\\ \title{
TI-83 Plus /\\ \title{
TI-83 Plus / TI-83 Plus Silver Edition TI-83 Plus Silver Edition Graphing Calculator Guidebook
} Graphing Calculator Guidebook
}

First Steps

- On/Off
\square Menus
- Using parentheses
\square Graphing a function
\square Modes
\square Lists

Creating...

\square Tables
\square Data and lists
\square Matrices
\square Split screen

Beyond the Basics

- Inferential statistics
\square Archiving/Unarchiving
\square Programming
\square Menu maps

More Information

\square Sending and receiving
\square Formulas

- Troubleshooting
\square Support and service

Important

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this equipment. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

[^0]
US FCC Information Concerning Radio Frequency Interference

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference with radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, you can try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/television technician for help.

Caution: Any changes or modifications to this equipment not expressly approved by Texas Instruments may void your authority to operate the equipment.

Chapter 1: Operating the TI-83 Plus Silver Edition

Documentation Conventions

In the body of this guidebook, TI-83 Plus (in silver) refers to the TI-83 Plus Silver Edition. Sometimes, as in Chapter 19, the full name Tl-83 Plus Silver Edition is used to distinguish it from the TI-83 Plus.

All the instructions and examples in this guidebook also work for the $\mathrm{Tl}-83$ Plus. All the functions of the TI-83 Plus Silver Edition and the TI-83 Plus are the same. The two calculators differ only in available RAM memory and Flash application ROM memory.

TI-83 Plus Keyboard

Generally, the keyboard is divided into these zones: graphing keys, editing keys, advanced function keys, and scientific calculator keys.

Keyboard Zones

Graphing - Graphing keys access the interactive graphing features.
Editing - Editing keys allow you to edit expressions and values.
Advanced - Advanced function keys display menus that access the advanced functions.

Scientific - Scientific calculator keys access the capabilities of a standard scientific calculator.

TI-83 Plus

Colors may vary in actual product.

Using the Color-Coded Keyboard

The keys on the TI-83 Plus are color-coded to help you easily locate the key you need.

The light gray keys are the number keys. The blue keys along the right side of the keyboard are the common math functions. The blue keys across the top set up and display graphs. The blue APPS key provides access to applications such as the Finance application.

The primary function of each key is printed on the keys. For example, when you press MATH, the MATH menu is displayed.

Using the 2nd and ALPHA Keys

The secondary function of each key is printed in yellow above the key. When you press the yellow 2nd key, the character, abbreviation, or word printed in yellow above the other keys becomes active for the next keystroke. For example, when you press 2nd and then [MATH, the TEST menu is displayed. This guidebook describes this keystroke combination as 2nd [TEST].

The alpha function of each key is printed in green above the key. When you press the green ALPHA key, the alpha character printed in green above the other keys becomes active for the next keystroke. For example, when you press ALPHA and then MATH, the letter A is entered. This guidebook describes this keystroke combination as ALPHA [A].

Turning On and Turning Off the TI-83 Plus

Turning On the Calculator

To turn on the Tl-83 Plus, press 0 N .

- If you previously had turned off the calculator by pressing 2nd [0FF], the TI-83 Plus displays the home screen as it was when you last used it and clears any error.

(106)	8	9	\times
w	5	6	-
s\%o4	2	3	+
ow	.	(-)	tita

- If Automatic Power Down ${ }^{\text {TM }}\left(\mathrm{APD}^{\text {TM }}\right)$ had previously turned off the calculator, the TI-83 Plus will return exactly as you left it, including the display, cursor, and any error.
- If the TI-83 Plus is turned off and you connect it to another calculator or personal computer, the TI-83 Plus will "wake up" when you complete the connection.
- If the TI-83 Plus is turned off and connected to another calculator or personal computer, any communication activity will "wake up" the TI-83 Plus.

To prolong the life of the batteries, APD turns off the TI-83 Plus automatically after about five minutes without any activity.

Turning Off the Calculator

To turn off the TI-83 Plus manually, press 2nd [OFF].

- All settings and memory contents are retained by Constant Memory ${ }^{\text {TM }}$.
- Any error condition is cleared.

Batteries

The TI-83 Plus uses four AAA alkaline batteries and has a userreplaceable backup lithium battery (CR1616 or CR1620). To replace batteries without losing any information stored in memory, follow the steps in Appendix B.

Setting the Display Contrast

Adjusting the Display Contrast

You can adjust the display contrast to suit your viewing angle and lighting conditions. As you change the contrast setting, a number from 0 (lightest) to 9 (darkest) in the top-right corner indicates the current level. You may not be able to see the number if contrast is too light or too dark.

Note: The TI-83 Plus has 40 contrast settings, so each number 0 through 9 represents four settings.

The TI-83 Plus retains the contrast setting in memory when it is turned off.

To adjust the contrast, follow these steps.

1. Press and release the 2nd key.
2. Press and hold \square or Δ, which are below and above the contrast symbol (yellow, half-shaded circle).

- \quad lightens the screen.
- Δ darkens the screen.

Note: If you adjust the contrast setting to $\mathbf{0}$, the display may become completely blank. To restore the screen, press and release 2nd, and then press and hold Δ until the display reappears.

When to Replace Batteries

When the batteries are low, a low-battery message is displayed when you:

- Turn on the calculator.
- Download a new application.
- Attempt to upgrade to new software.

To replace the batteries without losing any information in memory, follow the steps in Appendix B.

Generally, the calculator will continue to operate for one or two weeks after the low-battery message is first displayed. After this period, the TI-83 Plus will turn off automatically and the unit will not operate. Batteries must be replaced. All memory should be retained.
Note: The operating period following the first low-battery message could be longer than two weeks if you use the calculator infrequently.

The Display

Types of Displays

The TI-83 Plus displays both text and graphs. Chapter 3 describes graphs. Chapter 9 describes how the TI-83 Plus can display a horizontally or vertically split screen to show graphs and text simultaneously.

Home Screen

The home screen is the primary screen of the TI-83 Plus. On this screen, enter instructions to execute and expressions to evaluate. The answers are displayed on the same screen.

Displaying Entries and Answers

When text is displayed, the Tl-83 Plus screen can display a maximum of 8 lines with a maximum of 16 characters per line. If all lines of the display are full, text scrolls off the top of the display. If an expression on the home screen, the $\mathbf{Y}=$ editor (Chapter 3), or the program editor (Chapter 16) is longer than one line, it wraps to the beginning of the next line. In numeric editors such as the window screen (Chapter 3), a long expression scrolls to the right and left.

When an entry is executed on the home screen, the answer is displayed on the right side of the next line.

```
109(2).30102999557 & Entry 
```

The mode settings control the way the TI-83 Plus interprets expressions and displays answers.

If an answer, such as a list or matrix, is too long to display entirely on one line, an ellipsis (...) is displayed to the right or left. Press \square and to display the answer.

Returning to the Home Screen

To return to the home screen from any other screen, press 2nd [QUIT].

Busy Indicator

When the Tl-83 Plus is calculating or graphing, a vertical moving line is displayed as a busy indicator in the top-right corner of the screen. When you pause a graph or a program, the busy indicator becomes a vertical moving dotted line.

Display Cursors

In most cases, the appearance of the cursor indicates what will happen when you press the next key or select the next menu item to be pasted as a character.

Cursor	Appearance	Effect of Next Keystroke
Entry	Solid rectangle	A character is entered at the cursor; any existing character is overwritten
Insert	Underline	A character is inserted in front of the cursor location
Second	Reverse arrow 1	A 2nd character (yellow on the keyboard) is entered or a 2nd operation is executed
Alpha	Reverse A 6	An alpha character (green on the keyboard) is entered or SOLVE is executed
Full	Checkerboard rectangle 를	No entry; the maximum characters are entered at a prompt or memory is full

If you press ALPHA during an insertion, the cursor becomes an underlined A (A). If you press 2nd during an insertion, the underlined cursor becomes an underlined \uparrow (\uparrow).

Graphs and editors sometimes display additional cursors, which are described in other chapters.

Entering Expressions and Instructions

What Is an Expression?

An expression is a group of numbers, variables, functions and their arguments, or a combination of these elements. An expression evaluates to a single answer. On the TI-83 Plus, you enter an expression in the same order as you would write it on paper. For example, πR^{2} is an expression.

You can use an expression on the home screen to calculate an answer. In most places where a value is required, you can use an expression to enter a value.

```
(1/3)2
    .1111111111
```

$$
\begin{aligned}
& \text { WIFITIU }
\end{aligned}
$$

Entering an Expression

To create an expression, you enter numbers, variables, and functions from the keyboard and menus. An expression is completed when you press ENTER, regardless of the cursor location. The entire expression is evaluated according to Equation Operating System (EOS ${ }^{\text {TM }}$) rules, and the answer is displayed.

Most Tl-83 Plus functions and operations are symbols comprising several characters. You must enter the symbol from the keyboard or a menu; do not spell it out. For example, to calculate the log of 45 , you must press LOG 45. Do not enter the letters L, O, and G. If you enter LOG, the TI-83 Plus interprets the entry as implied multiplication of the variables \mathbf{L}, \mathbf{O}, and \mathbf{G}.

Calculate $3.76 \div(-7.9+\sqrt{5})+2 \log 45$.

ENTER

Multiple Entries on a Line

To enter two or more expressions or instructions on a line, separate them with colons ([ALPHA [:]). All instructions are stored together in last entry (ENTRY).

Entering a Number in Scientific Notation

To enter a number in scientific notation, follow these steps.

1. Enter the part of the number that precedes the exponent. This value can be an expression.
2. Press 2nd [EE]. e is pasted to the cursor location.
3. If the exponent is negative, press $(-)$, and then enter the exponent, which can be one or two digits.
(19/2) ${ }^{-2} \quad .095$

When you enter a number in scientific notation, the Tl-83 Plus does not automatically display answers in scientific or engineering notation. The mode settings and the size of the number determine the display format.

Functions

A function returns a value. For example, $\div,-,+, \sqrt{ }($, and $\log ($ are the functions in the example on the previous page. In general, the first letter of each function is lowercase on the TI-83 Plus. Most functions take at least one argument, as indicated by an open parenthesis (() following the name. For example, $\boldsymbol{\operatorname { s i n }}$ (requires one argument, $\boldsymbol{\operatorname { s i n }}($ value).

Instructions

An instruction initiates an action. For example, CrDraw is an instruction that clears any drawn elements from a graph. Instructions cannot be used in expressions. In general, the first letter of each instruction name is uppercase. Some instructions take more than one argument, as indicated by an open parenthesis (() at the end of the name. For example, Circle(requires three arguments, Circle(X, Y,radius).

Interrupting a Calculation

To interrupt a calculation or graph in progress, which is indicated by the busy indicator, press ON.

When you interrupt a calculation, a menu is displayed.

- To return to the home screen, select 1:Quit.
- To go to the location of the interruption, select 2:Goto.

When you interrupt a graph, a partial graph is displayed.

- To return to the home screen, press CLEAR or any nongraphing key.
- To restart graphing, press a graphing key or select a graphing instruction.

Tl-83 Plus Edit Keys

Keystrokes	Result
\square or ${ }^{\square}$	Moves the cursor within an expression; these keys repeat.
Δ or \square	Moves the cursor from line to line within an expression that occupies more than one line; these keys repeat.
	On the top line of an expression on the home screen, Δ moves the cursor to the beginning of the expression.
	On the bottom line of an expression on the home screen, moves the cursor to the end of the expression.
2nd 1	Moves the cursor to the beginning of an expression.
2nd \square	Moves the cursor to the end of an expression.
ENTER	Evaluates an expression or executes an instruction.
CLEAR	On a line with text on the home screen, clears the current line.
	On a blank line on the home screen, clears everything on the home screen.
	In an editor, clears the expression or value where the cursor is located; it does not store a zero.
DEL	Deletes a character at the cursor; this key repeats.
2nd [INS]	Changes the cursor to an underline (_ $)$; inserts characters in front of the underline cursor; to end insertion, press [2nd [iNS] or press $\square, ~ \triangle, \square$, or \square.

Keystrokes	Result
2nd	Changes the cursor to $\mathbf{1}$ ；the next keystroke performs a 2nd operation（an operation in yellow above a key and to the left）；to cancel 2nd，press 2nd again．
ALPHA	Changes the cursor to $⿴ 囗 ⿱ 一 一 ⿻ 上 丨 i ;$ the next keystroke pastes an alpha character（a character in green above a key and to the right）or executes SOLVE（Chapters 10 and 11）；to cancel ALPHA，press ALPHA or press \square, Δ ，\square ，or \square ．
2nd［A－LOCK］	Changes the cursor to li；sets alpha－lock；subsequent keystrokes（on an alpha key）paste alpha characters；to cancel alpha－lock，press ALPHA．If you are prompted to enter a name such as for a group or a program，alpha－lock is set automatically．
X，T， ，,\square	Pastes an \mathbf{X} in Func mode，a \mathbf{T} in Par mode，a θ in Pol mode，or an \boldsymbol{n} in Seq mode with one keystroke．

Setting Modes

Checking Mode Settings

Mode settings control how the TI-83 Plus displays and interprets numbers and graphs. Mode settings are retained by the Constant Memory feature when the TI-83 Plus is turned off. All numbers, including elements of matrices and lists, are displayed according to the current mode settings.

To display the mode settings, press MODE. The current settings are highlighted. Defaults are highlighted below. The following pages describe the mode settings in detail.

Normal Sci Eng	Numeric notation
Float 0123456789	Number of decimal places
Radian Degree	Unit of angle measure
Func Par Pol Seq	Type of graphing
Connected Dot	Whether to connect graph points
Sequential Simul	Whether to plot simultaneously
Real atbi re^日i	Real, rectangular complex, or polar complex
Full Horiz G-T	Full screen, two split-screen modes

Changing Mode Settings

To change mode settings, follow these steps.

1. Press \square or to move the cursor to the line of the setting that you want to change.
2. Press \square or to move the cursor to the setting you want.
3. Press ENTER.

Setting a Mode from a Program

You can set a mode from a program by entering the name of the mode as an instruction; for example, Func or Float. From a blank program command line, select the mode setting from the mode screen; the instruction is pasted to the cursor location.

FROGREHI: TEST

Normal, Sci, Eng

Notation modes only affect the way an answer is displayed on the home screen. Numeric answers can be displayed with up to 10 digits and a two-digit exponent. You can enter a number in any format.

Normal notation mode is the usual way we express numbers, with digits to the left and right of the decimal, as in 12345.67.

Sci (scientific) notation mode expresses numbers in two parts. The significant digits display with one digit to the left of the decimal. The appropriate power of 10 displays to the right of E , as in 1.234567 E 4 .

Eng (engineering) notation mode is similar to scientific notation. However, the number can have one, two, or three digits before the decimal; and the power-of-10 exponent is a multiple of three, as in 12.34567E3.

Note: If you select Normal notation, but the answer cannot display in 10 digits (or the absolute value is less than .001), the TI-83 Plus expresses the answer in scientific notation.

