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FRANCESCA FERRARA, DAVE PRATT, AND ORNELLA ROBUTTI 

THE ROLE AND USES OF TECHNOLOGIES FOR THE 
TEACHING OF ALGEBRA AND CALCULUS 

Ideas Discussed at PME over the Last 30 Years 

INTRODUCTION 

In the history of humankind, many “representational infrastructures” (Kaput, Noss 
& Hoyles, 2002) were introduced, as written language, number systems, 
computation systems, algebraic notations, which gave the possibility to register, 
transfer and record various kinds of information, and also to support the capacities 
of the human brain. The notion of an automatic computing machine that precedes 
the modern computer is not new: Leibniz was searching for such a kind of tool, 
being aware of the fact that “not only that choice of notation system was critically 
important to what one could achieve with the system, but also and more 
specifically, that a well-chosen syntax for operations on the notation system could 
support ease of symbolic computation” (Kaput et al., 2002). Technology can be 
seen not only as the last powerful representational infrastructure introduced by 
humankind to present thoughts, to communicate and to support reasoning and 
computation, but it can also be seen as an infrastructure that supports at least two 
developments: Human participation is no longer required for the execution of a 
process, and the access to the symbolism is no longer restricted to a privileged 
minority of people, as it was in the past. The first development caused the 
incoming of new kinds of employment, and the death of others. The second is 
responsible for a general democratisation of access to knowledge, particularly in 
the mathematics and science disciplines. 
 Following Kaput et al. (2002), we can say: “The extent to which a medium 
becomes infrastructural is the extent to which it passes as unnoticed”. 
Representational forms are often transparent to the expert user: Musicians do not 
think about musical notation when they play an instrument, any more than expert 
mathematicians do. Transparency can be reached through using the instrument, but 
also the evolution of technology can help this process. Since the first technological 
instruments were introduced at school (more or less thirty years ago), more and 
more people have gained access to them, because of the creation of new interfaces 
that mediate our knowledge in using them (in terms of operating systems, 
programming languages, and so on). So, not only the new technologies can be seen 
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as a more democratic representational infrastructure, with respect to the old ones, 
but within the new technologies themselves. In their evolution in the last thirty 
years, we have seen a democratisation process in the sense of an increasing number 
of users. On the one hand, there has been a reduction of the competencies needed 
to use technologies; on the other it has also reduced the need to make sense of how 
computational systems do what they do. 
 So if the machines can perform calculations, what is left of mathematics? 
Almost everything. Machines cannot do argumentations, reasoning, conjectures, 
proofs (not in the sense of automatic proof, but justifying the passages) and so on. 
These are peculiar to the human capacity of reasoning: “The devolution of 
processing power to the computer has generated the need for a new intellectual 
infrastructure; people need to represent for themselves how thinks work, what 
makes systems fail and what would be needed to correct them” (Kaput et al., 
2002). 
 Over the last thirty years, technology has shaped the way algebra is perceived. 
Algebra continues to be seen as an extension to arithmetic but technology is 
allowing students to explore the symbolic language as a computational tool and as 
an entry point to the major concepts in calculus. At the same time, algebra’s 
symbol system is being linked more powerfully to the tabular, geometric and 
graphical contexts. Central concepts in algebra, like those of variable and function, 
can be treated dynamically in contrast to conventional paper and pencil technology 
where they are constrained to a static existence. Similarly, key ideas in calculus, 
such as limit, derivative and integral, benefit from dynamic representation that 
digital technology affords. Allied to the provision of a more dynamic 
representation, new technology promises the potential for a more interactive 
experience. Perhaps as a consequence, research interest and teaching focus have 
begun to emphasise the construction of meanings more than symbolic 
manipulation. 
 How technology is used inevitably depends upon the task. For example, to solve 
mathematical problems, technology is often used to take care of the calculations to 
simplify or verify the activities. In a more complex task, where the pedagogic 
aspiration may be turned more towards sense-making activity, technology may be 
used to explore, to conjecture, and to test conjectures, to validate a statement just 
found and to express the mathematical idea in a formal manner. 
 In fact the reader at this stage may begin to glimpse the complexity of issues 
that will pervade our review of the impact of technology on algebraic and 
analytical thinking. The complexity is not simple to deal with. In fact, as 
Hershkowitz and Kieran (2001) point out: “In designing as well as in studying a 
classroom learning activity in a computerized mathematics learning environment, 
one should consider contextual factors of various origins, like: (a) The 
mathematical content to be learned and its epistemological structure; (b) The 
learners, their mathematical knowledge culture, and the history with which they 
started the researched activity; (c) The classroom culture and norms, the role of the 
teacher, the learning organization –in small groups or individually–, etc.; and (d) 
The potential ‘contribution’ of the computerized tool”. 
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 Technology re-awakens us to the complexity that fundamentally underlies the 
teaching and learning of mathematics; in effect age-old questions are re-energised: 
“Regarding educational goals, appropriate pedagogical strategies, and underlying 
beliefs about the nature of the subject matter, the nature of learners and learning, 
and the relation between knowledge and knower”, and their implementation “also 
forces reconsideration of traditional questions about control and the social structure 
of classrooms and organizational structure of schools” (Kaput, 1992). 
 In this chapter, we have decided to map out this complexity by focussing in turn 
on each of three domains. In the next section, we consider how PME researchers 
have studied the use of technology with respect to expressions and variables. In the 
second section, we set out the research on algebraic notion of function. The third of 
these sections considers technology with respect to calculus concepts. 

TECHNOLOGY IN THE TEACHING AND LEARNING OF EXPRESSIONS AND 
VARIABLES 

As we trace the history of PME research on the teaching and learning of 
expressions and variables with technologies over the past thirty years, we note 
different kinds of uses or supports as offered by different tools. Using technology 
to support the teaching of a mathematical topic demands a transformation, 
sometimes in the mathematics itself but often in the pedagogic stance of the 
teacher. The mathematical notations traditionally evolved in the context of static, 
inert media, whereas the advent of technology brought changes in the perspectives 
from which a concept can be seen, progressively introducing interactivity and 
dynamicity. In this respect, the introduction of technology to the teaching of 
expressions and variables has been linked to reforms in the teaching of the subject 
generally. The nature of the transformation will depend upon the topic and so we 
find a connection between the topic and the type of tool used. As a consequence, 
“the question of whether a child can learn and do more mathematics with a 
computer (or other forms of electronic technology, including calculators and 
various video systems) versus traditional media is moot, not worth proving”; and 
“the real questions needing investigation concern the circumstances where each is 
appropriate” (Kaput, 1992). 
 From this historical review, we note a significant change occurring at the end of 
the ‘80s, when research started to pay attention to the relevance of multiple 
representations to the teaching of algebra. Prior to that there had been a major 
interest in the use of programming to approach specific contextual knowledge, for 
example that related to the concept of variable. During those years a flourishing 
use of languages such as Logo, Pascal, Basic, and others in teaching expressions 
and variables influenced research in the field. Towards the end of the decade, 
research interest in programming as a medium for learning about expressions and 
variables waned. It is not clear whether this is mostly a matter of fashion or 
whether somehow the complexity of learning the particulars of the language was 
seen as counter-productive to the intended development of general cognitive and 
thinking skills through the programming activity. This feature of ‘less or non-
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immediacy’ is one of the major difference between programming and microworlds, 
where the students’ actions on objects is more direct than in a programming 
environment. The increasing development and experimentation of these kind of 
microworld supported the bridge of the gap between manipulation skills and 
abstract reasoning with algebraic symbols. 
 The previous perspective has strongly characterised research on the teaching and 
learning of expressions and variables over the last decade, when new technology 
(as for example computer algebra systems, and symbolic-graphic calculators) 
entered the scene. Studies have mainly focused on investigating students’ 
appreciation of formal algebraic notations, generalisation and abstraction 
processes, and meaningful construction of symbolic language for expressing 
mathematical ideas. The uses of technology varied from graphing calculators 
supporting only formal algebraic notations, to non-standard algebraic notations of 
spreadsheets, and to microworlds specifically designed to learn different aspects of 
algebra. 

Programming and the concept of variable 

Toward the end of ‘80s the first investigations of the use of programming in 
teaching and learning began. Languages, such as Logo, Pascal, and LSE became 
popular in educational research as a means to analyse the difficulties encountered 
and approaches used by students in acquiring the concept of variable. In fact, the 
solution of a programming problem is not a result but a procedure to be represented 
by the subject as a function operating on data; this representation entails a 
consideration of the data as variable. However, the use of programming languages 
is not an easy matter and needs some further reflection. First, it is not possible to 
study the concept of variable independently from the programming languages and 
the domain of problems to solve; for example, operating on numbers or characters 
or graphical objects has not the same meaning for the subjects (Samurçay, 1985). 
In addition, variables can have different functional status in that their values can be 
in users’ or in programmer’s control (as explicit inputs and outputs of a problem or 
as variables only necessary for its solution). Two consequential effects have to do 
with the design of classroom activities: On the one hand, the need for a definition 
of the conceptual field about which the didactic experiences are to be organised; on 
the other, an attention to the nature of objects that can be manipulated with a given 
language. Samurçay (ibid.) set out the main aspects related to a teaching approach 
using programming. 8-9 year-old children who used Logo appeared confused 
between objects and the procedures defining them, which seemed to be a 
specificity of learning programming. For 16-17 year-old college students using 
Pascal and LSE, troubles were in conversion of their algebraic description into a 
procedural description. 
 Regarding students already used to programming in Logo, a strong hypothesis 
was that certain programming experiences could provide students with a 
conceptual basis for variable, enhancing their work with paper and pencil algebra 
(Sutherland, 1987). The relevance of integrating different learning environments 
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(paper and pencil, and technology), rather than abandoning one in favour of the 
other, appeared. Sutherland (ibid.) tested the hypothesis analysing the activity of 
pairs of students playing a game. The game involved one pupil defining a function 
and the other pupil predicting the function by trying out a range of inputs. The 
latter had to define the same function when he/she was convinced that his/her 
prediction was correct. The pupils then had to establish that both functions were 
identical in structure although the function and variable names used might be 
different. Later individual structured interviews showed that students were able to 
use their Logo derived understanding in an algebra context. 

