Practice 14

FOR USE WITH SECTION 3.1

Write each expression as a power of 2.

Evaluate each expression when x = 4.

11.
$$3280 \left(\frac{1}{2}\right)^x$$
 205 12. $1024 \left(\frac{1}{2}\right)^x$ **64**

12.
$$1024 \left(\frac{1}{2}\right)^x$$
 64

Tell whether each equation represents growth that is linear, exponential, or neither.

13.
$$y = \frac{1}{3x}$$
 neither

13.
$$y = \frac{1}{3x}$$
 neither **14.** $y = \frac{2^x}{5}$ exponential **15.** $y = \frac{x}{2^5}$ linear

16.
$$y = 6x^2$$
 neither

- **17.** A computer stores information in units called *bits*, each of which can store either of 2 different symbols. Each bit added to the circuit doubles the number of different symbols that can be stored.
 - **a.** How many different symbols can be stored in a *byte*, which is 8 bits? **256 symbols**
 - **b.** A *kilobyte* is 2^{10} bytes. A *megabyte* is 2^{20} bytes. Suppose each byte can store one letter of the alphabet, one number, or one punctuation mark. About how many pages of text can be stored in a kilobyte? In a megabyte? (Assume a page of text contains 1500 letters and/or symbols.) about $\frac{2}{3}$ of a page; about 700 pages
- **18.** The diagram below shows the first three stages in the formation of a *fractal* called a "snowflake curve." Each new stage is formed by splitting up each segment in the preceding stage into 4 connected segments as shown.

- a. Make up a table showing stage numbers and the number of segments in each stage. **See below.**
- **b.** Write an expression for the number of the segments in stage n. Find the number of segments in the 6th stage. 4ⁿ; 4096

18.a.	Stage number	1	2	3
	Number of segments	4	16	64