Float, 0123456789

Float (floating) decimal mode displays up to 10 digits, plus the sign and decimal.

0123456789 (fixed) decimal mode specifies the number of digits (0 through 9) to display to the right of the decimal. Place the cursor on the desired number of decimal digits, and then press ENTER.

The decimal setting applies to Normal, Sci, and Eng notation modes.

The decimal setting applies to these numbers:

- An answer displayed on the home screen
- Coordinates on a graph (Chapters 3, 4, 5, and 6)
- The Tangent(DRaw instruction equation of the line, \mathbf{x}, and $\mathbf{d y} / \mathbf{d x}$ values (Chapter 8)
- Results of calculate operations (Chapters 3, 4, 5, and 6)
- The regression equation stored after the execution of a regression model (Chapter 12)

Radian, Degree

Angle modes control how the TI-83 Plus interprets angle values in trigonometric functions and polar/rectangular conversions.

Radian mode interprets angle values as radians. Answers display in radians.

Degree mode interprets angle values as degrees. Answers display in degrees.

Func, Par, Pol, Seq

Graphing modes define the graphing parameters. Chapters 3, 4, 5, and 6 describe these modes in detail.

Func (function) graphing mode plots functions, where \mathbf{Y} is a function of \mathbf{X} (Chapter 3).

Par (parametric) graphing mode plots relations, where \mathbf{X} and \mathbf{Y} are functions of \mathbf{T} (Chapter 4).

Pol (polar) graphing mode plots functions, where \mathbf{r} is a function of θ (Chapter 5).

Seq (sequence) graphing mode plots sequences (Chapter 6).

Connected, Dot

Connected plotting mode draws a line connecting each point calculated for the selected functions.

Dot plotting mode plots only the calculated points of the selected functions.

Sequential, Simul

Sequential graphing-order mode evaluates and plots one function completely before the next function is evaluated and plotted.

Simul (simultaneous) graphing-order mode evaluates and plots all selected functions for a single value of \mathbf{X} and then evaluates and plots them for the next value of \boldsymbol{x}.

Note: Regardless of which graphing mode is selected, the TI-83 Plus will sequentially graph all stat plots before it graphs any functions.

Real, $\mathbf{a + b} i$, re $^{\wedge} \theta i$

Real mode does not display complex results unless complex numbers are entered as input.

Two complex modes display complex results.

- $\mathbf{a}+\mathbf{b i}$ (rectangular complex mode) displays complex numbers in the form $\mathrm{a}+\mathrm{b}$.
- re^ ${ }^{\boldsymbol{\theta}}$ (polar complex mode) displays complex numbers in the form $r{ }^{\wedge} \theta i$.

Full, Horiz, G-T

Full screen mode uses the entire screen to display a graph or edit screen.

Each split-screen mode displays two screens simultaneously.

- Horiz (horizontal) mode displays the current graph on the top half of the screen; it displays the home screen or an editor on the bottom half (Chapter 9).
- G-T (graph-table) mode displays the current graph on the left half of the screen; it displays the table screen on the right half (Chapter 9).

Using TI-83 Plus Variable Names

Variables and Defined Items

On the $\mathrm{Tl}-83$ Plus you can enter and use several types of data, including real and complex numbers, matrices, lists, functions, stat plots, graph databases, graph pictures, and strings.

The TI-83 Plus uses assigned names for variables and other items saved in memory. For lists, you also can create your own five-character names.

Variable Type	Names
Real numbers	A, B, ... , Z
Complex numbers	A, B, .., \mathbf{Z}
Matrices	[A], [B], [C], ... , [J]
Lists	L1, L2, L3, L4, L5, L6, and user-defined names
Functions	$\mathrm{Y}_{1}, \mathrm{Y} 2, \ldots, \mathrm{Y} 9, \mathrm{Y} 0$
Parametric equations	X1T and Y_{11} T, . . , X6T and $\mathbf{Y 6 T}$
Polar functions	r1, r2, r3, r4, r5, r6
Sequence functions	$\mathbf{u}, \mathrm{v}, \mathrm{w}$
Stat plots	Plot1, Plot2, Plot3
Graph databases	GDB1, GDB2, . . , GDB9, GDB0

Variable Type	Names
Graph pictures	Pic1, Pic2, .., Pic9, Pic0
Strings	Str1, Str2, .., Str9, Str0
Apps	Applications
AppVars	Application variables
Groups	Grouped variables
System variables	Xmin, Xmax, and others

Notes about Variables

- You can create as many list names as memory will allow (Chapter 11).
- Programs have user-defined names and share memory with variables (Chapter 16).
- From the home screen or from a program, you can store to matrices (Chapter 10), lists (Chapter 11), strings (Chapter 15), system variables such as Xmax (Chapter 1), TbIStart (Chapter 7), and all $\mathbf{Y}=$ functions (Chapters 3, 4, 5, and 6).
- From an editor, you can store to matrices, lists, and $\mathbf{Y}=$ functions (Chapter 3).
- From the home screen, a program, or an editor, you can store a value to a matrix element or a list element.
- You can use draw sto menu items to store and recall graph databases and pictures (Chapter 8).
- Although most variables can be archived, system variables including r, t, x, y, and θ cannot be archived (Chapter 18)
- Apps are independent applications.which are stored in Flash ROM. AppVars is a variable holder used to store variables created by independent applications. You cannot edit or change variables in AppVars unless you do so through the application which created them.

Storing Variable Values

Storing Values in a Variable

Values are stored to and recalled from memory using variable names. When an expression containing the name of a variable is evaluated, the value of the variable at that time is used.

To store a value to a variable from the home screen or a program using the STO key, begin on a blank line and follow these steps.

1. Enter the value you want to store. The value can be an expression.
2. Press STO. \rightarrow is copied to the cursor location.
3. Press ALPHA and then the letter of the variable to which you want to store the value.
4. Press ENTER. If you entered an expression, it is evaluated. The value is stored to the variable.
5+8^3*0 $\quad 517$

Displaying a Variable Value

To display the value of a variable, enter the name on a blank line on the home screen, and then press ENTER.
\square

Archiving Variables (Archive, Unarchive)

You can archive data, programs, or other variables in a section of memory called user data archive where they cannot be edited or deleted inadvertently. Archived variables are indicated by asterisks (*) to the left of the variable names. Archived variables cannot be edited or executed. They can only be seen and unarchived. For example, if you archive list L1, you will see that L1 exists in memory but if you select it and paste the name L1 to the home screen, you won't be able to see its contents or edit it until they are unarchived.

Recalling Variable Values

Using Recall (RCL)

To recall and copy variable contents to the current cursor location, follow these steps. To leave rcL, press CLEAR.

1. Press $2 n d$ [RCL]. RCL and the edit cursor are displayed on the bottom line of the screen.
2. Enter the name of the variable in any of five ways.

- Press ALPHA and then the letter of the variable.
- Press 2nd [LIST], and then select the name of the list, or press 2nd [$\llcorner n$].
- Press 2nd [MATRIX], and then select the name of the matrix.
- Press VARS to display the vars menu or VARS \square to display the vars y-vars menu; then select the type and then the name of the variable or function.
- Press PRGM \square, and then select the name of the program (in the program editor only).

The variable name you selected is displayed on the bottom line and the cursor disappears.

3. Press ENTER. The variable contents are inserted where the cursor was located before you began these steps.
|106+517
Note: You can edit the characters pasted to the expression without affecting the value in memory.

ENTRY (Last Entry) Storage Area

Using ENTRY (Last Entry)

When you press ENTER on the home screen to evaluate an expression or execute an instruction, the expression or instruction is placed in a storage area called entry (last entry). When you turn off the TI-83 Plus, ENTRY is retained in memory.

To recall entry, press [2nd [ENTRY]. The last entry is pasted to the current cursor location, where you can edit and execute it. On the home screen or in an editor, the current line is cleared and the last entry is pasted to the line.

Because the Tl-83 Plus updates entry only when you press ENTER, you can recall the previous entry even if you have begun to enter the next expression.

$5 母 7$	$5+7$
$5+7!$	12
ENTER	
2nd [ENTRY]	

Accessing a Previous Entry

The TI-83 Plus retains as many previous entries as possible in ENTRY, up to a capacity of 128 bytes. To scroll those entries, press 2nd [ENTRY] repeatedly. If a single entry is more than 128 bytes, it is retained for ENTRY, but it cannot be placed in the ENTRY storage area.

1 STO* ALPHA A	${ }^{1 \rightarrow \mathrm{~F}}$	
ENTER	$2 \rightarrow$ B	
2 STO* ALPHA B	2*E!	2
ENTER		
2nd [ENTRY]		

If you press 2nd [ENTRY] after displaying the oldest stored entry, the newest stored entry is displayed again, then the next-newest entry, and so on.

| 2nd [ENTRY] | $1 \rightarrow \mathrm{~F}$ 1
 $2 \rightarrow \mathrm{E}$ 2
 $1 \rightarrow \mathrm{~F} \square$ |
| :--- | :--- | :--- |

Reexecuting the Previous Entry

After you have pasted the last entry to the home screen and edited it (if you chose to edit it), you can execute the entry. To execute the last entry, press ENTER.

To reexecute the displayed entry, press ENTER again. Each reexecution displays an answer on the right side of the next line; the entry itself is not redisplayed.

Multiple Entry Values on a Line

To store to ENTRY two or more expressions or instructions, separate each expression or instruction with a colon, then press ENTER. All expressions and instructions separated by colons are stored in ENTRY.

When you press [2nd [ENTRY], all the expressions and instructions separated by colons are pasted to the current cursor location. You can edit any of the entries, and then execute all of them when you press ENTER.

For the equation $A=\pi r^{2}$, use trial and error to find the radius of a circle that covers 200 square centimeters. Use 8 as your first guess.

8 STO ALPHA R ALPHA [:] 2nd [π] ALPHA R x^{2} ENTER 2nd [ENTRY]

2nd 17 2nd [INS] . 95

ENTER
Continue until the answer is as accurate as you want.

Clearing ENTRY

Clear Entries (Chapter 18) clears all data that the TI-83 Plus is holding in the entry storage area.

Using Ans in an Expression

When an expression is evaluated successfully from the home screen or from a program, the TI-83 Plus stores the answer to a storage area called Ans (last answer). Ans may be a real or complex number, a list, a matrix, or a string. When you turn off the Tl-83 Plus, the value in Ans is retained in memory.

You can use the variable Ans to represent the last answer in most places. Press [2nd [ANS] to copy the variable name Ans to the cursor location. When the expression is evaluated, the TI-83 Plus uses the value of Ans in the calculation.

Calculate the area of a garden plot 1.7 meters by 4.2 meters. Then calculate the yield per square meter if the plot produces a total of 147 tomatoes.
 ENTER
147 [2nd [ANS]

$$
\left|\begin{array}{rr}
1.7 * 4.2 & 7.14 \\
147 / i n= & 26.5683529
\end{array}\right|
$$

ENTER

Continuing an Expression

You can use Ans as the first entry in the next expression without entering the value again or pressing 2nd [ANS]. On a blank line on the home screen, enter the function. The TI-83 Plus pastes the variable name Ans to the screen, then the function.

$5 \div 2$	$\boxed{5 / 2}$	2.5
ENTER	Ans*9.9	24.75
$\times 9 \square 9$		
ENTER		

Storing Answers

To store an answer, store Ans to a variable before you evaluate another expression.

Calculate the area of a circle of radius 5 meters. Next, calculate the volume of a cylinder of radius 5 meters and height 3.3 meters, and then store the result in the variable V .

```
2nd] [\pi] 5 x x
ENTER
\otimes 3 0
ENTER
STO* ALPHA V
ENTER
```

$\left|\begin{array}{lr}\pi 52 & 78.53981634 \\ \text { Ans*S } \\ \text { Ans. } & 259.1813939 \\ 259.1813939\end{array}\right|$

TI-83 Plus Menus

Using a Tl-83 Plus Menu

You can access most Tl-83 Plus operations using menus. When you press a key or key combination to display a menu, one or more menu names appear on the top line of the screen.

- The menu name on the left side of the top line is highlighted. Up to seven items in that menu are displayed, beginning with item 1, which also is highlighted.
- A number or letter identifies each menu item's place in the menu. The order is $\mathbf{1}$ through $\mathbf{9}$, then $\mathbf{0}$, then $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and so on. The list names, PRGM EXEC, and PRGM Edit menus only label items 1 through 9 and 0.
- When the menu continues beyond the displayed items, a down arrow (\downarrow) replaces the colon next to the last displayed item.
- When a menu item ends in an ellipsis (...), the item displays a secondary menu or editor when you select it.
- When an asterisk (*) appears to the left of a menu item, that item is stored in user data archive (Chapter 18).

To display any other menu listed on the top line, press \square or until that menu name is highlighted. The cursor location within the initial menu is irrelevant. The menu is displayed with the cursor on the first item.

Note: The Menu Map in Appendix A shows each menu, each operation under each menu, and the key or key combination you press to display each menu.

Displaying a Menu

While using your TI-83 Plus, you often will need to access items from its menus.

When you press a key that displays a menu, that menu temporarily replaces the screen where you are working. For example, when you press MATH, the матн menu is displayed as a full screen.

After you select an item from a menu, the screen where you are working usually is displayed again.

$5+93$

Moving from One Menu to Another

Some keys access more than one menu. When you press such a key, the names of all accessible menus are displayed on the top line. When you highlight a menu name, the items in that menu are displayed. Press \square and to highlight each menu
 name.

Scrolling a Menu

To scroll down the menu items, press \square. To scroll up the menu items, press \triangle.

To page down six menu items at a time, press ALPHA \square. To page up six menu items at a time, press ALPHA \triangle. The green arrows on the calculator, between \square and \triangle, are the page-down and page-up symbols.

To wrap to the last menu item directly from the first menu item, press Δ.
To wrap to the first menu item directly from the last menu item, press \square.

Selecting an Item from a Menu

You can select an item from a menu in either of two ways.

- Press the number or letter of the item you want to select. The cursor can be anywhere on the menu, and the item you select need not be displayed on the screen.
- Press \square or Δ to move the cursor to the item you want, and then press ENTER.

After you select an item from a menu, the TI-83 Plus typically displays the previous screen.

Note: On the list names, PRGM EXEC, and PRGM edit menus, only items 1 through 9 and $\mathbf{0}$ are labeled in such a way that you can select them by pressing the appropriate number key. To move the cursor to the first item beginning with any alpha character or θ, press the key combination for that alpha character or θ. If no items begin with that character, the cursor moves beyond it to the next item.

Calculate $\sqrt[3]{ } 27$.

MATM $\square \square \square$ ENTER		
$27 \square$ ENTER	s. (27)	3

Leaving a Menu without Making a Selection

You can leave a menu without making a selection in any of four ways.

- Press [2nd [QuIT] to return to the home screen.
- Press CLEAR to return to the previous screen.
- Press a key or key combination for a different menu, such as MATH or 2nd [LIST].
- Press a key or key combination for a different screen, such as Y or 2nd [TABLE].