Structures in expressions and equations 

The importance of structure was also the focus of research in mathematics 
education concerned with the study of expressions and equations. Many of the 
errors in manipulating an algebraic expression seemed to be due to students’ 
inattention to the expression’s structure: Parentheses or conventions for the order 
of operations (Thompson & Thompson, 1987). A special computer program, called 
Expression, was developed in order to enable students to manipulate expressions 
with the constraint that they could act on an expression only through its structure. 
The program showed both the sequential format of expressions and the form of an 
expression tree. The statistical analysis of 7th graders’ responses to some numeric-
transformation and identity derivation problems suggested that when the students 
internalised the structural constraints they were less likely to commit errors and 
were more efficient in their solution strategies. This behaviour arose from the fact 
that pupils could attempt a lot of incorrect transformations of expressions by using 
the computer, but the program would not carry them out. Even experimentation 
became natural and beneficial thanks to the availability of different 
representational systems of an expression. 
 Concerned with solving equations or producing equivalent equations, a real 
problem for students is recognising and understanding even a simple case of 
equivalent equations. Recent studies have tried to elaborate on ways in which 
technology might be helpfully used to overcome such an obstacle. For example, 
Aczel (1998) claims that the use of a simulation of a balance could improve 
children’s knowledge of equation solving. Other researchers consider the 
effectiveness of the use of an Interactive Learning package, called The Learning 
Equation (Norton & Cooper, 2001). They describe students’ views about working 
with the software, concluding that it provides cognitive scaffolding. 

Multiple representations 

The significance of multiple representations and their mutual links rose in the late 
‘80s, when research was beginning to identify specific reasons why algebra is so 
hard to learn and what the appropriate curricular and pedagogical responses might 
be (Kaput, 1987). Of course, it is not an easy task since algebra is complex both in 
its structure and in the multiplicity of its representations. But the representational 
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aspects are essential. Mathematical meaning can be naturally grasped by: 
Transformations within a particular representation system without reference to 
another representation; translation across mathematical representation systems; 
translations between mathematical and non-mathematical representations (e.g. 
natural language, visual images, etc.); consolidation and reification of actions, 
procedures and concepts into phenomenological objects, which can serve later as 
the basis of new actions, procedures and concepts (Kaput, ibid.). As a consequence, 
meanings are developed within or relative to particular representations. Take the 
mathematical word “function” as an example. There is no an absolute meaning for 
it; there is, however, a whole range of meanings depending on the many available 
representations of functions and correspondences. Think of a function as a 
transformer of numbers (that is a typical instance of procedural meaning), or as a 
relation between numbers (which instead is a case of relational meaning). Each of 
these meanings is then associated to some specific representation, such as: 
“f(x)=...” for the first example above, and “y=...” for the second example. 
Furthermore, individuals use representation systems to structure the creation and 
elaboration of their own mental representations. In light of these perspectives, a 
central goal of algebra research became to determine how those representational 
forms are learned and applied by individuals to produce useful mental 
representations. For what explicitly concerns technology, computer-based models 
came to make multiple representations available, with the additional feature of 
serving not simply to display representations but especially to allow for actions on 
those representations (Kaput, ibid.). Here is one of the reasons that the idea of 
variable had been so difficult to learn: The static nature of the media in which 
everybody had historically been forced to represent it. 

A dynamic view of algebra 

Within the previous perspective, a dynamic view of algebra flourished; a lot of 
software and games were designed to favour it. The dynamicity is a fundamental 
feature of the new developing media. In fact, as Kaput (1992) stresses “one very 
important aspect of mathematical thinking is the abstraction of invariance. But, of 
course, to recognize invariance –to see what stays the same– one must have 
variation. Dynamic media inherently make variation easier to achieve” (emphasis 
in the original). A particular case was the attempt to improve the conceptual 
understanding of the use of letters in algebraic expressions and equations. For 
example, software conceived as generic organisers had a wide diffusion. A generic 
organiser is a “microworld which enables the learner to manipulate examples of a 
concept. The term “generic” means that the learner’s attention is directed at certain 
aspects of the examples which embody a more abstract concept.” (Tall, 1985). It 
provides an environment, which enables the users to manipulate examples of a 
specific mathematical concept or a related system of concepts, to aid the learners in 
the abstraction of the more general concept embodied by the examples (Thomas & 
Tall, 1988). The software gives an external representation of the abstract concepts 
and acts in a cybernetic manner, responding in a pre-programmed way to any input 
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by the users. In this way, it enables both teacher and pupil to conjecture what will 
happen if a certain sequence of operations is set in motion, and then carry out the 
sequence to see if the prediction is correct. As a result of a long-term study with 11 
and 12 year-old algebra novices, Thomas and Tall (1988) outlined that the generic 
organiser allows for an ideal medium to manipulate visual images. In so doing, it 
acts as a model for the mental manipulation of mathematical concepts, entailing 
emphasis on conceptual understanding and use of mental images rather than skill 
acquisition. Long-term conceptual benefits and a more versatile form of thinking 
related to the experiences with the computer were evident by the study. 

Algebra as a symbol system 

Taking into account the difficulty in bridging the gap between algebra as an 
extended arithmetic and algebra as a formal system of symbols, some researchers 
began to design novel activities through the use of fresh microworlds that provide 
access to multiple representations. In Israel, grade 8 students were involved in an 
experimental work with a computer package, which combines skill-drills and 
logical reasoning by competitive games relative to substitution in algebraic 
expressions (Zehavi, 1988). The positive effects coming from the use of the 
software were clear thanks to the comparison with a control group and discussion 
with the teacher in cognitive workshops. 
 Robust mathematical meaning can also be supported by the relations of the 
mathematics in a problem with the relevant situational knowledge of the problem. 
Around this belief, some research in mathematics education built up computer 
animation-based tutors to enhance students’ mental representations. One tutoring 
system, called Animate, was specifically developed to provide students with an 
improved ability to generate a formal set of algebraic expressions or equations 
from problems presented in story form (Nathan, 1992). A positive effect of such a 
tutor came from its interpretive feedback to the students: In fact, they could 
continue to develop expressions containing conceptual errors, learning to detect 
and repair them in the process. As a result, students refined the solutions in an 
iterative way until the situation and the mathematics were seen as mutually 
consistent. Their competency in interpreting abstract expressions in a situational 
way improved. On the basis of this analysis, Nathan (ibid.) highlighted that the 
coupling of the mathematical expressions to a concrete depiction of the situation is 
necessary. 

Meaningful symbolic syntax 

Algebra as a symbol system entails a meaningful view of variables, unknowns, and 
parameters in formulas as well as in expressions and equations. Some recent 
studies have looked at the cognitive aspects of the abstraction and generalisation 
processes in learning environments supporting different types of algebraic 
notations. For example, Yerushalmy and Shternberg (1994) compare 
generalisations of number patterns found by students with a microworld, called 
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Algebraic Patterns, and with paper and pencil. Algebraic Patterns displays a 
dynamic numbers’ lattice, and provides tools to describe local relations either by 
one or by many variables, and by functional notations. Arzarello, Bazzini and 
Chiappini (1995) sketch a theoretical model for analysing students’ activities of 
production and manipulation of algebraic formulas using a spreadsheet. They 
examine iteratively and with increasing detail the relationships between the model 
and the learning environments. In so doing, they generate a fine-grained 
description of the features of school activities that support a meaningful learning of 
algebra. On the other hand, Ainley (1995) addresses the early stages of children’s 
introduction to the use of variables in formal algebraic notation. Her conjecture is 
that some of the difficulties encountered by children in this area may be 
accentuated by their lack of appreciation of the purpose, or power, of formal 
notation. Ainley (ibid.) aims at situating the use of formal notation in meaningful 
contexts. She invoked case study evidence from children working with this 
approach, using spreadsheet and graphical feedback in problem solutions to 
suggest links to other areas of cognitive research. 
 The implementation of tools as media to give powerful visual insights 
supporting the generation of algebraic meaning, and to bridge the gap between 
action and expression, is the focus of research by Healy and Hoyles (1996). They 
studied 12 year-old students’ use of spreadsheets and the Mathsticks microworld to 
examine their visual and symbolic strategies while interacting with these software 
environments. 
 A wide study on the teaching and learning of Algebra as a theory has been 
carried out more recently by some Italian researchers (Mariotti & Cerulli, 2001). 
They focused on the idea that a technological tool is seen as an instrument of 
semiotic mediation the teacher can use in order to introduce pupils to a theoretical 
perspective. The didactic problem considered concerns the ways of realising a 
theoretical approach to symbolic manipulation. A key-point of the research: 

Is that of stating the ‘system of manipulation rules’ as a system of axioms of 
a theory. The nature of the particular environment may foster the evolution of 
the theoretical meaning of symbolic manipulation. This is not really the 
approach pupils are accustomed to, on the contrary, Algebra, and in particular 
symbolic manipulation, are conceived as sets of unrelated ‘computing rules’, 
to be memorized and applied. (Mariotti & Cerulli, ibid.) 

