F.):

9.65 x 10⁵ (3 S.F.) or 9.650 x 10⁵ (4 S.F.)

5. Exact numbers have an infinite number of S.F. These would be counting numbers or defined quantities (e.g. 24 students or 100 cm =1 meter)

Operations

- 1. When *multiplying or dividing*, count the total number of S.F. in each factor.
- 2. Round off the answer to have the same number of S.F. as the factor with *the <u>least</u> number of S.F. in the entire number*.

$$842 \ge 41.01 = 34120.32 \\= 34100$$

3. When *adding or subtracting*, round the answer to have the same number of places after the decimal point as the number with the *least number of digits after the decimal point*.

$32.04 + \frac{1.062}{32.102} = 33.10g$

Significant Figures

1. Determine how many significant figures are in the examples given below.

967 g	9.670
9067 cm	9.0670
2640 mL	9.00072 g
2640. mL	0.041 m
350,000 kg (put in Sci Notation using <i>SciTools</i>)	6.02×10^{23} atoms (use the EE tab on the screen)
0.0967 m	37 marbles

T³ PROFESSIONAL DEVELOPMENT SERVICES FROM TEXAS INSTRUMENTS

- 2. Check your answers using your TI-84 Calculator.
 - Press the APPS button, and select *SciTools*.
 - Press any key, and select 1: SIG-FIG CALCULATOR (see Figure 14).
 - Input the number, and press ENTER. The number of significant figures is indicated in the brackets, e.g. [3] for 2640 (Figure 15).
 - Select EXACT to indicate numbers without errors, e.g. 37 marbles.

Practice

The following are some opportunities to use *SciTools* and the Significant Figure Calculator on the TI-84 Plus to solve typical chemistry problems expressing the answer in the correct number of S.F.

- 1. $159.72 \text{ g}/24.0 \text{ cm}^3$
- 2. $(6.63 \times 10^{-34} \text{Jsec})(4.530 \times 10^{14} \text{ l/sec})$
- 3. 26 student x 127.3 kg/student
- 4. Calculate the atomic weight of Argon to three decimal places given the relative atomic masses and percent abundance of its isotopes:

Ar-36	35.968 u	0.337%
Ar-38	37.963 u	0.063%
Ar-40	39.962 u	99.600 %

5. Find the molar mass of $Ca(NO_3)_2$ to one place after the decimal point. Remember that atoms are an exact number.

• How many moles are in 38.4 g of Ca(NO₃)₂?

- 6. Find the volume of 1.456 moles of gas that is stored in a cylinder at a pressure of 6.23 atm and a temperature of 25.0° C.
 - Use the Ideal Gas Law PV=nRT where R=.0821L'atm/(mol'K)
- 7. What volume of CO₂ at STP can be produced from the combustion of 752 g propane (Molar Mass = 44.1)?

$$C_3H_8 + 5O_2 \rightarrow 3 CO_2 + 4 H_2O$$

Figure 14

SIG-FIGCAL	CULATOR
2640	[3]
2640 →2640	[3]
(EXACT) EE (1000	SCI (EDIT)

Figure 15

Answers

- 1. 6.66 g/cm^3
- 2. $3.00 \times 10^{-19} \text{ J}$
- **3.** 3310. kg
- 4. 39.947 u
- 5. A. 40.1 + (14.0 x 2) + (16.0 x 6) = 164.1 g/mol
- 6. B. (38.4 g)/(164.1 g/mol) = 0.234 moles
- 7. $V = 1.456 \times .0821 \times 298.1 = 5.72 L$
- 8. 6.23

9.
$$752 \text{ g } \text{C}_3 \text{H}_8 \left[\frac{1 \text{ mole } \text{C}_3 \text{H}_8}{44.1 \text{ g}} \right] \left[\frac{3 \text{ mole } \text{CO}_2}{1 \text{ mole } \text{C}_3 \text{H}_8} \right] \left[\frac{22.4 \text{ L}}{1 \text{ mole } \text{CO}_2} \right] = 1150 \text{ L}$$