VARS and VARS Y-VARS Menus

VARS Menu

You can enter the names of functions and system variables in an expression or store to them directly.

To display the vars menu, press VARS. All vars menu items display secondary menus, which show the names of the system variables.
1:Window, 2:Zoom, and 5:Statistics each access more than one secondary menu.

VARS Y-VARS	
1: Window...	$\mathbf{X} / \mathbf{Y}, \mathbf{T} / \theta$, and $\mathbf{U} / \mathbf{V} / \mathbf{W}$ variables
2: Zoom...	$\mathbf{Z X / Z Y}, \mathbf{Z T} / \mathbf{Z} \boldsymbol{\theta}$, and $\mathbf{Z U}$ variables
3: GDB...	Graph database variables
4: Picture...	Picture variables
5: Statistics...	XY, Σ, EQ, TEST, and PTS variables
6: Table...	TABLE variables
7: String...	String variables

Selecting a Variable from the VARS Menu or VARS Y-VARS Menu

To display the vars $\mathbf{\gamma}$-vars menu, press VARS \square. 1:Function, 2:Parametric, and 3:Polar display secondary menus of the $\mathbf{Y}=$ function variables.

VARS Y-VARS
1: Function... $\quad \mathbf{Y} n$ functions
2: Parametric... $\quad \mathbf{X}_{n} \mathbf{T}, \mathbf{Y}_{n} \boldsymbol{T}$ functions
3: Polar... r functions
4: On/Off... Lets you select/deselect functions
Note: The sequence variables ($\mathbf{u}, \mathbf{v}, \mathbf{w}$) are located on the keyboard as the second functions of 7,8 , and 9 .

To select a variable from the vars or vars γ-vars menu, follow these steps.

1. Display the vars or vars y-vars menu.

- Press VARS to display the vars menu.
- Press VARS to display the vars y-vars menu.

2. Select the type of variable, such as $2:$ Zoom from the vars menu or 3:Polar from the vars y-vars menu. A secondary menu is displayed.
3. If you selected 1:Window, 2:Zoom, or 5:Statistics from the vars menu, you can press \square or to display other secondary menus.
4. Select a variable name from the menu. It is pasted to the cursor location.

Equation Operating System (EOS)

Order of Evaluation

The Equation Operating System (EOS) defines the order in which functions in expressions are entered and evaluated on the TI-83 Plus. EOS lets you enter numbers and functions in a simple, straightforward sequence.

EOS evaluates the functions in an expression in this order.

Order Number	Function
1	Functions that precede the argument, such as $\sqrt{(, \boldsymbol{\operatorname { s i n }}(, \text { or } \boldsymbol{\operatorname { l o g } (}}$
2	Functions that are entered after the argument, such as ${ }^{\mathbf{2},-\mathbf{1},}!^{\circ}{ }^{\circ}$, \mathbf{r}, and conversions
3	Powers and roots, such as $\mathbf{2 \wedge}^{\wedge}$ or $\mathbf{5}^{\mathbf{x}} \sqrt{\mathbf{3 2}}$
4	Permutations ($\mathbf{n P r}$) and combinations $(\mathbf{n C r})$
5	Multiplication, implied multiplication, and division
6	Addition and subtraction
7	Relational functions, such as $>$ or \leq
8	Logic operator and
9	Logic operators or and xor

Note: Within a priority level, EOS evaluates functions from left to right. Calculations within parentheses are evaluated first.

Implied Multiplication

The TI-83 Plus recognizes implied multiplication, so you need not press \boxtimes to express multiplication in all cases. For example, the TI-83 Plus interprets 2π, $4 \sin (46), 5(1+2)$, and $(2 * 5) 7$ as implied multiplication.

Note: TI-83 Plus implied multiplication rules, although like theTI-83, differ from those of the TI-82. For example, the TI-83 Plus evaluates $\mathbf{1 / 2 X}$ as (1/2)*X, while the TI-82 evaluates $\mathbf{1 / 2 X}$ as $\mathbf{1 / (2 * X) ~ (C h a p t e r ~ 2) . ~}$

Parentheses

All calculations inside a pair of parentheses are completed first. For example, in the expression $4(1+2)$, EOS first evaluates the portion inside the parentheses, $\mathbf{1 + 2}$, and then multiplies the answer, $\mathbf{3}$, by 4.

$4 * 1+2$	6
$4(1+2)$	12

You can omit the close parenthesis ()) at the end of an expression. All open parenthetical elements are closed automatically at the end of an expression. This is also true for open parenthetical elements that precede the store or display-conversion instructions.

Note: An open parenthesis following a list name, matrix name, or $Y=$ function name does not indicate implied multiplication. It specifies elements in the list (Chapter 11) or matrix (Chapter 10) and specifies a value for which to solve the $\mathrm{Y}=$ function.

Negation

To enter a negative number, use the negation key. Press $-(-)$ and then enter the number. On the TI-83 Plus, negation is in the third level in the EOS hierarchy. Functions in the first level, such as squaring, are evaluated before negation.

For example, - \mathbf{x}^{2}, evaluates to a negative number (or 0). Use parentheses to square a negative number.

$\begin{array}{\|lr} -2^{2} & -4 \\ (-2)^{2} & 4 \end{array}$		$2 \rightarrow F$ $-\mathrm{H}^{2}$ 2 $C-\mathrm{F}^{2} \mathrm{C}$ -4	

Note: Use the \square key for subtraction and the $\boxed{-}$ key for negation. If you press \square to enter a negative number, as in 9 区 $\square 7$, or if you press $-($ to indicate subtraction, as in $9(-)$ 7, an error occurs. If you press ALPHA A ALPHA B, it is interpreted as implied multiplication (A*-B).

Special Features of the TI-83 Plus

Flash - Electronic Upgradability

The TI-83 Plus uses Flash technology, which lets you upgrade to future software versions without buying a new calculator.

As new functionality becomes available, you can electronically upgrade your TI-83 Plus from the Internet. Future software versions include maintenance upgrades that will be released free of charge, as well as new applications and major software upgrades that will be available for purchase from the TI web site: education.ti.com

1.56 Megabytes (M) of Available Memory

1.56 M of available memory are built into the TI-83 Plus. About 24 kilobytes (K) of RAM (random access memory) are available for you to compute and store functions, programs, and data.

For details, refer to:
Chapter 18

About 1.54 M of user data archive allow you to store data, programs, applications, or any other variables to a safe location where they cannot
be edited or deleted inadvertently. You can also free up RAM by archiving variables to user data

Applications

Applications can be installed to customize the TI-83 Plus to your classroom needs. The big 1.54 M archive space lets you store up to 94 applications at one time. Applications can also be stored on a computer for later use or linked unit-to-unit.

Archiving

You can store variables in the TI-83 Plus user data archive, a protected area of memory separate from RAM. The user data archive lets you:

- Store data, programs, applications or any other variables to a safe location where they cannot be edited or deleted inadvertently.
- Create additional free RAM by archiving variables.

By archiving variables that do not need to be edited frequently, you can free up RAM for applications that may require additional memory.

Calculator-Based Laboratory ${ }^{\text {TM }}$ (CBL $\mathbf{2}^{\text {TM }}$, CBL $^{\text {TM }}$) and Calculator-Based Ranger ${ }^{\text {TM }}$ (CBR ${ }^{\text {TM }}$)

The TI-83 Plus comes with the CBL/CBR application already installed. When coupled with the (optional) CBL 2/CBL or CBR accessories, you can use the TI-83 Plus to analyze real world data.

CBL 2/CBL and CBR let you explore mathematical and scientific relationships among distance, velocity, acceleration, and time using data collected from activities you perform.

CBL 2/CBL and CBR differ in that CBL 2/CBL allows you to collect data using several different probes analyzing temperature, light, voltage, or sonic (motion) data. CBR collects data using a built-in Sonic probe. CBL 2/CBL and CBR accessories can be linked together to collect more than one type of data at the same time. You can find more information on CBL 2/CBL and CBR in their user manuals.

Other TI-83 Plus Features

Getting Started has introduced you to basic TI-83 Plus operations. This guidebook covers the other features and capabilities of the TI-83 Plus in greater detail.

Graphing

You can store, graph, and analyze up to 10 functions, up to six parametric functions, up to six polar functions, and up to three sequences.

For graphing details, refer to:
Chapters 3, 4, 5, 6, 8

You can use draw instructions to annotate graphs.
The graphing chapters appear in this order: Function, Parametric, Polar, Sequence, and DRAW.

Sequences

You can generate sequences and graph them over time. Or, you can graph them as web plots

For details, refer to:
Chapter 6 or as phase plots.

Tables

You can create function evaluation tables to analyze many functions simultaneously.

Split Screen

You can split the screen horizontally to display both a graph and a related editor (such as the $Y=$ editor), the table, the stat list editor, or the home screen. Also, you can split the screen vertically to display a graph and its table simultaneously.

Matrices

You can enter and save up to 10 matrices and perform standard matrix operations on them.

For details, refer to:
Chapter 7

For details, refer to:
Chapter 9

For details, refer to:
Chapter 10

Lists

You can enter and save as many lists as memory allows for use in statistical analyses. You can attach formulas to lists for automatic computation. You can use lists to evaluate expressions at multiple values simultaneously and to graph a family of curves.

Statistics

You can perform one- and two-variable, listbased statistical analyses, including logistic and sine regression analysis. You can plot the data as a histogram, xyLine, scatter plot, modified or regular box-and-whisker plot, or normal probability plot. You can define and store up to three stat plot definitions.

Inferential Statistics

You can perform 16 hypothesis tests and confidence intervals and 15 distribution functions. You can display hypothesis test results graphically or numerically.

For details, refer to:
Chapter 11

For details, refer to:
Chapter 12

For details, refer to:

Chapter 13

Applications

You can use such applications as Finance or the CBL/CBR. With the Finance application you

For details, refer to:

Chapter 14 can use time-value-of-money (Tvm) functions to analyze financial instruments such as annuities, loans, mortgages, leases, and savings. You can analyze the value of money over equal time periods using cash flow functions. You can amortize loans with the amortization functions. With the CBL/CBR applications and CBL 2/CBL or CBR (optional) accessories, you can use a variety of probes to collect real world data.

Your TI-83 Plus includes Flash applications in addition to the ones mentioned above. Press APPS to see the complete list of applications that came with your calculator.

Documentation for TI Flash applications is on the TI Resource CD. Visit education.ti.com/calc/guides for additional Flash application guidebooks.

CATALOG

The catalog is a convenient, alphabetical list of all functions and instructions on the TI-83 Plus. You can paste any function or instruction from the catalog to the current cursor location.

For details, refer to:
Chapter 15

Programming

You can enter and store programs that include extensive control and input/output instructions.

For details, refer to:
Chapter 16

Archiving

Archiving allows you to store data, programs, or other variables to user data archive where they cannot be edited or deleted inadvertently. Archiving also allows you to free up RAM for variables that may require additional memory.

Archived variables are indicated by asterisks (*) to the left of the variable names.

Communication Link

The Tl-83 Plus has a port to connect and
communicate with another Tl-83 Plus, a TI-83 Plus, a TI-83, a TI-82, a TI-73, CBL 2/CBL, or a CBR System. The T-83 Plus has a pot

For details, refer to:
Chapter 16

For details, refer to:
Chapter 19

With the TITM Connect or TI-GRAPH LINK ${ }^{\text {TM }}$ software and a TI-GRAPH LINK cable, you can also link the Tl-83 Plus to a personal computer.

As future software upgrades become available on the TI web site, you can download the software to your PC and then use the TI Connect or TI-GRAPH LINK software and a TI-GRAPH LINK cable to upgrade your TI-83 Plus.

Error Conditions

Diagnosing an Error

The TI-83 Plus detects errors while performing these tasks.

- Evaluating an expression
- Executing an instruction
- Plotting a graph
- Storing a value

When the Tl-83 Plus detects an error, it returns an error message as a menu title, such as err:Syntax or err:Domain. Appendix B describes each error type and possible reasons for the error.

- If you select 1:Quit (or press 2nd [QuIT] or CLEAR), then the home screen is displayed.
- If you select 2:Goto, then the previous screen is displayed with the cursor at or near the error location.

Note: If a syntax error occurs in the contents of a $\mathbf{Y}=$ function during program execution, then the Goto option returns to the $\mathbf{Y}=$ editor, not to the program.

Correcting an Error

To correct an error, follow these steps.

1. Note the error type (ERR:error type).
2. Select 2:Goto, if it is available. The previous screen is displayed with the cursor at or near the error location.
3. Determine the error. If you cannot recognize the error, refer to Appendix B.
4. Correct the expression.

Chapter 2: Math, Angle, and Test Operations

Getting Started: Coin Flip

Getting Started is a fast-paced introduction. Read the chapter for details.
Suppose you want to model flipping a fair coin 10 times. You want to track how many of those 10 coin flips result in heads. You want to perform this simulation 40 times. With a fair coin, the probability of a coin flip resulting in heads is 0.5 and the probability of a coin flip resulting in tails is 0.5 .

1. Begin on the home screen. Press MATH \square to display the math prb menu. Press 7 to select 7:randBin((random Binomial). randBin(is pasted to the home screen. Press 10 to enter the number of coin flips. Press \square. Press $\square 5$ to enter the probability of heads. Press \square. Press 40 to enter the number of simulations. Press \square.
2. Press ENTER to evaluate the expression. A list of 40 elements is generated with the first 7 displayed. The list contains the count of heads resulting from each set of 10 coin flips. The list has 40 elements because this simulation was performed 40 times. In this example, the coin came up heads five times in the first set of 10 coin flips, five times in the second set of 10 coin flips, and so on.
3. Press \square or to view the additional counts in the list. Ellipses (...) indicate that the list continues beyond the screen.
4. Press STOM 2nd [L1] ENTER to store the data to the list name L1. You then can use the data for another activity, such as plotting a histogram (Chapter 12).
Note: Since randBin(generates random numbers, your list elements may differ from those in the example.
randEincian.5,40

Keyboard Math Operations

Using Lists with Math Operations

Math operations that are valid for lists return a list calculated element by element. If you use two lists in the same expression, they must be the same length.
$|6,29+63,4\rangle+512 \mid$

+ (Addition), - (Subtraction), * (Multiplication), / (Division)

You can use + (addition, $⿴$), - (subtraction, \square), * (multiplication, \boxtimes), and $/$ (division, \dagger) with real and complex numbers, expressions, lists, and matrices. You cannot use / with matrices.

value $A+$ value B	value $A-$ value B
value A value B	value $/$ value B

Trigonometric Functions

You can use the trigonometric (trig) functions (sine, SIN; cosine, COS; and tangent, TAN) with real numbers, expressions, and lists. The current angle mode setting affects interpretation. For example, $\boldsymbol{\operatorname { s i n }}(\mathbf{3 0})$ in Radian mode returns -. 9880316241 ; in Degree mode it returns .5.