 Within this perspective, a microworld, L’Algebrista, was designed, 
incorporating the basic theory of algebraic expressions. Algebra theory, as far as it 
is imbedded in the microworld, is evoked by the expressions and the commands 
available in L’Algebrista. A significant point of the activity is the fact that 
L’Algebrista is a symbolic manipulator totally under the user’s control: The user 
can transform expressions on the basis of the commands available; these 
commands correspond to the fundamental properties of operations, which stand for 
the axioms of a local theory. As a consequence, the activities in the microworld, 
which produce a chain of transformations of one expression into another, 
correspond to a proof of the equivalence of two expressions in that theory. A 
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further issue, which is not explicitly discussed in the research but it is worthy of 
attention, is that concerning the role of the teacher in the process of evolution of 
meanings. The researchers assert that the role of the teacher “becomes determinant 
in a process of de-contextualisation required in order to redefine the role of 
“buttons”, and “new buttons”, outside the microworld. In fact, commands must be 
detached from their context and explicitly referred to mathematical theory. Further 
investigations into the delicate role played be the teacher are required for a better 
and clearer description” (Mariotti & Cerulli, ibid.). 

CAS and symbolic-graphic calculators 

The introduction and diffusion of CAS (Computer Algebra System) and symbolic 
and graphic calculators to teach elementary algebra mainly occurred over the last 
decade. As a consequence, research work on their use and implementation at 
school is still little and can be considered at its early stages. One of the studies 
carried out with algebra beginners (11-year old Mexican students) investigates the 
extent to which the use of a graphing calculator can help as a tool (Cedillo, 1997). 
The study points out that the language of the calculator turns out to be means of 
expressing general rules governing number patterns, helping children grasp the 
algebraic code. 
 Looking specifically at the use of CAS, Drijvers (2001) studied how they can 
contribute to a higher level of understanding of parameters in algebra. Throughout 
the analysis of a classroom episode, the research discusses the relationship between 
machine techniques and mathematical conceptions. The use of CAS appears 
helpful to clarify problem solving strategies, but the adoption of higher order 
mathematical conceptions behind procedures seems to be limited. The impact of 
using CAS for students’ mastery of algebraic equivalence has been explored by 
Ball, Pierce and Stacey (2003). The research pointed out that, in the context of 
solving equations, recognising equivalence, even in simple cases, is a significant 
obstacle for students. 
 One important and general issue related to calculators which is not considered in 
PME research is that stated by Kissane (2001): 

The development of the graphics calculator demands that we take a fresh 
look at the existing algebra curriculum, how it is taught and how it is learned, 
under an assumption of continuing and self-directed personal access to 
technology. Similarly, the development of the algebraic calculator suggests 
that we look closely at the content of our algebra curriculum and consider 
carefully a new role for symbolic manipulation, both by hand and by 
machine. 

Concluding remarks on expressions and variables 

From the review of research on teaching expressions and variables with 
technology, many issues and questions are to be faced or solved. Trends in 
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emphasising students’ learning and multiple views of concepts through multiple 
representations clearly appear, but so little, if not any, attention has been paid to 
curricular aspects and teachers’ knowledge or teaching practice up to now. 
However, it is clear that the introduction of any kind of technology at school 
affects not only learning processes but even the conception and the control of the 
teaching situations, as outlined by Guin and Trouche (2000). For example, it 
requires efforts and time to be spent in the designing of suitable activities with 
technology and in instruction on the technology itself. This lack in research on 
school algebra was already stressed at the beginning of the ‘90s: “Unfortunately, 
there is a grave scarcity not only of models of the teaching of algebra but also of 
literature dealing with the beliefs and attitudes of algebra teachers” (Kieran, 1992). 
At that time the investigation was concerned with the learning and teaching of 
algebra without any specificity on the use of technology, but nowadays even 
considering the advent of technological tools the situation yet remains the same as 
then. As a matter of fact, some recent research also investigates curricular aspects, 
not in relation to an implementation of technology in the didactical practice. For 
example, Tsamir and Bazzini (2001) analysed the similar difficulties Israeli and 
Italian students had in solving standard and non-standard inequalities. The study 
was designed in order to extend the existing body of knowledge regarding 
students’ ways of thinking and their difficulties when solving various types of 
algebraic inequalities. It was a result of the fact that in both Italy and Israel, 
algebraic inequalities receive relatively little attention and are usually discussed 
only with mathematics majors in the upper grades of secondary school. An open 
hypothesis is then that studies concerning curricular aspects do not generally pay 
attention to the use of technology. 
 From the viewpoint of educational research, an overarching question is how can 
we direct our use of the computer in mathematics education to the algebra of the 
future in addition to the algebra of the past and present (Tall, 1987a). Some related 
research questions we can raise here are the following: 
– In which ways does the use of technology tend to re-define the school subject of 

expressions and variables? 
– Is the curricular role of elementary algebra changing as a result of the 

availability of new technologies? 
– How could research of expressions and variables with technology inform the 

design of technology? 
– What are the most urgent areas in research of expressions and variables with 

technology that can support teaching of school algebra? 

TECHNOLOGY IN THE TEACHING AND LEARNING OF FUNCTIONS 

In the conventional curriculum, early algebraic work tends to focus on the solution 
of simple equations in which a single unknown value is given a symbolic 
representation. This strand of work develops through increasingly complex 
situations, where nevertheless the aim is to find the value of one or more unknowns 
(for example in quadratic and simultaneous equations). 
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 However, a parallel strand emerges from the early algebraic work in which the 
symbolization encapsulates not a single value but a variable or parameter, which 
represents a set of values in a domain or co-domain. This strand leads to the study 
of functions and graphs and is seen by many as the forerunner to the study of 
calculus. In this section, we review PME research on technology and functions. 
 We can appreciate functions through three dynamic representational systems: 
 

(i) symbolic 
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(iii) tabular 

x y 
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Much of the learning effort seems to involve assimilating these three types of 
representation into a meaningful and coherent whole. There is of course a fourth 
verbal representation, more often associated with older technologies, such as paper 
and pencil, than digital technology, which is our focus here. 
 We can now look back over the research in PME over the last three decades and 
identify three different approaches to the task of understanding how technology 
impacts upon this process of assimilation. One strategy has been to investigate the 
use of technology as a means of placing emphasis on one type of representation, 
perhaps simplifying others. The initial emphasis on one representation may be seen 
as a means of giving access to the notion of function before other types of 
representation are introduced. A second approach is diametrically opposite in that 
it has attempted to use the technology to support simultaneous connections 
between the various systems of representation. Finally a third approach has sought 
to consider how the learner uses the tool itself sometimes taking into account the 
broader setting. We will consider each of these approaches in turn. 
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Technology as simplifier 

One clear affordance of technology is that it can reduce the demands of handling 
difficult numbers in a task. One such demand challenges confidence in 
calculations. Technology can be used to carry out or check calculations or graphs 
of functions. Mesa and Gómez (1996) presented a study based on the methodology 
of two groups of students: One experimental and one control. This study focused 
on students’ responses to problems given in the classroom using graphic 
calculators. The authors analysed the different strategies applied by the students in 
the solutions and classified them on the basis of students’ understanding and 
findings. It seems that technology was used more to verify strategies of 
calculations than to make conjectures and test them. 
 An analogous outcome was presented by Moreira (2002), who described the 
activities of a small group of students in a curriculum project, aimed at developing 
“democratic competence” in the context of mathematics education. The students 
were in the first year of a degree course in Management. They used Excel to work 
on problems about functions (graphs and calculations). The use of this technology 
was mainly oriented in two directions: The creation of a clear and well-presented 
graph of the function and the avoidance of fastidious calculations. The students 
verified claims about the size of the whale population involved in the problem. The 
potential of the computer was shown in the work of these students, who were able 
to verify claims about the whale population problem. 
 The above research shows how verification of calculations and graphs can be 
used in the graphing and tabular representation of functions, though it is not 
difficult to imagine symbolic manipulators being used to verify functions in the 
third type of representation. However, apart from simplifying the problem by 
easing the verification process, we are also able to simplify through the elimination 
of the need for symbols. How though do we input functions without the use of 
symbols or a symbolic language? We found in the research two main methods; one 
approach has been to use a device through which data is captured directly and 
transferred automatically to the computer. The other approach is to allow data entry 
by the student when that data has been generated during experimentation. In both 
cases, the aim is to study variation as a precursor perhaps to formal work on 
functions or statistics. 

