

Name	
Class	

Open the TI-Nspire™ document *How_Does_It_Stack.tns*.

Have you ever wondered why ice floats in water? Do you know why a mixture of oil and vinegar eventually separates? Have you wondered why a rock sinks in water, while polystyrene foam floats? In this activity, you'll use a simulation to explore these questions.

The TI-Nspire document contains a virtual density column. Your task is to calculate the density of each of the four solutions. Then, based on the results, predict the order in which the layers will settle. Finally, you will predict where a solid object will float when dropped into the column.

Move to pages 1.2-1.3.

Each beaker has a different mass and volume of a solution.
You may need to reveal the information, depending on the
technology you are using. IMPORTANT: If you click or tap
on the beaker, the liquid will be "poured" into the
cylinder, forcing you to reset and start over.

Tech Tip: To reveal the mass and volume, hover over the beakers. Be careful not to "select" them, as the liquid will be poured into the cylinder. If this happens, you will need to reset, and start over.

Tech Tip: Selecting the button will reset the simulation and ALL the masses and volumes of ALL the liquids in the beakers change. You will need to start over.

Container 1	Container 2	Container 3	Container 4
Mass:	Mass:	Mass:	Mass:
Volume:	Volume:	Volume:	Volume:

Name	
Class	

2.	Use the ca	lculator pa	ge 1.3 or Scratchpad to cal	culate the density of each s	solution.
Wh	nat is the for	mula for ca	lculating density?		
	pa		p: Press 旧 to use Scrat	chpad instead of moving be	etween
	Containe	er 1	Container 2	Container 3	Container 4
D	ensity: Order_		Density: Order	Density: Order	Density: Order
3.					
4.	Hover the	cursor (or it	t may already be evident) c	over the solid ball to reveal r	mass and volume.
	Mass:		Vol	ume:	
5.	Use the ca	lculator pa	ge 1.3 to calculate the dens	sity of the solid ball.	
	Density of	Solid Ball:		_	
6.	6. Use the arrows beside "Predict Level" to move the red arrow next to the graduated cylinder to show where you predict the ball will float in the cylinder. Be careful with this prediction—if you are wrong, you will have to start over!				
7.	7. Click the play button to watch the ball fall through the density column. If you correctly predicted the location of the ball, you will receive a Gold Star. **If you did not predict the correct location of the ball, you will receive a Goat. Press the Reset button and try again until you receive the Gold Star. You will need to start all over again, and use the space at end for multiple trials. Go back to step #1.				
	Move to pages 2.1–2.5. Answer the following questions below or on your handheld. Q1. When poured into the graduated cylinder, the most dense liquid will A. float on top C. be the bottom layer				
	B be th	ne middle la	aver	D. chemically react	

How Does It Stack?

B. decreases by one half

Name	

Class _____

Q2.	Q2. As the solid becomes more dense, it is most likely to		
	A. sink	C. rise to the top	
	B. float	D. be suspended midway in the liquids	
Q3.	Density is		
	A. how heavy an object is	C. $D = \frac{V}{m}$	
	B. the size of an object	D. how closely packed the matter is	
Q4. The density of glycerin is 1.26 g/mL. If the mass of glycerin increases from 125 g to 250		ass of glycerin increases from 125 g to 250. g, the	
	volume		
	A. doubles	C. is unchanged	
	B. decreases by one half	D. decreases by one fourth	
Q5. The density of glycerin is 1.26 g/mL. If the		ass of glycerin increases from 125 g to 250. g, the	
	density		
	A. doubles	C. is unchanged	

If you make a mistake, and receive "The Goat", you will need to start over. Use the following space to record your data for multiple trials. If you need more space, use the back of your paper for more trials.

D. decreases by one fourth

Try #2:

Container 1	Container 2	Container 3	Container 4
Mass:	Mass:	Mass:	Mass:
Volume:	Volume:	Volume:	Volume:
Density:	Density:	Density:	Density:
Order	Order	Order	Order
Solid Ball:			
Mass:		Density of the Ball:	
Volume:			

Try #3

Container 1	Container 2	Container 3	Container 4
Mass:	Mass:	Mass:	Mass:
Volume:	Volume:	Volume:	Volume:
Density:	Density:	Density:	Density:
Order	Order	Order	Order
Solid Ball: Mass: Volume:		Density of the Ball:	