You can use the inverse trig functions (arcsine, 2nd [sin-1]; arccosine, 2nd [COS-1]; and arctangent, [2nd [TAN-1]) with real numbers, expressions, and lists. The current angle mode setting affects interpretation.
$\boldsymbol{\operatorname { s i n }}^{-1}$ (value) $\boldsymbol{\operatorname { c o s }}^{-1}$ (value) $\boldsymbol{\operatorname { t a n }}^{-1}$ (value)
Note: The trig functions do not operate on complex numbers.
${ }^{\wedge}$ (Power), ${ }^{2}$ (Square), $\sqrt{ }($ (Square Root)
You can use ^ (power, \triangle), ${ }^{2}$ (square, x^{2}), and $\sqrt{ }($ (square root, 2nd [\checkmark]) with real and complex numbers, expressions, lists, and matrices. You cannot use $\sqrt{ }$ (with matrices.
value^power value $^{2}{ }^{2} \quad \sqrt{(v a l u e)}$
${ }^{-1}$ (Inverse)
You can use ${ }^{-1}$ (inverse, $x-1$) with real and complex numbers, expressions, lists, and matrices. The multiplicative inverse is equivalent to the reciprocal, $1 / x$.
value ${ }^{-1}$
${ }^{5-1} \quad .2$
$\log \left(, 10^{\wedge}(, \ln (\right.$
You can use log((logarithm, LOG), 10^((power of 10, 2nd [10x]), and $\ln ($ (natural log, $\llcorner\mathbb{N}$) with real or complex numbers, expressions, and lists.
$\log ($ value)
10^(power) $\quad \ln$ (value)
e^{\wedge} ((Exponential)
$\mathbf{e}^{\wedge}\left(\right.$ (exponential, 2nd $\left.\left[e^{x}\right]\right)$ returns the constant \mathbf{e} raised to a power. You can use \mathbf{e}^{\wedge} (with real or complex numbers, expressions, and lists.
\mathbf{e}^{\wedge} (power)
${ }^{\wedge}{ }^{\wedge}{ }^{(5)}{ }_{148.4131591}$
e (Constant)
e (constant, 2nd [e]) is stored as a constant on the TI-83 Plus. Press 2nd [e] to copy e to the cursor location. In calculations, the TI-83 Plus uses 2.718281828459 for \mathbf{e}.
F 2.718281828

- (Negation)

- (negation, (-)) returns the negative of value. You can use - with real or complex numbers, expressions, lists, and matrices.
-value
EOS ${ }^{\text {TM }}$ rules (Chapter 1) determine when negation is evaluated. For example, - \mathbf{A}^{2} returns a negative number, because squaring is evaluated before negation. Use parentheses to square a negated number, as in $(-A)^{2}$.

Note: On the TI-83 Plus, the negation symbol (-) is shorter and higher than the subtraction sign (-), which is displayed when you press \square.
π (Pi)
π (Pi, 2nd $[\pi]$) is stored as a constant in the TI-83 Plus. In calculations, the Tl-83 Plus uses 3.1415926535898 for π.

```
\pi
3.141592654
```


MATH Operations

MATH Menu

To display the мATH menu, press MATH.

NUM	PRB
1: Prac	Displays the answer as a fraction.
2: Dec	Displays the answer as a decimal.
3:3	Calculates the cube.
4: $3 \sqrt{ } 1$	Calculates the cube root.
5: $\times \sqrt{ }$	Calculates the $x^{\text {th }}$ root.
6: fMin(Finds the minimum of a function.
7: fMax (Finds the maximum of a function.
8: nDeriv(Computes the numerical derivative.
9: fnint(Computes the function integral.
0: Solver...	Displays the equation solver.

-Frac, $>$ Dec

-Frac (display as a fraction) displays an answer as its rational equivalent. You can use ${ }^{\text {Frac with real or complex numbers, expressions, lists, and }}$ matrices. If the answer cannot be simplified or the resulting denominator is more than three digits, the decimal equivalent is returned. You can only use $\stackrel{\text { Frac following value. }}{\text {. }}$

value $\boldsymbol{D r a c}$

Dec (display as a decimal) displays an answer in decimal form. You can use \triangleright Dec with real or complex numbers, expressions, lists, and matrices. You can only use $>$ Dec following value.

value $>$ Dec

1/2+1/3pFrac Ans•䧉 \qquad .8333335333

${ }^{3}$ (Cube), ${ }^{3} \sqrt{ }$ ((Cube Root)

${ }^{3}$ (cube) returns the cube of value. You can use ${ }^{3}$ with real or complex numbers, expressions, lists, and square matrices.
value ${ }^{3}$
$\sqrt[3]{\sqrt{ }}$ (cube root) returns the cube root of value. You can use $\sqrt[3]{ } \sqrt{ }$ (with real or complex numbers, expressions, and lists.

$3 \sqrt{(v a l u e)}$

$x \sqrt{ }$ (Root)

$\mathbf{x}_{\sqrt{ }}\left(x^{\text {th }}\right.$ root) returns the $x^{\text {th }}$ root of value. You can use $\mathbf{x}_{\sqrt{ }}$ with real or complex numbers, expressions, and lists.
$x^{\text {throot }} \sqrt{\mathbf{x}} \sqrt{\text { value }}$
$5^{x \times \sqrt{3} 2} \quad 2$
fMin(, fMax(
fMin((function minimum) and fMax((function maximum) return the value at which the local minimum or local maximum value of expression with respect to variable occurs, between lower and upper values for variable. fMin(and fMax (are not valid in expression. The accuracy is controlled by tolerance (if not specified, the default is $1 \mathrm{E}-5$).
$\mathbf{f M i n}($ expression,variable,lower,upper[,tolerance])
fMax(expression,variable,lower,upper[,tolerance])
Note: In this guidebook, optional arguments and the commas that accompany them are enclosed in brackets ([]).

```
fMin(sin(A), F, -\pi
; \pi)
-1,5%9797171
fME<(Sin(A), &, -\pi
\pi
    1.570797171
```


nDeriv(

nDeriv((numerical derivative) returns an approximate derivative of expression with respect to variable, given the value at which to calculate the derivative and ε (if not specified, the default is $1 \mathrm{E}-3$). nDeriv(is valid only for real numbers.
nDeriv(expression,variable, value $[, \varepsilon]$)
nDeriv(uses the symmetric difference quotient method, which approximates the numerical derivative value as the slope of the secant line through these points.

$$
f^{\prime}(x)=\frac{f(x+\varepsilon)-(f(x-\varepsilon)}{2 \varepsilon}
$$

As ε becomes smaller, the approximation usually becomes more accurate.

```
nDeriv(A`3,F,5%,
01)
|
```

You can use nDeriv(once in expression. Because of the method used to calculate nDeriv(, the TI-83 Plus can return a false derivative value at a nondifferentiable point.

fnInt(

fnint((function integral) returns the numerical integral (Gauss-Kronrod method) of expression with respect to variable, given lower limit, upper limit, and a tolerance (if not specified, the default is $1 \mathrm{E}-5$). fnInt(is valid only for real numbers.
fnInt(expression,variable,lower,upper[,tolerance])

Tip: To speed the drawing of integration graphs (when fnint(is used in a $Y=$ equation), increase the value of the Xres window variable before you press GRAPH.

Using the Equation Solver

Solver

Solver displays the equation solver, in which you can solve for any variable in an equation. The equation is assumed to be equal to zero. Solver is valid only for real numbers.

When you select Solver, one of two screens is displayed.

- The equation editor (see step 1 picture below) is displayed when the equation variable eqn is empty.
- The interactive solver editor is displayed when an equation is stored in eqn.

Entering an Expression in the Equation Solver

To enter an expression in the equation solver, assuming that the variable eqn is empty, follow these steps.

1. Select 0 :Solver from the MATH menu to display the equation editor. EQUFTION SOLVER
2. Enter the expression in any of three ways.

- Enter the expression directly into the equation solver.
- Paste a $\mathbf{Y}=$ variable name from the vars $\boldsymbol{\gamma}$-vars menu to the equation solver.
- Press 2nd [RCL], paste a $\mathbf{Y}=$ variable name from the vars \boldsymbol{Y}-vars menu, and press ENTER. The expression is pasted to the equation solver.

The expression is stored to the variable eqn as you enter it.

3. Press ENTER or \square. The interactive solver editor is displayed.

- The equation stored in eqn is set equal to zero and displayed on the top line.
- Variables in the equation are listed in the order in which they appear in the equation. Any values stored to the listed variables also are displayed.
- The default lower and upper bounds appear in the last line of the editor (bound=\{-1E99,1E99\}).
- $\mathrm{A} \downarrow$ is displayed in the first column of the bottom line if the editor continues beyond the screen.
Tip: To use the solver to solve an equation such as $K=.5 M V^{2}$, enter eqn: $0=K-.5 \mathrm{MV}^{2}$ in the equation editor.

Entering and Editing Variable Values

When you enter or edit a value for a variable in the interactive solver editor, the new value is stored in memory to that variable.

You can enter an expression for a variable value. It is evaluated when you move to the next variable. Expressions must resolve to real numbers at each step during the iteration.

You can store equations to any vars \mathbf{Y}-vars variables, such as \mathbf{Y}_{1} or r6, and then reference the variables in the equation. The interactive solver editor displays all variables of all $\mathbf{Y}=$ functions referenced in the equation.


```
EDUATIOH SOLVER
```



```
\(19+7=6\)
    \(\mathrm{X}=\mathrm{G}\)
    \(\mathrm{H}=\overline{\mathrm{A}}\)
    \(\mathrm{C}=\underline{0}\)
    bound= C-1E99, \(1 .\).
```


Solving for a Variable in the Equation Solver

To solve for a variable using the equation solver after an equation has been stored to eqn, follow these steps.

1. Select 0 :Solver from the math menu to display the interactive solver editor, if not already displayed.

2. Enter or edit the value of each known variable. All variables, except the unknown variable, must contain a value. To move the cursor to the next variable, press ENTER or \square.
```
0.3+F
Q=6
P=5I
boumd={-1E99,1...
```

3. Enter an initial guess for the variable for which you are solving. This is optional, but it may help find the solution more quickly. Also, for equations with multiple roots, the Tl-83 Plus will attempt to display the solution that is closest to your guess.
```
0.3+F-2-125=0
    Q=4
    b=bum=<-1E99,1...
```

The default guess is calculated as $\frac{(\text { upper }+ \text { lower })}{2}$.
4. Edit bound=\{lower,upper\}. lower and upper are the bounds between which the TI-83 Plus searches for a solution. This is optional, but it may help find the solution more quickly. The default is bound $=\{-1 \mathrm{E} 99,1 \mathrm{E} 99\}$.
5. Move the cursor to the variable for which you want to solve and press ALPHA [SOLVE] (above the ENTER key).

```
0`3+F2-125=0
-8=4.6415888336
F=5
bouna={-50,56]
lこft-r*=6
```

- The solution is displayed next to the variable for which you solved. A solid square in the first column marks the variable for which you solved and indicates that the equation is balanced. An ellipsis shows that the value continues beyond the screen.
Note: When a number continues beyond the screen, be sure to press \square to scroll to the end of the number to see whether it ends with a negative or positive exponent. A very small number may appear to be a large number until you scroll right to see the exponent.
- The values of the variables are updated in memory.
- left-rt=diff is displayed in the last line of the editor. diff is the difference between the left and right sides of the equation. A solid square in the first column next to left-rt= indicates that the equation has been evaluated at the new value of the variable for which you solved.

Editing an Equation Stored to eqn

To edit or replace an equation stored to eqn when the interactive equation solver is displayed, press Δ until the equation editor is displayed. Then edit the equation.

Equations with Multiple Roots

Some equations have more than one solution. You can enter a new initial guess or new bounds to look for additional solutions.

Further Solutions

After you solve for a variable, you can continue to explore solutions from the interactive solver editor. Edit the values of one or more variables. When you edit any variable value, the solid squares next to the previous solution and left-rt=diff disappear. Move the cursor to the variable for which you now want to solve and press ALPHA [SOLVE].

Controlling the Solution for Solver or solve(

The TI-83 Plus solves equations through an iterative process. To control that process, enter bounds that are relatively close to the solution and enter an initial guess within those bounds. This will help to find a solution more quickly. Also, it will define which solution you want for equations with multiple solutions.

Using solve(on the Home Screen or from a Program

The function solve(is available only from catalog or from within a program. It returns a solution (root) of expression for variable, given an initial guess, and lower and upper bounds within which the solution is sought. The default for lower is -1 E 99 . The default for upper is 1 E 99 . solve(is valid only for real numbers.
solve(expression,variable,guess[,\{lower,upper\}])
expression is assumed equal to zero. The value of variable will not be updated in memory. guess may be a value or a list of two values. Values must be stored for every variable in expression, except variable, before expression is evaluated. lower and upper must be entered in list format.

MATH NUM (Number) Operations

MATH NUM Menu

To display the мATH num menu, press MATH \square.

MATH NUM	CPX PRB
1: abs (
2: round (Absolute value
3: iPart	Round
4: fPart	Integer part
5: int	Fractional part
6: $\min ($	Greatest integer
$7: \max ($	Minimum value
$8: 1 \mathrm{~cm}($	Maximum value
$9: \operatorname{gcd}($	Least common multiple

abs(

abs((absolute value) returns the absolute value of real or complex (modulus) numbers, expressions, lists, and matrices.
abs(value)

$\begin{aligned} & a b \leq(-256) \\ & b=(1.25,-5.656 \end{aligned}$

Note: abs(is also available on the MATH CPX menu.

round(

round(returns a number, expression, list, or matrix rounded to \#decimals (≤ 9). If \#decimals is omitted, value is rounded to the digits that are displayed, up to 10 digits.
round(value[,\#decimals])
round $\pi, 4$ 3) 3.1416

iPart(, fPart(

iPart((integer part) returns the integer part or parts of real or complex numbers, expressions, lists, and matrices.

iPart(value)

fPart((fractional part) returns the fractional part or parts of real or complex numbers, expressions, lists, and matrices.

fPart(value)

$\left|\begin{array}{l}\text { iFart. }-23.45) \\ \text { fFart. }-23.45) \\ -23 \\ \hline\end{array}\right|$
int(
int((greatest integer) returns the largest integer \leq real or complex numbers, expressions, lists, and matrices.
int(value)
int(-23.45)
-24
Note: For a given value, the result of int(is the same as the result of iPart(for nonnegative numbers and negative integers, but one integer less than the result of iPart(for negative noninteger numbers.

$\min (, \max ($

\min ((minimum value) returns the smaller of valueA and valueB or the smallest element in list. If list A and list B are compared, $\boldsymbol{m i n}$ (returns a list of the smaller of each pair of elements. If list and value are compared, $\min ($ compares each element in list with value.
$\max ($ (maximum value) returns the larger of valueA and valueB or the largest element in list. If listA and list B are compared, $\max ($ returns a list of the larger of each pair of elements. If list and value are compared, max(compares each element in list with value.