Data capture through the use of devices 

Recent work includes an innovative type of experimentation with situations and 
representations: Using Microcomputer-based Laboratories (MBLs) to allow 
students to represent situations with devices that gather data in real time and 
present the data graphically. These technologies eliminate algebraic symbols as the 
sole channel into mathematical representation and motivate students to experiment 
with the situation—to analyse and reflect upon it—even when the situation is too 
complicated for them to approach it symbolically. Compared to working with 
visual representations of algebraic or numeric symbols, the visual analysis that is 
enabled by working with MBL tools is quite distinctive. 
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 For example, Yerushalmy, Shternberg and Gilead (1999) used the mouse to 
draw trajectories of a “body” in motion so that the activities’ focus is on the 
transition from the drawing action to an analysis of graphs of the mathematical 
functions. Other technologies that support links between body activity and 
“official” representations were studied by Nemirovsky, Kaput & Rochelle (1998) 
and Borba & Scheffer (2003). They suggested that it is possible to deepen students’ 
connection with everyday experience through environments, which combine 
phenomena and their modelling. The interplay between notations, simulations and 
physical phenomena can be expanded by incorporating kinaesthetic activity, by 
empowering notations as controls over the creation of phenomena, and by 
comparing the physical with the virtual. In this sense we should consider the 
introduction of another type of representation, the kinaesthetic sense of function. 
The research of Nemirovsky and others proposes that the kinaesthetic 
representation might be a particularly facilitating starting point. 
 Nemirovsky (1995) reported a study of 10-year-old students who created 
“motion trips” on a meter tape by walking, running and stopping. They were then 
asked to represent these trips using tables and graphs. They were also able to use a 
program to invent such trips and then view them in various representational forms. 
More recently, 14 year-old students used a motion sensor in a similar way (Robutti 
& Ferrara, 2002) and were then set an interpretation task of a space-time graph. In 
this latter study however, the performance of the students was compared to that of 
a control group on the same task. The researchers concluded that the technology 
facilitated transitions between static and dynamic interpretations of the space-time 
graphs, leading to normalised meanings for the graph. 
 Two studies of the second type suggest that this facilitating effect of the 
technology is also apparent when the independent variable is not time. In one study 
(Nemirovsky, 1994), a high school student used a so-called “contour analyser” to 
trace a surface along a certain plane. The device generated a computer-based graph 
of height or slope versus position. The student learned about slope by striving to 
grasp what the tool does. This sense-making activity drew on previous knowledge, 
which had to be re-assessed. Noble and Nemirovsky (1995) used a motion detector 
as above but focussed on non-temporal graphs of velocity v position. The report 
describes the evolution of a high school student’s thinking through his articulations 
in his attempts to match the graph with the motion of his car. 
 Kaput and Hegedus (2002) provided examples of classroom connectivity in 
which students discussed representations of families of functions with TI-83 
calculators. They examined how the technological connectivity generated a 
personal identity as a resource for focusing attention and generating engagement 
with the tasks. A firm connection between this work and formal algebra was 
reported by Hegedus and Kaput (2003). Using a pre-test/post-test approach, they 
reported gains in learning through SimCalc, software which enables initial access 
to functions through virtual simulations of everyday situations, typically of time 
dependent phenomena. Their central claim was that combining the dynamic of 
SimCalc environment with classroom connectivity made possible significant 
improvements in students’ performance on 10th grade MCAS algebra-related 
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questions in a short period of time. The use of kinaesthetic approaches leads to a 
modelling perspective on functions in the sense that functions are seen as a means 
of exploring or analysing real world or simulated behaviour. 

Data capture through experiments 

One strand of research (Ainley, 1994; Pratt, 1994; Pratt, 1995; Ainley, Nardi & 
Pratt, 1998; Ainley, 2000) involved children carrying out an experiment that 
generated bivariate data and iteratively using scatter graphs to make sense of the 
emerging data. The kinaesthetic involvement of the children in the experiment 
supported their emergent appreciation of the analytic use of the graphs. In some 
cases, these experiments could be algebraically modelled. In such cases, the 
children were challenged to teach the formula to the spreadsheet. The approach 
then was to begin with kinaesthetic, tabular and graphical types of representation in 
order to open up the possibility of a symbolic representation. These papers report 
on how this approach allows the children to draw on a range of intuitions for 
interpreting scatter graphs, based on an intimate knowledge of their own 
experiment and spatial skills presumably drawn from other mathematical or 
everyday experiences. The students began to correct irregularities in the graphs 
(normalising) and construct meanings for trend. Connections between this and 
Nemirovsky’s work have been made (Nemirovsky, 1998) indicating the value in 
paying close attention to students’ ideas in the contexts within which they arose. 
 How are we to interpret the success of these technology-based studies in 
comparison to a range of prior studies that have shown graphing, and in particular 
the interpretation of graphs, as immensely challenging for young students? First it 
is worth noting that all of these studies involve experimentation. Whether the 
student is controlling the independent variable directly or indirectly, they do have a 
sense of active engagement with the technology. In some cases, the student is led 
towards trying to make sense of the technology itself. In other cases, it provides a 
tool to allow the student to pursue a more purposeful agenda by focussing on 
interpretation rather than on the technical skills of drawing a graph. Indeed, 
drawing on their work on graphing, Ainley and Pratt (2002) have discussed two 
constructs, Purpose and Utility, as providing a way of thinking about the design of 
pedagogic tasks. 
 The experimentation appears then to be allied to a greater sense of involvement 
in the sense of motivation, but also in the sense of bodily participation. In a PME 
Research Forum, Nemirovsky (2003) conjectured that perceptuo-motor activity 
(PCM) might be the root of mathematical abstraction, and that thinking might be 
PCM distributed across different areas of perception and motor action as shaped by 
early experiences with the subject. As evidence towards the substantiation of these 
conjectures, Borba and Scheffer (2003) reported on students using sensors attached 
to mini-cars to argue that technologies of information can create links between 
body activity and official representations. As further evidence, Rasmussen and 
Nemirovsky (2003) reported on students using a water wheel connected to real-
time graphing software to conclude that knowing acceleration through a tool like 
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the water wheel is something that grows and emerges in students across a range of 
representational systems. 
 Although there is a need for further research in this area, there seems reason to 
believe that, perhaps not only in the domain of graphing, we might design effective 
tasks that connect purpose to significant elements of mathematics by drawing upon 
perceptuo-motor activity. 
 This “function as simplifier” strand of PME research appears to have made 
considerable progress from a narrow perspective in which technology was 
essentially used to verify procedures to a proposal that we approach the teaching of 
functions through a further type of representation, that of the kinaesthetic, by using 
the technology to model behaviour in which we are personally and directly 
engaged. 

Technology as integrator 

Functions are often introduced in school textbooks through a static definition 
(static in the sense that this approach emerges from pencil and paper technology in 
which the definition can not be seen directly as having dynamic computational 
potential). Confrey and Smith (1992), illustrating their argument through the work 
of one imaginary student, claimed that it was important to build an understanding 
of functions through multiple representations and contextual problems before 
emphasis was placed on static definitions. An affordance of technology is to offer 
access to the various types of representation of function. This affordance has been 
widely exploited in PME research over the last three decades. 
 Excited by the possibilities inherent in the notion of multiple representations, 
researchers have developed distinctions around the notion of function. For 
example, some researchers have focused on the classes of translations between 
representational systems. Other researchers have focussed on the new ways that 
technology allows students to manipulate functions –mainly as graphical objects. 

Translations between representational systems 

Schwarz and Bruckheimer (1988) considered the transfer of knowledge between 
representations in a computerised TRM (Triple Representational Model: Algebraic, 
graphical and tabular) environment. Grade 9 children in junior high school were 
asked to use TRM to search for solutions. One group began by searching through 
the graphing representation before using the algebraic type of representation. 
Another group was asked to approach the problem in the reverse order. The authors 
concluded that they could sketch three cognitive levels of functional thinking: The 
numerical level where searching for a solution was systematic, the functional 
reasoning level where the search was systematic but logical sequences of 
computations were not used, and the dynamic functional reasoning level where the 
richness of the concept of function was understood and searching was efficient. 
They also concluded that focusing on graphing before algebra led to a higher level 
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of functional reasoning as accuracy and convergence procedures transferred from 
graphing to algebra but not vice versa. 
 The research of Schwarz and Bruckenheimer leant towards a prescription 
favouring an introduction to graphing representations prior to algebraic (and note 
that in the previous section, there was some evidence to suggest the introduction of 
kinaesthetic aspects even earlier than this). However, as the power of technology 
has increased, software design has moved to a point where there can be increased 
fluidity between representations. Indeed, when representations are “hot-wired”, it 
is impossible to detect any delay when one representation synchronises to reflect a 
change in another. A series of studies have found benefits in exploiting the 
connectivity between representational systems. 
 Resnick, Schwartz and Hershkowitz (1994) discussed how 9th graders, using 
graphic calculators to solve problems relating perimeter and area of a rectangle, 
found different ways to articulate arguments by shifting from one representation to 
another and noticing local and global properties. The authors proposed that there is 
a radical difference between paper and pencil representations, which are passive 
descriptions, and computer-based representations that are driven by actions. 
Schwarz and Hershkowitz (1996) reported a comparative study to probe into these 
differences. The control group used only linear functions and resisted using others, 
even when they were mentioned. The experimental group used a technology-
intensive curriculum and developed a much richer variety of prototype functions to 
support reasoning and to exemplify strategies and properties. In 1997, Hershkowitz 
and Schwarz presented two studies on learning the function concept. In the first 
study, which was based on a questionnaire, the authors characterized the concept 
image of 9th graders after they had learned in an interactive environment, based on 
multi-representational tools and open ended activities. They found that these 
students, (a) used many examples, (b) provided rich justifications to answers, (c) 
showed flexibility within and among representations, (d) considered the 
acceptability of answers in light of the context, and (e) integrated prototypic 
examples with other examples. The second study was classroom-based with the 
same children. The focus now was on interactions between individuals, the 
problem situation, tools, and the community. Although the role of the computer 
might be seen as minor in this study. In fact the researchers claim that the 
internalised representations of manipulations aided the construction of hypotheses 
about the behaviour of the functions. Tabach and Hershkowitz (2002) traced how 
their students attempted to construct generalizations of growth patterns and used 
them to represent phenomena numerically and graphically, all through the use of 
spreadsheets. The report claimed that students constructed new knowledge and 
subsequently consolidated it. Smart (1995) reported a study in which girls had open 
access to graphic calculators during their mathematics lessons. The girls started to 
develop a robust visual image of many algebraic functions. Sutherland and Rojano 
(1996) looked at the impact of a modelling approach to understanding science 
concepts using spreadsheets. Students of two courses, one in Mexico and another 
in the UK, submitted pre-evaluation and post interview data. The authors claimed 
that spreadsheets helped students relate graphical and numerical representations, 
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and make sense of the algebraic models of the physical phenomena. We have 
already discussed other aspects of the modelling perspective of functions. 
 Other studies though have alerted educationalists to some problems in using 
technology. Goldenberg (1997) illustrated a range of illusions inherent in the way 
that graphs could be presented. Perceptual strategies that were sufficient for 
interpreting scale and relative position in real-world spaces were inappropriate 
when dealing with the infinite and relatively featureless objects in coordinate 
graphs. In fact the prevalence of illusions appeared to be an issue for the reading of 
graphs in conventional settings as well as computer-based ones. However, as is so 
often the case, it was the use of technology that triggered awareness of the problem 
and arguably illusions may have been accentuated by the technology. Cavanagh 
and Mitchelmore (2000) investigated how students interpreted linear and quadratic 
graphs on a graphics calculator screen. They identified three common 
misconceptions: A tendency to (a) Accept the graphic image uncritically, without 
attempting to relate it to other symbolic or numerical information, (b) A poor 
understanding of the concept of scale, and (c) An inadequate grasp of accuracy and 
approximation. 

