Click on a lesson's answer to return to that lesson's copymaster.

\qquad
\qquad

Practice 14

FOR USE WITH SECTION 3.1

Write each expression as a power of 2.

1. $2 \cdot 2 \cdot 22^{3}$
2. $2^{3} \cdot 42^{5}$
3. $8 \cdot 32$
2^{8}
4. $2^{5} \cdot 22^{6}$
5. $2^{7} \cdot 2^{6} \quad 2^{13}$
6. $16 \cdot 2^{5} 2^{9}$
7. $2^{7} \cdot 82^{10}$
8. $2^{4} \cdot 2^{4} \cdot 2^{4} 2^{12}$

Evaluate each expression when $x=4$.

9. $12\left(2^{x}\right) 192$
10. $150\left(2^{x}\right) 2400$
11. $3280\left(\frac{1}{2}\right)^{x} 205$
12. $1024\left(\frac{1}{2}\right)^{x} 64$

Tell whether each equation represents growth that is linear, exponential, or neither.
13. $y=\frac{1}{3 x}$ neither
14. $y=\frac{2^{x}}{5}$ exponential 15. $y=\frac{x}{2^{5}}$ linear
16. $y=6 x^{2}$ neither
17. A computer stores information in units called bits, each of which can store either of 2 different symbols. Each bit added to the circuit doubles the number of different symbols that can be stored.
a. How many different symbols can be stored in a byte, which is

8 bits? 256 symbols
b. A kilobyte is 2^{10} bytes. A megabyte is 2^{20} bytes. Suppose each byte can store one letter of the alphabet, one number, or one punctuation mark. About how many pages of text can be stored in a kilobyte? In a megabyte? (Assume a page of text contains 1500 letters and/or symbols.) about $\frac{2}{3}$ of a page; about 700 pages
18. The diagram below shows the first three stages in the formation of a fractal called a "snowflake curve." Each new stage is formed by splitting up each segment in the preceding stage into 4 connected segments as shown.

Stage 1

Stage 2

Stage 3
a. Make up a table showing stage numbers and the number of segments in each stage. See below.
b. Write an expression for the number of the segments in stage n. Find the number of segments in the 6th stage. $4^{n} ; 4096$
18.a.

Stage number	1	2	3
Number of segments	4	16	64