$\min ($ valueA, valueB) \min (list) $\boldsymbol{\operatorname { m i n }}($ listA,listB) $\min ($ list,value)

Note: \min (and $\max ($ also are available on the LIST MATH menu.

Icm(, gcd(

Icm(returns the least common multiple of valueA and valueB, both of which must be nonnegative integers. When listA and list B are specified, lcm(returns a list of the Icm of each pair of elements. If list and value are specified, lcm(finds the Icm of each element in list and value.
$\operatorname{gcd}($ returns the greatest common divisor of valueA and valueB, both of which must be nonnegative integers. When listA and list B are specified, gcd(returns a list of the gcd of each pair of elements. If list and value are specified, gcd(finds the gcd of each element in list and value.

$\mathbf{I c m}$ (valueA, valueB)	$\mathbf{g c d}$ (valueA,valueB)
$\mathbf{I c m}$ (listA,listB)	$\mathbf{g c d}$ (listA,listB)
Icm(list,value)	gcd(list,value)

Entering and Using Complex Numbers

Complex-Number Modes

The TI-83 Plus displays complex numbers in rectangular form and polar form. To select a complex-number mode, press MODE, and then select either of the two modes.

- a+bi (rectangular-complex mode)
- re^ ${ }^{\boldsymbol{\wedge}}$ (polar-complex mode)

On the TI-83 Plus, complex numbers can be stored to variables. Also, complex numbers are valid list elements.

In Real mode, complex-number results return an error, unless you entered a complex number as input. For example, in Real mode $\ln (-1)$ returns an error; in a+bi mode $\ln (-1)$ returns an answer.

Real mode

ERR: FOFRERL RFS 1日Quit. 2: Goto
$\mathbf{a}+\mathbf{b} \boldsymbol{i}$ mode

Entering Complex Numbers

Complex numbers are stored in rectangular form, but you can enter a complex number in rectangular form or polar form, regardless of the mode setting. The components of complex numbers can be real numbers or expressions that evaluate to real numbers; expressions are evaluated when the command is executed.

Note about Radian Versus Degree Mode

Radian mode is recommended for complex number calculations. Internally, the TI-83 Plus converts all entered trigonometric values to radians, but it does not convert values for exponential, logarithmic, or hyperbolic functions.

In degree mode, complex identities such as $e^{\wedge}(i \theta)=\cos (\theta)+i \sin (\theta)$ are not generally true because the values for cos and sin are converted to radians, while those for $\mathrm{e}^{\wedge}()$ are not. For example, $e^{\wedge}(i 45)=\cos (45)$ $+i \sin (45)$ is treated internally as $e^{\wedge}(i 45)=\cos (\pi / 4)+i \sin (\pi / 4)$. Complex identities are always true in radian mode.

Interpreting Complex Results

Complex numbers in results, including list elements, are displayed in either rectangular or polar form, as specified by the mode setting or by a display conversion instruction. In the example below, polar-complex ($\mathbf{r e}^{\wedge} \theta i$) and Radian modes are set.
(2+i.)- $1 \mathrm{E}^{\wedge}(\pi / 4 \mathrm{i})$

1. $325654296{ }^{\circ}$....

Rectangular-Complex Mode

Rectangular-complex mode recognizes and displays a complex number in the form $\mathbf{a}+\mathbf{b} \boldsymbol{i}$, where \mathbf{a} is the real component, \mathbf{b} is the imaginary component, and i is a constant equal to $\sqrt{-1}$.

1n(-1) ${ }_{3} .141592654 \mathrm{i}$
To enter a complex number in rectangular form, enter the value of a (real component), press \square or \square, enter the value of b (imaginary component), and press 2nd [i] (constant).
real component(+ or -)imaginary component \boldsymbol{i}
$4+2 \mathrm{i} \quad 4+2 \mathrm{i}$.

Polar-Complex Mode

Polar-complex mode recognizes and displays a complex number in the form $r e^{\wedge \theta i}$, where r is the magnitude, e is the base of the natural \log , θ is the angle, and i is a constant equal to $\sqrt{-1}$.
$\frac{1 \ln (-1)}{3.141592654 e^{-}(1 . . .}$

To enter a complex number in polar form, enter the value of r (magnitude), press 2nd [ex] (exponential function), enter the value of θ (angle), press 2nd [i] (constant), and then press \square.
magnitude ${ }^{\wedge}$ (anglei)
$16 \mathrm{E}^{\wedge} \mathrm{G} / \mathrm{G}$
109×1, 04719755

MATH CPX (Complex) Operations

MATH CPX Menu

To display the MATH CPX menu, press MATH $\square \square$.

MATH NUM CPX PRB	
1: conj(Returns the complex conjugate.
2: real (Returns the real part.
3: imag(Returns the imaginary part.
4: angle(Returns the polar angle.
5: abs (Returns the magnitude (modulus).
6: Rect	Displays the result in rectangular form.
7: Polar	Displays the result in polar form.

conj(

conj((conjugate) returns the complex conjugate of a complex number or list of complex numbers.
conj $(a+b i)$ returns $a-b i$ in $\mathbf{a}+\mathbf{b} i$ mode. conj($r \mathrm{e}^{\wedge}(\theta i)$) returns $r \mathrm{e}^{\wedge(-\theta i)}$ in re^ ${ }^{\wedge}$ mode.

-076 (3+4i) $3-4 \mathrm{i}$	

real(

real((real part) returns the real part of a complex number or list of complex numbers.
real $(a+b i)$ returns a.
real $\left(r \mathrm{e}^{\wedge}(\theta i)\right.$) returns $r * \cos (\theta)$.

imag(
imag((imaginary part) returns the imaginary (nonreal) part of a complex number or list of complex numbers.
imag $(a+b i)$ returns b.
imag $\left(r \mathrm{e}^{\wedge}(\theta i)\right.$) returns $r * \sin (\theta)$.

angle(

angle(returns the polar angle of a complex number or list of complex numbers, calculated as $\tan ^{-1}(b / a)$, where b is the imaginary part and a is the real part. The calculation is adjusted by $+\pi$ in the second quadrant or $-\pi$ in the third quadrant.
angle $(a+b i)$ returns $\tan ^{-1}(b / a)$.
angle $\left(r \mathrm{e}^{\wedge}(\theta i)\right.$) returns θ, where $-\pi<\theta<\pi$.
an9le(3+4i) .927295218

```
#ngle(Se^4ig)
    -2.283185307
```

abs(
abs((absolute value) returns the magnitude (modulus), $\sqrt{(\text { real2+imag2) }}$, of a complex number or list of complex numbers.
abs $(a+b i)$ returns $\sqrt{(a 2+b 2)}$. abs($\left.r \mathrm{e}^{\wedge}(\theta i)\right)$ returns r (magnitude).

$9 \mathrm{~b}=3+4 i)$		bas $\mathrm{Se}^{*}(4 i)$
	5	

-Rect

Rect (display as rectangular) displays a complex result in rectangular form. It is valid only at the end of an expression. It is not valid if the result is real.
complex resul \downarrow Rect returns $a+b i$.

Polar

PPolar (display as polar) displays a complex result in polar form. It is valid only at the end of an expression. It is not valid if the result is real.
complex result \downarrow Polar returns $r \mathrm{e}^{\wedge}(\theta i)$.
F(-2)PPolar
$1.414213562 e^{\wedge}(1 . .$.

MATH PRB (Probability) Operations

MATH PRB Menu

To display the math PrB menu, press MATH \square.

MATH NUM CPX	PRB
1: rand	Random-number generator
2: nPr	Number of permutations
3: nCr	Number of combinations
4: !	Factorial
5: randint (Random-integer generator
6: randNorm(Random \# from Normal distribution
7: randBinc	Random \# from Binomial distribution

rand

rand (random number) generates and returns one or more random numbers >0 and <1. To generate a list of random-numbers, specify an integer >1 for numtrials (number of trials). The default for numtrials is 1 .
rand[(numtrials)]
Tip: To generate random numbers beyond the range of 0 to 1 , you can include rand in an expression. For example, rand5 generates a random number >0 and <5.

With each rand execution, the TI-83 Plus generates the same randomnumber sequence for a given seed value. The TI-83 Plus factory-set seed value for rand is $\mathbf{0}$. To generate a different random-number sequence, store any nonzero seed value to rand. To restore the factoryset seed value, store 0 to rand or reset the defaults (Chapter 18).
Note: The seed value also affects randint(, randNorm(, and randBin(instructions.

$\left\|\begin{array}{rr} \text { rand } & 1272157551 \\ 1 \rightarrow r a n d & 1 \\ \text { rand } & 1 \\ \text { B. } 745607728 & .8 . . . \end{array}\right\|$	

$\mathrm{nPr}, \mathrm{nCr}$
nPr (number of permutations) returns the number of permutations of items taken number at a time. items and number must be nonnegative integers. Both items and number can be lists.
items $\mathbf{n P r}$ number
nCr (number of combinations) returns the number of combinations of items taken number at a time. items and number must be nonnegative integers. Both items and number can be lists.
items $\mathbf{n C r}$ number
$\left|\begin{array}{llr}5 \mathrm{nFr} & 2 & 20 \\ 5 & \mathrm{nCr} & 2 \\ 20 & 20\end{array}\right|$

! (Factorial)

! (factorial) returns the factorial of either an integer or a multiple of .5. For a list, it returns factorials for each integer or multiple of .5. value must be $\geq-.5$ and ≤ 69.
value!

$6!$		
6,420		
521		724

Note: The factorial is computed recursively using the relationship $(n+1)!=n * n!$, until n is reduced to either 0 or $-1 / 2$. At that point, the definition $0!=1$ or the definition $(-1 / 2)!=\sqrt{\pi}$ is used to complete the calculation. Hence:
$\mathrm{n}!=\mathrm{n} *(\mathrm{n}-1) *(\mathrm{n}-2) * \ldots * 2 * 1$, if n is an integer ≥ 0
$n!=n *(n-1) *(n-2) * \ldots * 1 / 2 * \sqrt{ } \pi$, if $n+1 / 2$ is an integer ≥ 0
n ! is an error, if neither n nor $\mathrm{n}+1 / 2$ is an integer ≥ 0.
(The variable n equals value in the syntax description above.)

randInt(

randlnt((random integer) generates and displays a random integer within a range specified by lower and upper integer bounds. To generate a list of random numbers, specify an integer >1 for numtrials (number of trials); if not specified, the default is 1 .
randlnt(lower,upper[,numtrials])

$\left\|\begin{array}{lll} \text { randint }(1,6 & 3 & 6 \\ 5 \end{array}\right\|$	

randNorm(

randNorm((random Normal) generates and displays a random real number from a specified Normal distribution. Each generated value could be any real number, but most will be within the interval $[\mu-3(\sigma), \mu+3(\sigma)]$. To generate a list of random numbers, specify an integer > 1 for numtrials (number of trials); if not specified, the default is 1 .

randBin(

randBin((random Binomial) generates and displays a random integer from a specified Binomial distribution. numtrials (number of trials) must be ≥ 1. prob (probability of success) must be ≥ 0 and ≤ 1. To generate a list of random numbers, specify an integer >1 for numsimulations (number of simulations); if not specified, the default is 1 .
randBin(numtrials,prob[,numsimulations])

$\left\|\begin{array}{l}\text { MandEin(5,.2) } \\ \text { randEin(} 7, .4,10.5\end{array}\right\|$	

Note: The seed value stored to rand also affects randint(, randNorm(, and randBin(instructions.

ANGLE Operations

ANGLE Menu

To display the angle menu, press 2nd [ANGLE]. The angle menu displays angle indicators and instructions. The Radian/Degree mode setting affects the Tl-83 Plus's interpretation of ANGLE menu entries.

$\overline{\text { ANGLE }}$	
1: ${ }^{\circ}$	Degree notation
2:	DMS minute notation
3: r	Radian notation
4: \rightarrow DMS	Displays as degree/minute/second
5: $\mathrm{R} \boldsymbol{\operatorname { P r }}$ (Returns \mathbf{r}, given \mathbf{X} and \mathbf{Y}
6: $\mathrm{R} \boldsymbol{P} \mathrm{P}$ (Returns θ, given \mathbf{X} and \mathbf{Y}
7: P $\triangle \operatorname{Rx}($	Returns \mathbf{x}, given \mathbf{R} and θ
8: P>Ry (Returns \mathbf{y}, given \mathbf{R} and θ

Entry Notation

DMS (degrees/minutes/seconds) entry notation comprises the degree symbol (${ }^{\circ}$), the minute symbol ('), and the second symbol ("). degrees must be a real number; minutes and seconds must be real numbers ≥ 0.
degrees ${ }^{\circ}$ minutes'seconds"

For example, enter for 30 degrees, 1 minute, 23 seconds. If the angle mode is not set to Degree, you must use ${ }^{\circ}$ so that the TI-83 Plus can interpret the argument as degrees, minutes, and seconds.

Degree mode

Radian mode

```
sin(3601'23")
=ince8042129955
    .5065484441
```

${ }^{\circ}$ (Degree)
${ }^{\circ}$ (degree) designates an angle or list of angles as degrees, regardless of the current angle mode setting. In Radian mode, you can use ${ }^{\circ}$ to convert degrees to radians.
value ${ }^{\circ}$
$\{\text { value 1,value2,value } 3, \text { value } 4, \ldots, \text {,value } n\}^{\circ}$
${ }^{\circ}$ also designates degrees (D) in DMS format.
' (minutes) designates minutes (M) in DMS format.
" (seconds) designates seconds (S) in DMS format.
Note: " is not on the ANGLE menu. To enter ", press ALPHA ["].

r (Radians)

r (radians) designates an angle or list of angles as radians, regardless of the current angle mode setting. In Degree mode, you can use r to convert radians to degrees.
value ${ }^{\mathbf{r}}$
Degree mode

DMS

-DMS (degree/minute/second) displays answer in DMS format. The mode setting must be Degree for answer to be interpreted as degrees, minutes, and seconds. \rightarrow DMS is valid only at the end of a line.
answer - DMS

$\begin{aligned} & 54^{\circ} 32_{1}^{\prime} 30^{\prime \prime} * 2 \\ & \text { Ans.ans } 145 \end{aligned}$

$R>P r(, R>P \theta(, P>R x(, P>R y($

R $\triangleright \operatorname{Pr}$ (converts rectangular coordinates to polar coordinates and returns r. R $>$ P θ (converts rectangular coordinates to polar coordinates and returns $\theta . x$ and y can be lists.
$\mathbf{R}>\operatorname{Pr}(x, y), \mathbf{R}>\mathbf{P} \theta(x, y)$

Note: Radian mode is set.