Actions on graphs 

When using conventional pencil and paper and technology, graphs are essentially 
an output resulting from the calculation and plotting of points. In that sense, they 
are an end point, offering no further actions that can be carried out on the graphs, 
without starting a new and lengthy procedure. Manipulations in algebra are 
reserved for symbolic manipulations, and the graphs are driven by them. 
Technology allows students and teachers to directly manipulate graphs of 
functions. 
 Confrey (1994) examined six different approaches to transformation 
(translations and dilations) of functions. She based her analysis on several years of 
experience using Function Probe (FP) in a variety of settings. Confrey constructed 
a schedule of transformations as defined by a set of parameters, for example A, B, 
C, and D. The paper presented this schedule as a framework for thinking about the 
teaching of transformation of functions and how the students might approach these 
problems. She claims that these six approaches are distinctive, each offering its 
own advantages and disadvantages. Borba (1994, 1995) studied the roles of 
visualization and direct actions on graphs in the FP environment. Borba’s findings 
cover a wide range of aspects of multiple representation software, and in particular 
the study of manipulations of graphs. Borba’s (1994) analysis was based on an 
episode with one student who predicted how the operation of “stretching” would 
change the graph. This episode served as an illustration of the different elements of 
the model. In the 1995 article, Borba described how a student, using multi-
representational software, resolved a discrepancy in results by mentally adding 
features to the software design. Indeed, Borba refined a model for understanding in 
multi-representational environments and argued that students’ reasoning can 
inspire software design. 
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Technology as instrument or mediator 

Some research has looked broadly at the value added of using a piece of 
technology compared to conventional approaches. Thus, Guttenberger (1992) 
compared the performance of 31 Grade 11 students with access to a computer-
based function plotter to those without. The post-test showed that these students 
performed at a higher level. Comparing students who used graphic calculators in 
activities on functions with others who did not, Gómez and Fernández (1997) 
found no differences between the two groups at the adaptation phase but significant 
differences were found at the consolidation phase. However, such research is 
limited in its ability to explain, either from the design or cognitive perspectives, 
how or why such improvements happened. For example, Dagher and Artigue 
(1993) studied 33 students, aged 16-18 years, working on second degree 
polynomials, and 21 students, aged 14 to 15 years, working on linear functions. 
These students were given a game, consisting of a curve that had to be represented 
algebraically. Points were awarded according to how little assistance was needed. 
Post test success on paper and pencil test about functions was much higher than on 
the pre-test. The authors noticed sudden crystallisations of thinking after which a 
clear game strategy emerged. By looking closely at the learning process in relation 
to the structuring resources in the game, the researchers were able to identify 
certain catalysts for the crystallisations. They noticed the importance of (i) meeting 
a particular parabola, (ii) changing one representation to a different form and (iii) 
locating specific points. This detailed analysis promotes a focus on aspects of the 
design of the game as well as how the resource mediated learning, in this case in 
the form of the breakthrough insights. 
 There has been little research on the design of tools to support the teaching and 
learning of functions. In an early theoretical paper, Lesh and Herre (1987) applied 
Dienes principles to the use of virtual instantiations of polynomials to propose that 
Dienes ideas, developed originally in the context of designing material 
manipulatives, have explanatory power even in the virtual setting. It is perhaps 
disappointing that this work has not been picked up by subsequent PME 
researchers in the field. 
 Rather more studies have focussed on mediating aspects. Lagrange (1999) 
reported on a study about the schemes of use introduced by students of the 11th 
grade, learning about functions with complex calculators (TI92). From the 
perspective of instrumental genesis (Verillon & Rabardel, 1995), the author’s 
analysis of the development of the students’ schemes of use in a pre-calculus 
course emphasized the role of calculators in terms of the mediation they offered to 
the learning process. He noticed, as others have done (see in § Limits), that students 
using symbolic manipulations saw the limit as an object but that they lost the sense 
of the process. He pointed out that the symbolic-graphic calculator could enhance 
the understanding of calculus concepts in terms of numerical and graphical 
representations before their symbolic form. The calculator acted as a mediator in 
the learning process and in this mediation it is by no means neutral. Meeting new 
potentialities and constraints, the students have to elaborate schemes of use 
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potentially rich in mathematical meanings, a process that requires support and 
encouragement from the teacher. 
 A few studies looked specifically at general aspects of the tool reflected 
throughout the learning processes. Gitirana (1998) reported on students who 
interacted with three microworlds, all focusing on the learning of functions. The 
students’ explanations suggested different conceptualizations of function according 
to the pedagogical and technical aspects of the microworlds and according to their 
interactions during the activities, thus highlighting a sensitivity of learning to the 
structuring resources in the setting. 
 Hershkowitz and Kieran (2001) focused on two different ways in which students 
used tool-based representatives: A mechanistic and a meaningful way. A case 
study with three Canadian students who worked on growth patterns of rectangle 
areas was compared with a prior study with Israeli students. The Canadian students 
applied a recursive expression technique and generalized it with the help of the 
tool. The authors questioned whether this may have hindered them from 
mathematizing the problem and from thinking in terms of an exponential function. 
Friedlander and Stein (2001) studied Israeli students’ choices among tools (e.g. 
spreadsheets, symbolic calculators, graphic calculators) to solve equations. The 
results showed that students not only employed a variety of solution methods to 
solving equations but, more importantly, made connections between the 
representations afforded by different tools. 

Concluding remarks on functions 

In summary, there appears to be some consensus that technology can be exploited 
to privilege certain types of representation over others, focussing attention in 
specific aspects of function. Of the three standard types of representation 
(graphing, the use of symbolic algebra and tabularisation), there appears to be 
some evidence that students can use intuitive knowledge of the graphing aspect of 
functions to make sense of symbolisation more easily than vice versa. However, 
there also seems to be some evidence to suggest that a kinaesthetic approach may 
offer access at an intuitive level that can be utilised by allowing that type of 
representation to drive experience of the three standard representational systems. 
There has been considerable research effort to exploit the potential of technology 
to offer multiply-linked representations and some results seem to suggest that the 
linking of representations on screen may support such mental connections being 
constructed. However, too little is understood about this process. Some approaches 
have allowed these connections to be hot-wired, running the risk that the child may 
simply not attend to the changes being made. Others have tried to put the child in 
situations where they have to make the connections in order to pursue some 
broader objective. We need to know more about typical ways in which children 
make these connections. What are the critical parameters in enabling such learning 
and hat is the range of learning outcomes in such circumstances? There has been 
little PME research on the design of the tools. Given the wide interest in the 
situatedness of learning, it seems odd that there is little research into the 
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relationship between design and learning about functions. Instead we have a setoff 
interesting examples of how innovative tools have been used without sufficient 
analysis of how the design intentions played out in practice. We argue that research 
of learning with tools cannot ignore the design of those tools. 
 Although we have, for the purposes of this review, treated the solving of 
equations as a separate activity form that of working with functions, clearly the 
broader pedagogic aim is to help children connect these two domains. In fact, the 
technology-based work on functions promises to have pay-offs for the 
understanding of equations. Yerushalmy (1997) and Yerushalmy & Bohr (1995) 
reported two studies, which were part of a three-year longitudinal investigation 
based on VisualMath, a functions-based approach to algebra. The former article 
reported significant changes in students’ thinking about symbols, equations, and 
problems in context. This study included an analysis of common models of 
problem solvers, who were mainly low attaining students. The enhanced 
performance and thinking processes of students, who had previously been 
unsuccessful with algebra in general and with solving contextual problems in 
particular, has recently emerged from studies on the integration of graphing 
technology and contextual problem solving. Because students of VisualMath 
learned to view any equation in a single variable as a comparison between two 
functions, the second article posed the question of what the mental image for 
equations in two variables would be for these students. We therefore look forward 
to research which links the themes of expression, variable, function and calculus to 
inform our understanding of the longer term development of thinking about 
functions and its relationship to the affordances in the setting. 

TECHNOLOGY IN THE TEACHING AND LEARNING OF CALCULUS 

Looking back historically, there are three root aspects of calculus as a discipline 
(Kaput, 1994): One concerns the computations of areas, volumes and tangent, and 
first of all it was practical, as in the work of Archimedes. The second was a blend 
of practical and theoretical interest, involving the study of physical quantities 
variation. It began in ancient Greece with the mathematization of change and had a 
golden period with Newton’s study of motion, with the application of new 
mathematical tools for calculation. While the third was inherently theoretical, 
beginning with Zeno’s ancient motion paradoxes and continuing with the complete 
formalization of analysis in the 19th century, and has been recently completed with 
the non-standard analysis. These three roots, as Kaput (1994) wrote, “interweave 
complexly, and the story of their interweaving is still being written”. 
 The introduction of technology in calculus in recent years touches these three 
roots, exploring the potentialities of them with different supporting contexts, as for 
example: The numerical calculation of areas, volumes and tangents (with 
programming languages, spreadsheet or software); the elaboration of data taken 
from measures of quantities (by sensors connected on-line with calculators), for 
investigating the relations and the variations of these quantities, and the approach 
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to continuous and to infinitesimal analysis, through functions and variables 
managed in a symbolic way (CAS). 
 We develop at least three elements of analysis: Epistemological, cognitive and 
curricular. In calculus, the power of technology is particularly important to 
facilitate students’ work with numerous epistemological discontinuities such as 
discrete/continuum, finite/infinite, determinate/indeterminate, and so on which also 
relate to other subjects (e.g. arithmetic, algebra, analytical geometry) previously 
learned by students. These discontinuities can remain epistemological obstacles not 
understood by the students or may be overcome on the road towards the 
construction of concepts. “The construction of pedagogical strategies for teaching 
students must then take such obstacles into account. It is not a question of avoiding 
them but, on the contrary, to lead the student to meet them and to overcome them” 
(Cornu, 1991, p. 162). The obstacles create the cognitive demand for an 
overcoming, and only with deep research in mathematics education we can 
understand them and try to find some solution. The same solutions can then be 
used to plan curricular projects: In this way, research can be useful to teaching 
practice. 
 Our analysis focuses on the mediation of technology and the role of the teacher 
about these epistemological obstacles: Limits, derivatives, infinite sums, integrals. 
 The approaches to calculus in the past three decades, according to the parallel 
introduction of technology at school, have been different: First of all, numerical 
investigations could be possible, due to the programming languages used to solve 
problems relative to functions in a numerical way. Then graphical environments 
rendered possible the investigations on the shape of functions, both at a global and 
at a local level. Finally, symbolic performances became possible, for the 
introduction of Computer Algebra Systems in computers and calculators. These 
environments were used in an independent way from each other, and also 
simultaneously. But the big revolution in teaching mathematics with technologies 
was the introduction of dynamicity in software: A dynamic way to control and 
master the virtual objects on the computer let the student explore many situations 
and notice what changes and what does not. And the mathematics of change is the 
first step on the road to calculus. We can intend change at a numerical level, as 
well as the graphical or symbolic level. If some researchers concentrated their 
attention on one of these levels, others were more interested in the simultaneous 
use of them in order to integrate their potentialities. 
 In using technology at school there was the necessity to adapt the mathematical 
activities to the potentialities offered by the software in use, and sometimes the 
limitations of this software could influence the construction of a concept (as 
mentioned by Magidson, 1992) referring to slope, conceptualised by the students as 
a value not more than 8. This necessity, over the years, has been decreasing and the 
idea of a generic organiser entered the scene (see § A dynamic view of Algebra). It 
embodies a theoretical structure and the user may come to understand it using the 
generic organiser in specific examples. The existence of such a structure absolutely 
does not guarantee that the user will abstract the general concept. So technology 
can never guarantee learning or take the place of the teacher. Surely it can help 
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students to overcome certain difficulties, but research shows that it will be effective 
only within a coherent teaching-learning context. Better if this is done in a social 
way, working in small groups and then sharing the ideas in a class discussion, 
guided by the teacher, as reported in many articles. 

Limits  

Traditionally, limits are often introduced through the epsilon-delta definition, 
which compels the students to reason without the consideration of functions as 
maps between x and y values in the Cartesian plane, and, on the contrary, fixes their 
attention on intervals on the y axes, and finding a corresponding interval on the x 
axes. This way of reasoning is different from previous algebraic thinking, and 
breaks a balance about functions, often causing cognitive difficulties, as witnessed 
in literature. For students it is very difficult to reverse the order (Kidron, Zehavi & 
Openhaim, 2001). There can be considered three paradigms for teaching limits: A 
(formula-bound) dynamic limit paradigm, a functional/numeric computer paradigm 
and the formal epsilon-delta paradigm (Li & Tall, 1993). The first is based on 
arithmetic and geometric progressions and convergence of the latter. This approach 
emphasises the potential infinity of a process that cannot be completed in a finite 
time. The second is based on programs written in Basic that give as output a certain 
value of a sequence. They support a numerical exploration of sequences, and 
ground limit as a procept in the sense of Cauchy, being the terms indistinguishable 
at a certain step, instead of evaluating the limit value. The third is the traditional 
approach, based on formal definition. The authors use the second paradigm for 
experimentation and finally recognise that difficulties in passing to the formal 
definition remain for the epistemological discontinuities in the concept definition 
itself. 
 As in the previous case, where alternatives routes to traditional teaching are 
used in calculus with the integration of technology, many other studies have been 
carried out in this direction. They outline that technology by itself does not 
promote change (Valero & Gómez, 1996). What promotes change is the curricular 
project in which technology is inserted, and in particular, the didactic sequences 
planned by the teachers in order to introduce calculus concepts, which use 
technology as a support. Planning these sequences involves re-considering 
activities, methodologies, lessons, learning contexts and all aspects of teaching, 
integrating the “old” and the “new”. So, it means that we have to make important 
choices about technology: How, when, why, and what kind of technology we must 
use. 
 According to the kind of technology used, and, more importantly, the type of 
use of it, a teacher may convey a given meaning in a particular way. For example, 
as said before, it is possible to teach the concept of limit centring on the idea of 
“getting closer”, or on the “limit value” as the object that constitutes the limit. 
Students are usually familiar with the former, which is more intuitive than the 
latter. Using Derive to calculate limits, it is possible to orientate students with the 
latter meaning, because they are able, with this software, to see the numerical value 
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of the limit. On the other hand, this approach leads students to consider limit as a 
static value, losing the sense of the approaching process. They acquire the 
advantage of seeing the limit as an object, but they miss the sense of the process 
that lies beneath the object itself (Monaghan, Sun & Tall, 1994). In other 
approaches, the conceptualisation of limits may pass through a discrete process 
(e.g. using graphic calculators), that here have the role of reinforcing former limit 
conceptions based on the process of “getting closer” to something. Conversely this 
line of teaching seems to make more difficult the construction of the meaning of 
limit as a concept of “limit value”, as it follows from the formal definition 
(Trouche & Guin, 1996). 
 Between these two ways of conceiving the limit (namely, process of getting 
closer to something or limit value), there seems to be a gap, which is difficult to 
bridge. It corresponds to an epistemological discontinuity, which is also present in 
the history of calculus, in which the static epsilon-delta definition of the object 
limit was only the last step of this history, which started with the intuitive process 
of getting closer. calculus is difficult for our students, because it reflects the great 
difficulties faced in the history of mathematics. 
 What is the role of technology in these different approaches to limits? There 
have been cases put forward for using Derive to calculate limits (Monaghan et al., 
1994) and exploring functions by conjecturing, solving and checking (Trouche & 
Guin, 1996). 
 A possible choice for teachers at secondary school level, where calculus is only 
partially taught is to support the conceptualisation of limits with intuitive basic 
ideas about infinitesimals, together with a brief history of them and without a 
strong and abstract formalisation. Infinitesimal conceptions have been used to 
teach limits (Cornu, 1991). Adding to the mathematical legitimacy of 
infinitesimals, recent research (Milani & Baldino, 2002) offers a challenge to 
mathematics education: “What if, instead of waiting for the infinitesimal 
conceptions to emerge, we stimulated them? What if the students became aware of 
the abyss between mathematics and its applications produced by the, now 
unfounded, discrimination of infinitesimals? Will such an awareness stimulate the 
transposition of the obstacle towards the understanding of limits or will it create 
new obstacles?” (Milani & Baldino, 2002, p. 346). With the technological support 
of CorelDraw zoom, four freshmen in a calculus course for physics students first 
were introduced to the basic ideas of infinitesimals and their use in calculus, then 
they demonstrated such ideas to the whole class. For example, the zoom function 
of CorelDraw has been used to visualise the merging together of a curve and its 
tangent line at the point P, showing that curve and tangent appear as parallel 
straight lines at P+dP, and so on. Not only was an instrument introduced in order 
to use infinitesimals, but also a sign: ≈, to indicate “infinitely close to”. These are 
the words of a student after this experience: “In physics we have to imagine the 
situation, we have to imagine what happens in a very small space, with tiny 
dimensions. The zoom helps. In the physics class the teacher also spoke about the 
zoom, taking an infinitely close view, but it was not clear for all the students.” This 
research shows the mingling of mathematical, continuous, infinitesimal 
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conceptions with the physical, discrete, subatomic reality. The authors come to the 
conclusion that “the whole research process led the students to spontaneously 
enlarge their concept images so as to incorporate elements from the microscopic 
physical world among infinitesimals.” (Milani & Baldino, 2002, p. 346). 
 At a higher level of content, a remarkable example is offered by Kidron et al. 
(2001), who studied the possibility to enhance students’ ability for passing from 
visual interpretation of the limit concept to formal reasoning; they used symbolic 
computation and graphics. The task consists in approximating functions by Taylor 
polynomials. The students used two methods to approximate a given function by 
polynomials: Analytical and algebraic. In the analytical method they approach the 
notion of order of contact with Mathematica. In the algebraic one they follow the 
original text of Euler (1988), applying his approach to represent infinite sums with 
Mathematica. Both methods lead to the coefficients of the Taylor series but with 
different features: The analytical one describes the process of the different 
polynomials approaching a given function; the other represents the polynomials 
with “an infinite number of terms” as an object. 
 The Mathematica software was useful both in the calculations of the algebraic 
approach and in the analytical method; for example, a sequence of plots helped 
illustrate the fact that, in a given interval, the higher the degree of the 
approximating polynomials the closer the function sin(x) and the polynomial are. 
This animation generated by the software helps students in the conceptualisation of 
limit because it permits them to see the dynamic process in one picture. 
 The static object introduced by Euler becomes a dynamic process of 
convergence to a function: In these activities, the students used Mathematica to 
visualise functions and to construct animations, but this was not enough in order to 
transform a process into the concept of limit. So the students “had to interact with 
the dynamic graphics, to have control over the dynamic representations” (Kidron 
et al., 2001). In this article the process of instrumentation (Verillon & Rabardel, 
1995) is described, by the schemes of use activated by the students, who 
transformed the artefact Mathematica into an instrument for conceptualisation. 
 One year later one of the authors (Kidron, 2002) continues the investigation of 
this problem, adding a new element to her previous theoretical framework: The 
embodied cognition analysis of infinity (Lakoff & Núñez, 2000). The analytical 
approach is seen as a way to represent potentially infinite processes, while the 
algebraic one as a way to represent actual infinite sums as objects in the author’s 
mind: “The illusion that the infinite calculations are performed at once might 
facilitate the transition from symbolic manipulation to a symbolic object” (Kidron, 
2002). The researchers’ aim is to examine to what extent the interrelationship 
between the two approaches and the different uses of the software helped the 
students to perceive an infinite sum as the limit of an infinite process. It seems that 
using different approaches the students were able to understand that an infinite sum 
is not necessarily an expression that tends to infinite, that it could be equal to a 
given number; that it can be conceived as an object; and that it might be rendered 
easier if we apply an algebraic approach to it, as Euler said. Particularly, a sort of 
balance between the conception of an infinite sum as a process and as an object 
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seems to be supported by the use of the software, together with the didactical 
methodology applied. 
 With regards to the other themes related to the limit of functions, namely the 
problem of continuity, we do not yet have studies, apart from Vinner (1987) on 
students’ competencies about continuous and discontinuous functions, investigated 
through a questionnaire. It turns out that, although they succeed in the 
identification task in the common cases, they fail very often to justify their 
answers. Moreover, their use of the limit concept is quite fuzzy and they often rely 
on irrelevant argument. As a result, the level of their mathematical reasoning is 
quite inadequate. 