P $\boldsymbol{\operatorname { R x }}$ (converts polar coordinates to rectangular coordinates and returns x. P>Ry(converts polar coordinates to rectangular coordinates and returns \mathbf{y}. r and θ can be lists.
$\mathbf{P}>\mathbf{R x}(r, \theta), \mathbf{P}>\mathbf{R y}(r, \theta)$

TEST (Relational) Operations

TEST Menu

To display the test menu, press 2nd [TEST].
This operator.... Returns 1 (true) if...
TEST LOGIC
1: = Equal
2: $\neq \quad$ Not equal to
3: > Greater than
$4: \geq \quad$ Greater than or equal to
5: < Less than
$6: \leq \quad$ Less than or equal to
$=, \neq,>, \geq,<, \leq$
Relational operators compare valueA and valueB and return 1 if the test is true or 0 if the test is false. valueA and value B can be real numbers, expressions, or lists. For = and \neq only, valueA and value B also can be matrices or complex numbers. If valueA and valueB are matrices, both must have the same dimensions.

Relational operators are often used in programs to control program flow and in graphing to control the graph of a function over specific values.

value $A=$ value B	value $A \neq$ value B
value $A>$ value B	value $A \geq$ value B
value $A<$ value B	value $A \leq$ value B

$\begin{aligned} & 25=26 \\ & 61,2,3<3 \\ & 61,2,3) \neq 4,2,19 \end{aligned}$

Using Tests

Relational operators are evaluated after mathematical functions according to EOS rules (Chapter 1).

- The expression 2+2=2+3 returns $\mathbf{0}$. The TI-83 Plus performs the addition first because of EOS rules, and then it compares 4 to 5 .
- The expression 2+(2=2)+3 returns 6. The TI-83 Plus performs the relational test first because it is in parentheses, and then it adds 2,1 , and 3.

TEST LOGIC (Boolean) Operations

TEST LOGIC Menu

To display the test logic menu, press 2nd [TEST] \square.

This operator...	Returns a 1 (true) if...
TEST LOGIC	
1: and	Both values are nonzero (true).
2: or	At least one value is nonzero (true).
3: xor	Only one value is zero (false).
4: not (The value is zero (false).

Boolean Operators

Boolean operators are often used in programs to control program flow and in graphing to control the graph of the function over specific values. Values are interpreted as zero (false) or nonzero (true).
and, or, xor
and, or, and xor (exclusive or) return a value of 1 if an expression is true or $\mathbf{0}$ if an expression is false, according to the table below. value A and value B can be real numbers, expressions, or lists.
value A and valueB
valueA or valueB
valueA xor valueB

value A	value B		and	or	xor
$\neq 0$	$\neq 0$	returns	1	1	0
$\neq 0$	0	returns	0	1	1
0	$\neq 0$	returns	0	1	1
0	0	returns	0	0	0

not(
not(returns 1 if value (which can be an expression) is $\mathbf{0}$.
not(value)

Using Boolean Operations

Boolean logic is often used with relational tests. In the following program, the instructions store 4 into \mathbf{C}.

Chapter 3： Function Graphing

Getting Started：Graphing a Circle

Getting Started is a fast－paced introduction．Read the chapter for details．
Graph a circle of radius 10，centered on the origin in the standard viewing window．To graph this circle，you must enter separate formulas for the upper and lower portions of the circle．Then use ZSquare（zoom square）to adjust the display and make the functions appear as a circle．

1．In Func mode，press $Y \neq$ to display the $Y=$ editor．
Press 2nd［ V ］ $100 \square X, T, \Theta, n x^{2} \square$ ENTER to enter the expression $Y=\sqrt{ }\left(100-X^{2}\right)$ ，which defines the top half of the circle．

The expression $Y=-\sqrt{ }\left(100-X^{2}\right)$ defines the bottom half of the circle．On the TI－83 Plus，you can define one function in terms of another．To define $\mathbf{Y} 2=-\mathbf{Y} 1$ ，press $(-)$ to enter the negation sign．Press VARS to display the VARS γ－vars menu．Then press ENTER to select 1：Function． The function secondary menu is displayed． Press 1 to select 1：Y1．

```
Flot1 Flote flots
Y1日.人100-X2)
    y-6-Y1
*)=
M=
Y5=
Y6=
M7=
```

Y1日 (160- K)
Yz日- y_{1}
Y $3=$
$\mathrm{Y}_{4}=$
Y5=
$\mathrm{Y}_{6}=$
Y7=
2. Press ZOOM 6 to select $6: Z$ Standard. This is a quick way to reset the window variables to the standard values. It also graphs the functions; you do not need to press GRAPH.

Notice that the functions appear as an ellipse in the standard viewing window.
3. To adjust the display so that each pixel represents an equal width and height, press ZOOM 5 to select 5:ZSquare. The functions are replotted and now appear as a circle on the display.

4. To see the ZSquare window variables, press WINDOW and notice the new values for $\mathbf{X m i n}$, Xmax, Ymin, and Ymax.

Defining Graphs

Tl-83 Plus-Graphing Mode Similarities

Chapter 3 specifically describes function graphing, but the steps shown here are similar for each TI-83 Plus graphing mode. Chapters 4, 5, and 6 describe aspects that are unique to parametric graphing, polar graphing, and sequence graphing.

Defining a Graph

To define a graph in any graphing mode, follow these steps. Some steps are not always necessary.

1. Press MODE and set the appropriate graph mode.
2. Press Y and enter, edit, or select one or more functions in the $Y=$ editor.
3. Deselect stat plots, if necessary.
4. Set the graph style for each function.
5. Press WINDOW and define the viewing window variables.
6. Press [2nd [FORMAT] and select the graph format settings.

Displaying and Exploring a Graph

After you have defined a graph, press GRAPH to display it. Explore the behavior of the function or functions using the TI-83 Plus tools described in this chapter.

Saving a Graph for Later Use

You can store the elements that define the current graph to any of 10 graph database variables (GDB1 through GDB9, and GDB0; Chapter 8). To recreate the current graph later, simply recall the graph database to which you stored the original graph.

These types of information are stored in a GDB.

- $Y=$ functions
- Graph style settings
- Window settings
- Format settings

You can store a picture of the current graph display to any of 10 graph picture variables (Pic1 through Pic9, and Pic0; Chapter 8). Then you can superimpose one or more stored pictures onto the current graph.

Setting the Graph Modes

Checking and Changing the Graphing Mode

To display the mode screen, press MODED. The default settings are highlighted below. To graph functions, you must select Func mode before you enter values for the window variables and before you enter the functions.

The Tl-83 Plus has four graphing modes.

- Func (function graphing)
- Par (parametric graphing; Chapter 4)
- Pol (polar graphing; Chapter 5)
- Seq (sequence graphing; Chapter 6)

Other mode settings affect graphing results. Chapter 1 describes each mode setting.

- Float or 0123456789 (fixed) decimal mode affects displayed graph coordinates.
- Radian or Degree angle mode affects interpretation of some functions.
- Connected or Dot plotting mode affects plotting of selected functions.
- Sequential or Simul graphing-order mode affects function plotting when more than one function is selected.

Setting Modes from a Program

To set the graphing mode and other modes from a program, begin on a blank line in the program editor and follow these steps.

1. Press MODE to display the mode settings.
2. Press $\square, \square, \square$, and \square to place the cursor on the mode that you want to select.
3. Press ENTER to paste the mode name to the cursor location.

The mode is changed when the program is executed.

Defining Functions

Displaying Functions in the $\mathrm{Y}=$ Editor
To display the $Y=$ editor，press $Y=$ ．You can store up to 10 functions to the function variables \mathbf{Y}_{1} through $\mathbf{Y} 9$ ，and Y ．You can graph one or more defined functions at once．In this example，functions \mathbf{Y}_{1} and $\mathbf{Y} 2$ are defined and selected．

```
F1ot1 F1ote F1otz
```



```
vこ日-サ1
v2=
M4=
15=
NG=
*T=
```


Defining or Editing a Function

To define or edit a function，follow these steps．
1．Press Y to display the $Y=$ editor．
2．Press to move the cursor to the function you want to define or edit． To erase a function，press CLEAR．

3．Enter or edit the expression to define the function．

- You may use functions and variables (including matrices and lists) in the expression. When the expression evaluates to a nonreal number, the value is not plotted; no error is returned.
- The independent variable in the function is \mathbf{X}. Func mode defines X, T, Θ, η as \mathbf{X}. To enter \mathbf{X}, press X, T, Θ, η or press ALPHA [X].
- When you enter the first character, the $=$ is highlighted, indicating that the function is selected.

As you enter the expression, it is stored to the variable \mathbf{Y}_{n} as a userdefined function in the $\mathbf{Y}=$ editor.
4. Press ENTER or \square to move the cursor to the next function.

Defining a Function from the Home Screen or a Program

To define a function from the home screen or a program, begin on a blank line and follow these steps.

1. Press ALPHA ["], enter the expression, and then press ALPHA ["] again.
2. Press STO
3. Press VARS $\square \mathbf{1}$ to select $\mathbf{1}$:Function from the vars \mathbf{y}-vars menu.
4. Select the function name, which pastes the name to the cursor location on the home screen or program editor.
5. Press ENTER to complete the instruction.
"expression" $\boldsymbol{\rightarrow} \mathbf{Y} \mathbf{n}$

When the instruction is executed, the TI-83 Plus stores the expression to the designated variable $\mathbf{Y} n$, selects the function, and displays the message Done.

Evaluating $\mathrm{Y}=$ Functions in Expressions

You can calculate the value of a $\mathbf{Y}=$ function \mathbf{Y}_{n} at a specified value of \mathbf{X}. A list of values returns a list.
\mathbf{Y} (value)
$\mathbf{Y}_{n}(\{$ value 1,value2, value 3, . . ., value n\})

	Y1 (a) $\left(\cos _{3} 1,2,5,4\right)^{6}$

Selecting and Deselecting Functions

Selecting and Deselecting a Function

You can select and deselect (turn on and turn off) a function in the $\mathbf{Y}=$ editor. A function is selected when the = sign is highlighted. The Tl-83 Plus graphs only the selected functions. You can select any or all functions \mathbf{Y}_{1} through $\mathbf{Y} 9$, and $\mathbf{Y} \mathbf{0}$.

To select or deselect a function in the $\mathbf{Y}=$ editor, follow these steps.

1. Press $\square=$ to display the $\mathbf{Y}=$ editor.
2. Move the cursor to the function you want to select or deselect.
3. Press $]$ to place the cursor on the function's $=$ sign.
4. Press ENTER to change the selection status.

When you enter or edit a function, it is selected automatically. When you clear a function, it is deselected.

Turning On or Turning Off a Stat Plot in the $\mathrm{Y}=$ Editor

To view and change the on/off status of a stat plot in the $Y=$ editor, use Plot1 Plot2 Plot3 (the top line of the $\mathbf{Y}=$ editor). When a plot is on, its name is highlighted on this line.

To change the on/off status of a stat plot from the $\mathbf{Y}=$ editor, press Δ and \square to place the cursor on Plot1, Plot2, or Plot3, and then press ENTER.

Selecting and Deselecting Functions from the Home Screen or a Program

To select or deselect a function from the home screen or a program, begin on a blank line and follow these steps.

1. Press VARS to display the vars y-vars menu.
2. Select 4:On/Off to display the on/OFF secondary menu.
3. Select 1:FnOn to turn on one or more functions or 2:FnOff to turn off one or more functions. The instruction you select is copied to the cursor location.
4. Enter the number ($\mathbf{1}$ through $\mathbf{9}$, or $\mathbf{0}$; not the variable $\mathbf{Y} n$) of each function you want to turn on or turn off.

- If you enter two or more numbers, separate them with commas.
- To turn on or turn off all functions, do not enter a number after FnOn or FnOff.

FnOn[function\#,function\#, . . ., function n] FnOff[function\#,function\#, . . .,function n]
5. Press ENTER. When the instruction is executed, the status of each function in the current mode is set and Done is displayed.

For example, in Func mode, FnOff :FnOn 1,3 turns off all functions in the $\mathbf{Y}=$ editor, and then turns on Y_{1} and Y_{3}.

Setting Graph Styles for Functions

Graph Style Icons in the $\mathrm{Y}=$ Editor

This table describes the graph styles available for function graphing. Use the styles to visually differentiate functions to be graphed together. For example, you can set Y1 as a solid line, Y2 as a dotted line, and Y3 as a thick line.

Icon	Style	Description
	Line	A solid line connects plotted points; this is the default in Connected mode
4	Thick	A thick solid line connects plotted points
4	Above	Shading covers the area above the graph
4	Path	Shading covers the area below the graph A circular cursor traces the leading edge of the graph and draws a path
	Dot	A circular cursor traces the leading edge of the graph without drawing a path
A small dot represents each plotted point; this is the default in Dot mode		

Note: Some graph styles are not available in all graphing modes. Chapters 4, 5 , and 6 list the styles for Par, Pol, and Seq modes.

Setting the Graph Style

To set the graph style for a function, follow these steps.

1. Press $Y=$ to display the $Y=$ editor.
2. Press \square and Δ to move the cursor to the function.
3. Press \square to move the cursor left, past the = sign, to the graph style icon in the first column. The insert cursor is displayed. (Steps 2 and 3 are interchangeable.)
4. Press ENTER repeatedly to rotate through the graph styles. The seven styles rotate in the same order in which they are listed in the table above.
5. Press \square, Δ, or \square when you have selected a style.

Shading Above and Below

When you select ${ }^{\text {" }}$ 解 . m . for two or more functions, the TI-83 Plus rotates through four shading patterns.

- Vertical lines shade the first function with a ${ }^{\text {Wim }}$. graph style.
- Horizontal lines shade the second.
- Negatively sloping diagonal lines shade the third.
- Positively sloping diagonal lines shade the fourth.
- The rotation returns to vertical lines for the fifth ${ }^{\text {"1 }}$ or ... function, repeating the order described above.

When shaded areas intersect, the patterns overlap.

Note: When or ${ }^{\mathrm{m}}$. is selected for a $Y=$ function that graphs a family of curves, such as $\mathbf{Y} 1=\{1,2,3\} \mathbf{X}$, the four shading patterns rotate for each member of the family of curves.

Setting a Graph Style from a Program

To set the graph style from a program, select H:GraphStyle(from the PRGM CTL menu. To display this menu, press PRGM while in the program editor. function\# is the number of the $\mathbf{Y}=$ function name in the current graphing mode. graphstyle\# is an integer from 1 to 7 that corresponds to the graph style, as shown below.

ne)	$2=314$ (thick)	3 = ${ }^{\prime \prime \prime}$ (above)	
4 = 色 (below)	$5=4$ (path)	$6=1$ (animate)	7 =

GraphStyle(function\#, graphstyle\#)
For example, when this program is executed in Func mode, GraphStyle $(1,3)$ sets \mathbf{Y}_{1} to ${ }^{\prime \prime \prime}$ (above).

: DisFir:jFh

Setting the Viewing Window Variables

The TI-83 Plus Viewing Window

The viewing window is the portion of the coordinate plane defined by Xmin, Xmax, Ymin, and Ymax. Xscl (X scale) defines the distance between tick marks on the x-axis. Yscl (Y scale) defines the distance between tick marks on the y-axis. To turn off tick marks, set Xscl=0 and Yscl=0.