Derivative and integral 

Teaching derivatives and integrals raises issues analogous to the ones on teaching 
limits: The intuitive approach versus the formal one. It can be seen as a part of the 
theme of functions, as it is often so presented in the literature. The studies of Tall 
(1989) grounded these contents on the cognitive roots of local straightness of a 
function and area under a graph, for derivative and integral respectively. Ensuing 
literature followed these studies. The use of new technologies demonstrates the 
possibility of grounding the concepts of derivative and integral on simpler ones, 
implemented through various environments such as the numerical one, the 
graphical one, and, last but not least, the symbolic one. The suggestion for 
mathematics education research is a progressive conceptualisation toward the 
abstract definition and use of these concepts, passing through activities of 
exploring, conjecturing and testing conjectures. The use of software such as 
Graphic Calculus can be done at different levels, as Tall shows in his articles. In 
general, it can be used in a rich way employing the dynamic images in a fruitful 
cognitive way. For example, a function and its gradient function can be plotted 
together on the same screen, and moving a chord on the first renders possible the 
generation of the second. As one student put it: “I never understood what it meant 
to say that the derivative of sinx was cosx until I saw it grow on the computer”. The 
verb “grow” really embodies the dynamic nature of the gradient function, as seen 
on the screen. As students explore and enrich their concept images in a more 
personal way, they seem to regard the computer as an authority that does not 
present the same threat as the teacher. They seem far more willing to discuss 
conceptual difficulties thrown up by the computer than they would difficulties in 
understanding a teacher’s explanation (Tall & Sheath, 1983). 
 Another study at secondary school level over several years shows that Graphic 
Calculus can be used as a generic organiser in different ways. In order to introduce 
derivative, it can be used to magnify graphs, allowing the student to see what 
happens to functions when their graphs are magnified. Many graphs look “less 
curved” under higher magnification. After using this organiser (with the guidance 
of the teacher in order to explore different functions, with or without the property 
to become straight when magnified), the student can look along a graph, 
“magnifying it in his mind’s eye, and seeing the gradient vary” (Tall, 1985). The 
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use of the same software as another organiser is to observe the variation of the 
gradient of a graph, moving the chord through two near points along the curve, 
changing the x of the first point but not the proximity of the two. In this way, the 
notion of gradient can be constructed in a dynamic and a global way, even if the 
final construction, the curve of the gradient, is a static picture on the screen. Thus 
the concept image of gradient can be created both as a process and as a concept, 
and therefore as a procept. 
 Linked to the derivative and the slope of a function, we have the concept of 
tangent to a graph at a certain point. As pointed out by Artigue (1991) there are 
many ways to conceive the tangent to a curve. For example: As a line passing 
through a point but not crossing the curve in a neighbourhood of it, as a line having 
a double intersection with the curve at a certain point, as a line passing through two 
points infinitely close to a point on the curve, and so on. If these different points of 
view can coexist in the mind of a mathematician, it may not be the same for a 
student, because their contemporary presence can be a source for misconceptions, 
obstacles and conflicts. Mathematicians analyse a concept in a formal manner, 
producing a hierarchical development and linking different concept definitions in a 
proper way. But this way may be inappropriate for the developing learner. The 
computer can help to overcome such difficulties, by giving the possibility of 
introducing new concepts that had previously seemed extremely abstract to pupils, 
or by offering them the opportunity to coordinate different perspectives on the 
same concept. A study carried out in three experimental classes (Tall, 1987b), 
aimed at the construction of the concept image of a tangent made use of the 
computer to draw a line through two very close points on the graph of a function as 
part of a broader introduction to the idea of gradient. The students experienced the 
presence of a tangent in some situation and the absence of it in others, such as the 
case of the absolute value of sinx, which has “corners”. The study emphasised the 
difficulties embodied in the tangent concept, but suggests that the experiences of 
the experimental groups helped them to develop a more coherent concept image, 
with an enhanced ability to transfer this knowledge to a new context. 
 The use of graphic calculators opens up the possibility to represent functions 
and to pass gradually from functions to their derivatives. A research report on first 
year Biology students focused on functions and derivatives with graphic 
calculators, Borba and Villareal (1998) point out that the calculators were always 
present conceptually, if not physically, and did not bar other media from being 
used. The evidence suggests that the technology does not merely supplement but 
actually acts as a reorganiser of cognition. 
 Exploiting multiple representations offered by TI92 calculators, Kendal and 
Stacey (2000) report on an introductory program of differential calculus at grade 
11. The aim of the teaching sequence was the introduction of competencies on 
derivative and proficiency with various representations. The paper reports on the 
conceptual understanding of differentiation by two different classes of students. 
The competencies were tested by a set of items designed to measure levels of 
understanding with respect to the numerical, graphical and symbolic environments 
of the calculator. To this aim, different types of questions have been developed, as 
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for example: “Find a rate of change” in the numerical case, “Find a gradient” in the 
graphical case, and “Find the derivative” in the symbolic case. They were based on 
the fact that: A numerical representation of derivative (derivative calculated at a 
point) is approximated by a difference quotient; a graphical representation is given 
by the gradient of the tangent to the curve at a point; a symbolic derivative is 
determined as a function manipulating formulas or as the limit of a function. 
 In a study presented by Ubuz and Kirkpinar (2000), first year undergraduate 
students were engaged in learning the concepts of calculus, particularly derivative. 
The authors analyse the factors contributing to learning calculus in a computer-
based learning environment (Interactive Set Language ISETL and Derive). The 
outcome shows that there was a significant improvement in learning derivative in 
general in the graphical interpretation and in the use of the definition. 
 Integral are usually the last element in the curricular sequence of calculus, after 
limit and derivative, but with the use of technology a didactic inversion may offer 
an appropriate and attractive cognitive approach. In this case, as in the case of 
derivative, research demonstrates that introducing limits in a formal way only at 
the end of calculus, after derivative and integral, can be the better choice from a 
cognitive point of view (Tall, 1986a). The differentiation-integration concept takes 
place first at the numerical and graphical level, exploiting the computer, starting 
from physical or mathematical situations, than can be managed at the symbolic 
level. The area under a simple graph such as f(x) = x2 may be approximated by 
dividing the interval into n equal width strips and adding together the “upper” and 
“lower” rectangular approximation in each strip. Knowing the formula to simplify 
the sums, it is possible to see what happens as n gets very large. In 1635 the Italian 
mathematician Cavalieri demonstrated his computational facility by performing the 
calculations for all powers of x up to 9. It was excellent and hard work, but today 
this can be done with the help of computers. With an algorithm in a programming 
language it is possible to see the results of these sums, but with this method the 
process of calculation of intermediate sums will be lost. Another way to approach 
the problem could be to use Graphic Calculus (the environment Area). In order to 
follow the process in each step: Drawing the graph of a function, calculating the 
area under a function. Students may explore many possibilities in a short time, 
choosing the function, the interval where to determine the area and the strip. Then 
some intriguing explorations can take place, as for example what about inverting 
the two extremes of the interval? The software dynamically shows a negative step 
and the picture of the area approximations builds up from right to left (Tall, 
1986b). Another dynamic feature of the software permits observation of the 
generation of the integral function in real time, having fixed the interval of 
integration and the step. Another stage of the exploration can be the change of the 
number of steps, and one more could be the discovery of the addition property for 
integrals, starting from particular cases. This path tends to the fundamental 
theorem, as a final aim of a sequence of meaningful activities that can prepare 
students to the more formal approach to theory. 
 A paper by Hong and Thomas (1997) focuses on a significant improvement of 
conceptual thinking in integration through the use of computers and curricular 
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modules of work in classroom. The use of these environments favoured an 
enhanced proceptual understanding with a tendency to understand in a concept-
oriented manner, rather than as rote processes. In contrast, the control group of 
students with their traditional learning of calculus often experienced no change 
showing the same misconceptions in both pre- and post-test. 