Displaying the Window Variables

To display the current window variable values, press WINDOW. The window editor above and to the right shows the default values in Func graphing mode and Radian angle mode. The window variables differ from one graphing mode to another.

Xres sets pixel resolution (1 through 8) for function graphs only. The default is 1.

- At Xres=1, functions are evaluated and graphed at each pixel on the x-axis.
- At Xres=8, functions are evaluated and graphed at every eighth pixel along the x-axis.
Tip: Small Xres values improve graph resolution but may cause the TI-83 Plus to draw graphs more slowly.

Changing a Window Variable Value

To change a window variable value from the window editor, follow these steps.

1. Press \square or to move the cursor to the window variable you want to change.
2. Edit the value, which can be an expression.

- Enter a new value, which clears the original value.
- Move the cursor to a specific digit, and then edit it.

3. Press ENTER, $⿴$, or $\boldsymbol{\square}$. If you entered an expression, the Tl-83 Plus evaluates it. The new value is stored.
Note: $\mathbf{X m i n}<X \max$ and $Y_{\text {min }}<$ Ymax must be true in order to graph.

Storing to a Window Variable from the Home Screen or a Program

To store a value, which can be an expression, to a window variable, begin on a blank line and follow these steps.

1. Enter the value you want to store.
2. Press STO.
3. Press VARS to display the vars menu.
4. Select 1:Window to display the Func window variables (x/y secondary menu).

- Press \square to display the Par and Pol window variables (T/日 secondary menu).
- Press \square to display the Seq window variables (U/v/w secondary menu).

5. Select the window variable to which you want to store a value. The name of the variable is pasted to the current cursor location.
6. Press ENTER to complete the instruction.

When the instruction is executed, the TI-83 Plus stores the value to the window variable and displays the value.
$14 \rightarrow \mathrm{Kmax} \quad 14$
ΔX and ΔY
The variables $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ (items $\mathbf{8}$ and 9 on the vars (1:Window) \mathbf{X} / \mathbf{Y} secondary menu) define the distance from the center of one pixel to the center of any adjacent pixel on a graph (graphing accuracy). $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ are calculated from Xmin, Xmax, Ymin, and Ymax when you display a graph.
$\Delta X=\frac{(X \max -X \min)}{94} \quad \Delta Y=\frac{(Y \max -Y \min)}{62}$
You can store values to $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$. If you do, $\mathbf{X m a x}$ and $\mathbf{Y m a x}$ are calculated from $\Delta \mathbf{X}$, $\mathbf{X m i n}, \Delta \mathbf{Y}$, and \mathbf{Y} min.

Setting the Graph Format

Displaying the Format Settings

To display the format settings, press 2nd [FORMAT]. The default settings are highlighted below.

RectGC	PolargC	Sets cursor coordinates.
CoordOn	Coord0ff	Sets coordinates display on or off.
Grid0ff Grid0n	Sets grid off or on.	
Axes0n Axes0ff	Sets axes on or off.	
Label0ff Labelon	Sets axes label off or on.	
Expr0n	Expr0ff	Sets expression display on or off.

Format settings define a graph's appearance on the display. Format settings apply to all graphing modes. Seq graphing mode has an additional mode setting (Chapter 6).

Changing a Format Setting

To change a format setting, follow these steps.

1. Press \square, \square, Δ, and \square as necessary to move the cursor to the setting you want to select.
2. Press ENTER to select the highlighted setting.

RectGC, PolarGC

RectGC (rectangular graphing coordinates) displays the cursor location as rectangular coordinates \mathbf{X} and \mathbf{Y}.

PolarGC (polar graphing coordinates) displays the cursor location as polar coordinates \mathbf{R} and θ.

The RectGC/PolarGC setting determines which variables are updated when you plot the graph, move the free-moving cursor, or trace.

- RectGC updates \mathbf{X} and \mathbf{Y}; if CoordOn format is selected, \mathbf{X} and \mathbf{Y} are displayed.
- PolarGC updates $\mathbf{X}, \mathbf{Y}, \mathbf{R}$, and θ; if CoordOn format is selected, \mathbf{R} and θ are displayed.

CoordOn, CoordOff

CoordOn (coordinates on) displays the cursor coordinates at the bottom of the graph. If ExprOff format is selected, the function number is displayed in the top-right corner.

CoordOff (coordinates off) does not display the function number or coordinates.

GridOff, GridOn

Grid points cover the viewing window in rows that correspond to the tick marks on each axis.

GridOff does not display grid points.
GridOn displays grid points.
AxesOn, AxesOff
AxesOn displays the axes.
AxesOff does not display the axes.
This overrides the LabelOff/LabelOn format setting.
LabelOff, LabelOn
LabelOff and LabelOn determine whether to display labels for the axes (X and \mathbf{Y}), if AxesOn format is also selected.

ExprOn, ExprOff

ExprOn and ExprOff determine whether to display the $\mathbf{Y}=$ expression when the trace cursor is active. This format setting also applies to stat plots.

When ExprOn is selected, the expression is displayed in the top-left corner of the graph screen.

When ExprOff and CoordOn both are selected, the number in the top-right corner specifies which function is being traced.

Displaying Graphs

Displaying a New Graph

To display the graph of the selected function or functions, press GRAPH. trace, zoom instructions, and calc operations display the graph automatically. As the Tl-83 Plus plots the graph, the busy indicator is on. As the graph is plotted, \mathbf{X} and \mathbf{Y} are updated.

Pausing or Stopping a Graph

While plotting a graph, you can pause or stop graphing.

- Press ENTER to pause; then press ENTER to resume.
- Press ON to stop; then press GRAPH to redraw.

Smart Graph

Smart Graph is a TI-83 Plus feature that redisplays the last graph immediately when you press GRAPH, but only if all graphing factors that would cause replotting have remained the same since the graph was last displayed.

If you performed any of these actions since the graph was last displayed, the TI-83 Plus will replot the graph based on new values when you press GRAPH.

- Changed a mode setting that affects graphs
- Changed a function in the current picture
- Selected or deselected a function or stat plot
- Changed the value of a variable in a selected function
- Changed a window variable or graph format setting
- Cleared drawings by selecting ClrDraw
- Changed a stat plot definition

Overlaying Functions on a Graph

On the TI-83 Plus, you can graph one or more new functions without replotting existing functions. For example, store $\boldsymbol{\operatorname { s i n }}(\mathbf{X})$ to Y_{1} in the $\mathbf{Y}=$ editor and press GRAPH. Then store $\boldsymbol{\operatorname { c o s } (\mathbf { X })}$ to $\mathbf{Y} \mathbf{2}$ and press GRAPH again. The function \mathbf{Y}_{2} is graphed on top of \mathbf{Y}_{1}, the original function.

Graphing a Family of Curves

If you enter a list (Chapter 11) as an element in an expression, the TI-83 Plus plots the function for each value in the list, thereby graphing a family of curves. In Simul graphing-order mode, it graphs all functions sequentially for the first element in each list, and then for the second, and so on.
$\{2,4,6\} \sin (\mathrm{X})$ graphs three functions: $2 \boldsymbol{\operatorname { s i n }}(\mathrm{X}), 4 \boldsymbol{\operatorname { s i n }}(\mathrm{X})$, and $6 \boldsymbol{\operatorname { s i n }}(\mathrm{X})$.

$\mathrm{w}_{2}=$
$Y_{4}=$
$\times 5=$
$\psi_{6}=$

$\{2,4,6\} \sin (\{1,2,3\} X)$ graphs $2 \boldsymbol{\operatorname { s i n }}(\mathrm{X}), 4 \boldsymbol{\operatorname { s i n }}(2 \mathrm{X})$, and $6 \boldsymbol{\operatorname { s i n }}(3 \mathrm{X})$.

Note: When using more than one list, the lists must have the same dimensions.

Exploring Graphs with the Free-Moving Cursor

Free-Moving Cursor

When a graph is displayed, press \square, \square, Δ, or \square to move the cursor around the graph. When you first display the graph, no cursor is visible. When you press \square, \square, Δ, or \square, the cursor moves from the center of the viewing window.

As you move the cursor around the graph, the coordinate values of the cursor location are displayed at the bottom of the screen if CoordOn format is selected. The Float/Fix decimal mode setting determines the number of decimal digits displayed for the coordinate values.

To display the graph with no cursor and no coordinate values, press CLEAR or ENTER. When you press \square, \square, Δ, or \square, the cursor moves from the same position.

Graphing Accuracy

The free-moving cursor moves from pixel to pixel on the screen. When you move the cursor to a pixel that appears to be on the function, the cursor may be near, but not actually on, the function. The coordinate
value displayed at the bottom of the screen actually may not be a point on the function. To move the cursor along a function, use TRACE.

The coordinate values displayed as you move the cursor approximate actual math coordinates, *accurate to within the width and height of the pixel. As Xmin, Xmax, Ymin, and Ymax get closer together (as in a Zoom In) graphing accuracy increases, and the coordinate values more closely approximate the math coordinates.

Free- moving cursor "on" the curve

Exploring Graphs with TRACE

Beginning a Trace

Use TRACE to move the cursor from one plotted point to the next along a function. To begin a trace, press TRACE. If the graph is not displayed already, press TRACE to display it. The trace cursor is on the first selected function in the $\mathbf{Y}=$ editor, at the middle \mathbf{X} value on the screen. The cursor coordinates are displayed at the bottom of the screen if CoordOn format is selected. The $\mathbf{Y}=$ expression is displayed in the top-left corner of the screen, if ExprOn format is selected.

Moving the Trace Cursor

To move the TRACE cursor	do this:
To the previous or next plotted point,	press \square or \square.
Five plotted points on a function (Xres	press [nd \square or 2nd \square.
affects this),	enter a value, and then press ENTER.
To any valid \mathbf{X} value on a function,	press \square or \square.
From one function to another,	

When the trace cursor moves along a function, the \mathbf{Y} value is calculated from the \mathbf{X} value; that is, $\mathbf{Y}=\mathbf{Y} n(\mathbf{X})$. If the function is undefined at an \mathbf{X} value, the \mathbf{Y} value is blank.

If you move the trace cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.

Moving the Trace Cursor from Function to Function

To move the trace cursor from function to function, press \square and \triangle. The cursor follows the order of the selected functions in the $\mathbf{Y}=$ editor. The trace cursor moves to each function at the same \mathbf{X} value. If ExprOn format is selected, the expression is updated.

Moving the Trace Cursor to Any Valid X Value

To move the trace cursor to any valid \mathbf{x} value on the current function, enter the value. When you enter the first digit, an $\mathbf{X}=$ prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the $\mathbf{X}=$ prompt. The value must
be valid for the current viewing window. When you have completed the entry, press ENTER to move the cursor.

Note: This feature does not apply to stat plots.

Panning to the Left or Right

If you trace a function beyond the left or right side of the screen, the viewing window automatically pans to the left or right. Xmin and Xmax are updated to correspond to the new viewing window.

Quick Zoom

While tracing, you can press ENTER to adjust the viewing window so that the cursor location becomes the center of the new viewing window, even if the cursor is above or below the display. This allows panning up and down. After Quick Zoom, the cursor remains in TRACE.

Leaving and Returning to TRACE

When you leave and return to trace, the trace cursor is displayed in the same location it was in when you left trace, unless Smart Graph has replotted the graph.

Using TRACE in a Program

On a blank line in the program editor, press TRACE. The instruction Trace is pasted to the cursor location. When the instruction is encountered during program execution, the graph is displayed with the trace cursor on the first selected function. As you trace, the cursor coordinate values are updated. When you finish tracing the functions, press ENTER to resume program execution.

Exploring Graphs with the ZOOM Instructions

ZOOM Menu

To display the zoom menu, press Z00M. You can adjust the viewing window of the graph quickly in several ways. All zoom instructions are accessible from programs.

ZOOM MEMORY	
1:ZBox	Draws a box to define the viewing window.
2:Zoom In	Magnifies the graph around the cursor.
3:Zoom Out	Views more of a graph around the cursor.
4:ZDecimal	Sets $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to 0.1.
5:ZSquare	Sets equal-size pixels on the \mathbf{X} and \mathbf{Y} axes.
6:ZStandard	Sets the standard window variables.
7:ZTrig	Sets the built-in trig window variables.
8:ZInteger	Sets integer values on the \mathbf{X} and \mathbf{Y} axes.
9:ZoomStat	Sets the values for current stat lists.
0:ZoomFit	Fits YMin and YMax between $\mathbf{X M i n}$ and $\mathbf{X M a x}$.

Zoom Cursor

When you select 1:ZBox, 2:Zoom In, or 3:Zoom Out, the cursor on the graph becomes the zoom cursor (+), a smaller version of the free-moving cursor (+).

ZBox

To define a new viewing window using ZBox, follow these steps.

1. Select 1:ZBox from the zoom menu. The zoom cursor is displayed at the center of the screen.
2. Move the zoom cursor to any spot you want to define as a corner of the box, and then press ENTER. When you move the cursor away from the first defined corner, a small, square dot indicates the spot.
3. Press \square, \square, \square, or \square. As you move the cursor, the sides of the box lengthen or shorten proportionately on the screen.

Note: To cancel ZBox before you press ENTER, press CLEAR.
4. When you have defined the box, press ENTER to replot the graph.

To use ZBox to define another box within the new graph, repeat steps 2 through 4. To cancel ZBox, press CLEAR.

Zoom In, Zoom Out

Zoom In magnifies the part of the graph that surrounds the cursor location. Zoom Out displays a greater portion of the graph, centered on the cursor location. The XFact and YFact settings determine the extent of the zoom.

To zoom in on a graph, follow these steps.

1. Check XFact and YFact; change as needed.
2. Select 2:Zoom In from the zoom menu. The zoom cursor is displayed.
3. Move the zoom cursor to the point that is to be the center of the new viewing window.
4. Press ENTER. The TI-83 Plus adjusts the viewing window by XFact and YFact; updates the window variables; and replots the selected functions, centered on the cursor location.
5. Zoom in on the graph again in either of two ways.

- To zoom in at the same point, press ENTER.
- To zoom in at a new point, move the cursor to the point that you want as the center of the new viewing window, and then press ENTER.

To zoom out on a graph, select 3:Zoom Out and repeat steps 3 through 5 .
To cancel Zoom In or Zoom Out, press CLEAR.

ZDecimal

ZDecimal replots the functions immediately. It updates the window variables to preset values, as shown below. These values set $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ equal to 0.1 and set the \mathbf{X} and \mathbf{Y} value of each pixel to one decimal place.

Xmin $=-4.7$	Ymin $=-3.1$
Xmax=4.7	Ymax $=3.1$
Xscl=1	Yscl=1

ZSquare

ZSquare replots the functions immediately. It redefines the viewing window based on the current values of the window variables. It adjusts in only one direction so that $\Delta \mathbf{X}=\Delta \mathbf{Y}$, which makes the graph of a circle look like a circle. Xscl and Yscl remain unchanged. The midpoint of the current graph (not the intersection of the axes) becomes the midpoint of the new graph.