Implications for teaching and curriculum 

The role of technology in supporting students engaged in mathematical activities 
may differ according to many variables: The students themselves and their 
background, the task, the mathematical context, the class context, the kind of 
technology used, the teacher’s use of technology, etc. Given this complexity it is 
difficult to find patterns of use. For instance, students might sometimes use 
technology in a certain way because of certain teacher’s beliefs. Let us review the 
role of the teacher in introducing technology in a classroom. 
 A case study in which three teachers were involved is described by Kendal and 
Stacey in order to find differences in the approach to calculus by students who had 
full access to calculators with CAS in the classroom, at home, and during tests 
(Kendal & Stacey, 1999). The study shows that each of the three classes obtains 
similar average scores of the test. However, they made very different use of the 
CAS environment and performed differently on the items of the test. The authors 
pointed their attention on “privileging”, as the act that reflects the teacher’s 
underlying beliefs about the nature of mathematics and how it should be taught. 
Privileging is derived from the interplay of teachers’ beliefs and interrelated 
knowledge sources (i.e. content, content pedagogical, pedagogical); it is moderated 
by institutional knowledge about students and school constraints; it is shown 
through teachers’ practice and attitudes and it is highly influential in students’ 
learning. The study demonstrates how teachers’ privileging can have an impact on 
students’ learning and influence it. The great potential of CAS in providing 
multiple representations of mathematical concepts has been differently 
implemented by the three teachers. These differences have been translated into 
substantial differences in how their students solved problems and what they 
understood. For example, the students of class C understood what to do in 
algebraic contexts so they could compensate for poor algebraic skills by 
appropriate use of the calculator and by substituting algebraic with graphical 
procedures. 
 The same authors present a case study in which two teachers were involved 
(Kendal & Stacey, 2001): They discuss the classroom process data, referring to a 
25 lesson course on introductory differential calculus to 16-17 year old students.. 
Analysis shows two distinct teaching styles, methods, representation preferences, 
functional and pedagogical uses of technology (the environment CAS in TI92 
calculators). In their study, the authors concentrate on three components of 
privileging: Teaching approach; calculus content; use of technology (evidenced by 
the nature of use of the CAS calculator). Analysing the three aspects of each 
teacher’s privileging during the teaching of an introductory calculus unit, the study 
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monitors the changes that occurred over two years and explores the impact of new 
knowledge and a new situation on the changes in technology privileging, linking 
them to each teacher’s beliefs and pedagogy. The results are that the two teachers 
changed technological privileging according to their prior beliefs and knowledge. 
 Other studies (Valero & Gómez, 1996) about teacher’s beliefs in classrooms that 
used graphic calculators for functions, pointed out that there are real modifications 
in actions and expressed opinions on the role of technology in teaching 
mathematics but not in thoughts. The methodology for collecting data, based on 
interviews aimed at identifying the teacher’s position on it, showed that some 
destabilisation in the belief system may occur, but that no significant change arises. 
The authors remarked the conclusion that technology itself does not promote 
change, neither in learning, nor in teaching. 
 The use of the same technology in a pre-calculus course is presented by Doerr 
and Zangor (1999), who analyse the role and beliefs of the teacher related to the 
patterns and modes of students’ use of graphic calculators in supporting their 
mathematical activities. They found a set of ways in which the tool is used by the 
students and related mathematical norms. The teacher’s confidence, flexibility of 
use, and her awareness of the limitations of technology itself, led to the 
establishment of: A norm that required results to be justified on mathematical 
grounds; multiple ways for visually checking hypothesised relationships between 
variables, a shifting role for the calculator from graphing to checking, and the use 
of non-calculator strategies for periodic transformations. 
 Pre-service mathematics teachers, most of who were concurrently engaged in 
their student teaching experience, were observed in order to study the impact of a 
multimedia teaching case on their professional development (Doerr, McClain & 
Bowers, 1997). The study presents the benefits and the limitations of the 
multimedia case. 
 Another important level of implications deals with curriculum design. In a 
period such as the last decade, when all over the world there have been new 
curricular projects in mathematics (see for example NCTM, 2000; Anichini, 
Arzarello, Ciarrapico & Robutti, 2004), it is important to reflect on the use of old 
and new symbols by students in order to support their construction of meaning. 
“How much and what kind of actions on formal symbol systems are needed to 
support the mental construction of objects that can in turn serve as referents for 
new symbols and systems of reasoning?” (Kaput, 1994). The passage from process 
conception to conceptual entity is difficult (see § Limits), and it is traversable with 
appropriate forms of deliberately designed experiences, as defining and 
manipulating wide varieties of function in a computer environment, possibly 
starting from perceptuo-motor activities, as shown in many cases (Arzarello & 
Robutti, 2003; Nemirovsky, 2003; Rasmussen & Nemirovsky, 2003). The problem 
of studying students’ conceptualisation in terms of a semiotic approach has 
particularly pointed out by Radford (Radford, Demers, Guzmán & Cerulli, 2003; 
Radford, Cerulli, Demers & Guzmán, 2004) and by Arzarello (2005), and their 
studies converge on the kind of activities where students are involved and on the 
theoretical analysis, based on the objectification of knowledge, as making 
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something apparent in a social way. These experimental and theoretical studies 
show their power in the didactical implication on the mathematics curriculum. As 
an example, the very recent curriculum proposal made by UMI in Italy (Anichini et 
al., 2004) realises the findings from these studies and points out the importance of 
the mathematics laboratory, intended as a methodology based on activities with 
materials and artefacts, where students are actively engaged in social work. 

Concluding remarks on calculus 

“As for the precise contents envisaged by the research, even where the works 
concern different levels, one finds again common preoccupations: 

• Concern with developing a functional approach, 

• Concern to focus the notion of derivative on the existence of a good 
approximation of the first order, the computer allowing exact visualization of 
this property by magnification of the graph, even before the notion of limit is 
mastered.” (Artigue, 1991) 

Calculus needs to be studied across many years of school, from early grades 
onward, much as a subject like geometry should be studied. Hence its many 
purposes should be examined, not merely its refined methods. But most especially, 
its root problems should take precedence as the organizing force for curriculum 
design. 
 The power of new dynamic interactive technologies should be exploited in ways 
that reach beyond facilitating the use of traditional symbol systems (algebraic, 
numeric, and graphical), and especially in ways that allow controllable linkages 
between measurable events that are experienced as real by students and more 
formal mathematical representations of those events. (Kaput, 1994). 
 To educate students to observe numerical sequences, to see a graph and to read 
through symbols seems to identify the most common feature of the articles in this 
review. 

FINAL REMARKS 

The three main sections above have raised questions or drawn conclusions in 
relation to research on the use of technology in expressions and variables, functions 
and calculus. We do not therefore intend to summarise or repeat those conclusions 
here. In this short section, we constrain ourselves to a few overarching comments. 

From the technology perspective 

We can outline general trends relative to the implementation of technology for the 
teaching and learning of all the subject matters considered in this review. In fact, 
we have seen that new technology allows for dynamical approaches to the major 
concepts in algebra as well as in calculus, contrasting the static existence of 
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traditional paper and pencil practices. Equally, the power of linking multiple 
representations, rich in terms of interactivity, is made explicit through the use of 
digital technology. As a consequence, interactivity and dynamicity are two features 
for which technology promises a wide potential, providing attention to the 
construction of meanings more than to the manipulative aspects. 
 We have also seen changes in the kinds of technologies used over time: 
Programming languages, such as Logo, Pascal and Basic, flourished toward the 
end of ‘80s as an approach to addressing specific contextual knowledge, such as 
that of variable, or function. But, at the end of the decade research interest in 
programming, at least as a medium for learning concepts, has all but vanished. 
 An open issue is then whether this trend is mostly a matter of fashion, or 
whether somehow the complexity of learning the particulars of the language was 
seen as counter-productive to the development of general cognitive and thinking 
skills through programming. Furthermore, software in which particular commands 
allow students to operate directly on mathematical objects and to see changes as 
results of their actions offer an immediate perception that can support the 
construction of those specific concepts, though, arguably, may be more constrained 
in terms of rich extensions. 
 From those years on, research increasingly focused on the development and the 
experimentation of new packages, games and tutorials, with the aim of improving 
the learning of mathematics, with specific didactical aims. Such programs are 
centred on the construction of meanings for circumscribed mathematical objects 
(for example, geometric figures, functions and their transformations, vectors, ...). 
But they can also be oriented to the construction of a ‘piece’ of theory, around the 
notion of theorem, for example, or proof, or deductive system. These programs are 
generally more ‘mathematics-oriented’, than open spaces where many different 
kinds of operations (related to more than one subject matter) are possible, such as a 
spreadsheet can be. We are referring in the first case, to L’Algebrista for example, 
and in the second case to CAS environments, which are paradigmatic cases of the 
introduction and diffusion of new technology over the last decade. 

Implications for teaching practice and research 

The review raises a number of issues, often with no answers at present, and indeed 
these issues often raise further questions. Indeed, Hershkowitz and Kieran (2001), 
set out the contextual factors of various origins that one should consider in the 
design as well as in the study of a classroom learning activity in a computerized 
mathematics learning environment: “(a) The mathematical content to be learned 
and its epistemological structure; (b) The learners, their mathematical knowledge 
culture, and the history with which they started the researched activity; (c) The 
classroom culture and norms, the role of the teacher, the learning organization –in 
small groups or individually–, etc.; and (d) The potential ‘contribution’ of the 
computerized tool” (ibid.). We have seen in this review that it is quite complex, 
even from the research point of view, to analyse an integration of all the variables, 
in order that they can be let fit together in a harmonic whole. In the practice of 
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teaching, the implementation of technology “forces reconsideration of traditional 
questions about control and the social structure of classrooms and organizational 
structure of schools” (Kaput, 1992). The curricular choices and beliefs of teachers 
acquire great relevance in these terms. Substantially, technology re-awakens us to 
the complexity underlying the teaching and learning of mathematics, re-posing 
age-old questions that regard: “Educational goals, appropriate pedagogical 
strategies, and underlying beliefs about the nature of the subject matter, the nature 
of learners and learning, and the relation between knowledge and knower” (ibid.). 
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