ZStandard

ZStandard replots the functions immediately. It updates the window variables to the standard values shown below.

Xmin=-10	Ymin=-10	Xres=1
Xmax=10	Ymax=10	
Xscl=1	Yscl=1	

ZTrig

ZTrig replots the functions immediately. It updates the window variables to preset values that are appropriate for plotting trig functions. Those preset values in Radian mode are shown below.

Xmin $=-(47 / 24) \pi$	Ymin $=-4$
$X \max =(47 / 24) \pi$	Ymax $=4$
Xscl $=\pi / 2$	Yscl=1

ZInteger

ZInteger redefines the viewing window to the dimensions shown below. To use ZInteger, move the cursor to the point that you want to be the center of the new window, and then press EENTER; ZInteger replots the functions.

$\Delta \mathrm{X}=1$	Xscl=10
$\Delta \mathrm{Y}=1$	$\mathrm{Yscl}=10$

ZoomStat

ZoomStat redefines the viewing window so that all statistical data points are displayed. For regular and modified box plots, only Xmin and Xmax are adjusted.

ZoomFit

ZoomFit replots the functions immediately. ZoomFit recalculates YMin and YMax to include the minimum and maximum \mathbf{Y} values of the selected functions between the current XMin and XMax. XMin and XMax are not changed.

Using ZOOM MEMORY

ZOOM MEMORY Menu

To display the zoom memory menu, press ZOOM \square.

ZOOM MEMORY
1: ZPrevious Uses the previous viewing window.
2: ZoomSto Stores the user-defined window.
3: ZoomRc1 Recalls the user-defined window.
4: SetFactors... Changes Zoom In and Zoom Out factors.

ZPrevious

ZPrevious replots the graph using the window variables of the graph that was displayed before you executed the last zoom instruction.

ZoomSto

ZoomSto immediately stores the current viewing window. The graph is displayed, and the values of the current window variables are stored in the user-defined zoom variables ZXmin, ZXmax, ZXscl, ZYmin, ZYmax, ZYscl, and ZXres.

These variables apply to all graphing modes. For example, changing the value of ZXmin in Func mode also changes it in Par mode.

ZoomRcl

ZoomRcl graphs the selected functions in a user-defined viewing window. The user-defined viewing window is determined by the values stored with the ZoomSto instruction. The window variables are updated with the user-defined values, and the graph is plotted.

ZOOM FACTORS

The zoom factors, XFact and YFact, are positive numbers (not necessarily integers) greater than or equal to 1 . They define the magnification or reduction factor used to Zoom In or Zoom Out around a point.

Checking XFact and YFact

To display the zoom factors screen, where you can review the current values for XFact and YFact, select 4:SetFactors from the zoom memory menu. The values shown are the defaults.

```
ZODM FACTORS
```

$7 \mathrm{Fact}=4$

Changing XFact and YFact

You can change XFact and YFact in either of two ways.

- Enter a new value. The original value is cleared automatically when you enter the first digit.
- Place the cursor on the digit you want to change, and then enter a value or press DEL to delete it.

Using ZOOM MEMORY Menu Items from the Home Screen or a Program

From the home screen or a program, you can store directly to any of the user-defined zoom variables.

From a program, you can select the ZoomSto and ZoomRcl instructions from the zoom memory menu.

Using the CALC (Calculate) Operations

CALCULATE Menu

To display the calculate menu, press 2nd [calc]. Use the items on this menu to analyze the current graph functions.

CALCULATE	
1:value	Calculates a function \mathbf{Y} value for a given \mathbf{X}.
2:zero	Finds a zero (x-intercept) of a function.
3:minimum	Finds a minimum of a function.
4:maximum	Finds a maximum of a function.
5: intersect	Finds an intersection of two functions.
6:dy/dx	Finds a numeric derivative of a function.
$7: \int f(x) d x$	Finds a numeric integral of a function.

value
value evaluates one or more currently selected functions for a specified value of \mathbf{X}.

Note: When a value is displayed for \mathbf{x}, press CLEAR to clear the value. When no value is displayed, press CLEAR to cancel the value operation.

To evaluate a selected function at \mathbf{X}, follow these steps.

1. Select $\mathbf{1}$:value from the calculate menu. The graph is displayed with $X=$ in the bottom-left corner.
2. Enter a real value, which can be an expression, for \mathbf{X} between $\mathbf{X m i n}$ and Xmax.
3. Press ENTER.

The cursor is on the first selected function in the $\mathbf{Y}=$ editor at the \mathbf{X} value you entered, and the coordinates are displayed, even if CoordOff format is selected.

To move the cursor from function to function at the entered \mathbf{x} value, press Δ or \square. To restore the free-moving cursor, press \square or \square.

zero

zero finds a zero (x-intercept or root) of a function using solve(. Functions can have more than one x-intercept value; zero finds the zero closest to your guess.

The time zero spends to find the correct zero value depends on the accuracy of the values you specify for the left and right bounds and the accuracy of your guess.

To find a zero of a function, follow these steps.

1. Select 2:zero from the calculate menu. The current graph is displayed with Left Bound? in the bottom-left corner.
2. Press \triangle or \square to move the cursor onto the function for which you want to find a zero.
3. Press \square or (or enter a value) to select the x-value for the left bound of the interval, and then press ENTER. A indicator on the graph screen shows the left bound. Right Bound? is displayed in the bottom-left corner. Press \square or (or enter a value) to select the x-value for the right bound, and then press ENTER. A 4 indicator on the graph screen shows the right bound. Guess? is then displayed in the bottom-left corner.

4. Press \square or (or enter a value) to select a point near the zero of the function, between the bounds, and then press ENTER.

The cursor is on the solution and the coordinates are displayed, even if CoordOff format is selected. To move to the same x-value for other selected functions, press Δ or \square. To restore the free-moving cursor, press \square or \square.

minimum, maximum

minimum and maximum find a minimum or maximum of a function within a specified interval to a tolerance of $1 \mathrm{E}-5$.

To find a minimum or maximum, follow these steps.

1. Select 3:minimum or 4 :maximum from the calculate menu. The current graph is displayed.
2. Select the function and set left bound, right bound, and guess as described for zero.

The cursor is on the solution, and the coordinates are displayed, even if you have selected CoordOff format; Minimum or Maximum is displayed in the bottom-left corner.

To move to the same x-value for other selected functions, press Δ or \square. To restore the free-moving cursor, press \square or \square.

intersect

intersect finds the coordinates of a point at which two or more functions intersect using solve(. The intersection must appear on the display to use intersect.

To find an intersection, follow these steps.

1. Select 5:intersect from the calculate menu. The current graph is displayed with First curve? in the bottom-left corner.

2. Press \square or \square, if necessary, to move the cursor to the first function, and then press ENTER. Second curve? is displayed in the bottom-left corner.
3. Press \square or if necessary, to move the cursor to the second function, and then press ENTER.
4. Press \square or to move the cursor to the point that is your guess as to location of the intersection, and then press ENTER.

The cursor is on the solution and the coordinates are displayed, even if CoordOff format is selected. Intersection is displayed in the bottom-left corner. To restore the free-moving cursor, press \square, Δ, \square, or \square.

$d y / d x$

$\mathbf{d y} / \mathbf{d x}$ (numerical derivative) finds the numerical derivative (slope) of a function at a point, with $\varepsilon=1 \mathrm{E}-3$.

To find a function's slope at a point, follow these steps.

1. Select $6: d y / d x$ from the calculate menu. The current graph is displayed.
2. Press \square or \square to select the function for which you want to find the numerical derivative.
3. Press \square or (or enter a value) to select the \mathbf{X} value at which to calculate the derivative, and then press ENTER.

The cursor is on the solution and the numerical derivative is displayed.

To move to the same x-value for other selected functions, press Δ or \square. To restore the free-moving cursor, press \square or \square.

$\int f(x) d x$

$\int f(\mathbf{x}) \mathbf{d x}$ (numerical integral) finds the numerical integral of a function in a specified interval. It uses the fnint(function, with a tolerance of $\varepsilon=1 \mathrm{E}-3$.

To find the numerical derivative of a function, follow these steps.

1. Select 7: $\int f(\mathbf{x}) \mathbf{d x}$ from the calculate menu. The current graph is displayed with Lower Limit? in the bottom-left corner.
2. Press \square or to move the cursor to the function for which you want to calculate the integral.
3. Set lower and upper limits as you would set left and right bounds for zero. The integral value is displayed, and the integrated area is shaded.

Note: The shaded area is a drawing. Use ClrDraw (Chapter 8) or any action that invokes Smart Graph to clear the shaded area.

Chapter 4: Parametric Graphing

Getting Started: Path of a Ball

Getting Started is a fast-paced introduction. Read the chapter for details.
Graph the parametric equation that describes the path of a ball hit at an initial speed of 30 meters per second, at an initial angle of 25 degrees with the horizontal from ground level. How far does the ball travel? When does it hit the ground? How high does it go? Ignore all forces except gravity.

For initial velocity v_{0} and angle θ, the position of the ball as a function of time has horizontal and vertical components.

Horizontal: $\quad \mathrm{X} 1(\mathrm{t})=\mathrm{tv}_{0} \cos (\theta) \quad$ Vertical: $\quad \mathrm{Y} 1(\mathrm{t})=\mathrm{tv}_{0} \sin (\theta)-\frac{1}{2} \mathrm{gt}^{2}$
The vertical and horizontal vectors of the ball's motion also will be graphed.

Vertical vector:

$$
X 2(t)=0
$$

$$
Y 2(t)=Y 1(t)
$$

Horizontal vector:
$X 3(t)=X 1(t)$
$Y 3(t)=0$
Gravity constant:

1. Press MODE. Press $\square \square \square \square$ ENTER to select Par mode. Press $\square \square$ ENTER to select Simul for simultaneous graphing of all three parametric equations in this example.

2. Press Y. Press 30 X,T, Θ, n COS 25 2nd [ANGLE] 1 (to select ${ }^{\circ}$) \square ENTER to define $\mathbf{X 1 T}$ in terms of \mathbf{T}.
3. Press 30 X,T,Q, $\operatorname{SIN} 25$ 2nd [ANGLE] 1 D 9.8

```
F1ot1 F1ote F10ts
*14日自TC0E(250)
```



```
-9.822T2
<<t=
YzT=
MET=
```

The vertical component vector is defined by $\mathbf{X 2 T}^{\mathbf{T}}$ and Y_{2}.
4. Press 0 ENTER to define $\mathbf{X 2 t}$.
5. Press VARS to display the vars y-vars menu. Press 2 to display the Parametric secondary menu. Press 2 ENTER to define Y2t.

The horizontal component vector is defined by Хзт and Ү $_{3 \text { т. }}$.
6. Press VARS 2, and then press 1 ENTER to define Хзт. Press 0 ENTER to define Үзт.
7. Press $\square \square \square$ ENTER to change the graph style to ${ }^{\prime \prime}$ for Х $_{3 \text { t }}$ and Y_{3}. Press \triangle ENTER ENTER to change the graph style to 4 for $\mathbf{X}_{2 \text { T }}$ and $\mathbf{Y}_{2 \text { т }}$. Press \triangle ENTER ENTER to change the graph style to 4 for X1T and Y1T. (These keystrokes assume
 that all graph styles were set to * originally.)
8. Press WINDOW. Enter these values for the window variables.

Tmin $=0$	Xmin=-10	Ymin=-5
Tmax $=5$	Xmax $=100$	Ymax $=15$
Tstep $=.1$	Xscl=50	Yscl=10

9. Press 2nd [FORMAT] $\square \square \square$ ENTER to set AxesOff, which turns off the axes.

WITHDOUT
+TSter=1
वmir=-1
$\times \cdots=16$
$\mathrm{x}=1=5 \mathrm{Cl}$
以ir=-5
MOx=15
YScl=10

-

10. Press GRAPH. The plotting action simultaneously shows the ball in flight and the vertical and horizontal component vectors of the motion.

Tip: To simulate the ball flying through the air, set graph style to (animate) for X1T and Y1T.
11. Press TRACE to obtain numerical results and answer the questions at the beginning of this section.

Tracing begins at Tmin on the first parametric
 equation ($\mathbf{X 1 T}_{17}$ and $\mathbf{Y}_{1 \mathbf{1}}$). As you press \square to trace the curve, the cursor follows the path of the ball over time. The values for \mathbf{X} (distance), \mathbf{Y} (height), and \mathbf{T} (time) are displayed at the bottom of the screen.

Defining and Displaying Parametric Graphs

TI-83 Plus Graphing Mode Similarities

The steps for defining a parametric graph are similar to the steps for defining a function graph. Chapter 4 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 4 details aspects of parametric graphing that differ from function graphing.

Setting Parametric Graphing Mode

To display the mode screen, press MODE. To graph parametric equations, you must select Par graphing mode before you enter window variables and before you enter the components of parametric equations.

Displaying the Parametric Y= Editor

After selecting Par graphing mode, press $Y=$ to display the parametric $Y=$ editor.

Fiot Fiote Fots	
H1T=	
* $\mathrm{K}_{\text {t }}=$	
$\mathrm{H}_{\mathrm{L}}=$	
人 $2 T=$	
$1 \mathrm{H}_{1}=$	
$\sqrt{14 T}=$	

In this editor, you can display and enter both the \mathbf{X} and \mathbf{Y} components of up to six equations, $\mathbf{X}_{1 \mathbf{T}}$ and $\mathbf{Y}_{1 \mathbf{T}}$ through $\mathbf{X}_{6 \mathbf{T}}$ and $\mathbf{Y}_{6 \mathbf{T}}$. Each is defined in terms of the independent variable T. A common application of parametric graphs is graphing equations over time.

Selecting a Graph Style

The icons to the left of \mathbf{X}_{14} through $\mathbf{X 6 T}^{\mathbf{T}}$ represent the graph style of each parametric equation (Chapter 3). The default in Par mode is : (line), which connects plotted points. Line, m^{4} (thick), 4 (path), 4 (animate), and $'$. (dot) styles are available for parametric graphing.

Defining and Editing Parametric Equations

To define or edit a parametric equation, follow the steps in Chapter 3 for defining a function or editing a function. The independent variable in a parametric equation is \mathbf{T}. In Par graphing mode, you can enter the parametric variable \mathbf{T} in either of two ways.

- Press X, T, Θ, n.
- Press ALPHA [T].

Two components, \mathbf{X} and \mathbf{Y}, define a single parametric equation. You must define both of them.

Selecting and Deselecting Parametric Equations

The TI-83 Plus graphs only the selected parametric equations. In the $\mathbf{Y}=$ editor, a parametric equation is selected when the $=$ signs of both the \mathbf{X} and \mathbf{Y} components are highlighted. You may select any or all of the

To change the selection status, move the cursor onto the $=$ sign of either the \mathbf{X} or \mathbf{Y} component and press ENTER. The status of both the \mathbf{X} and \mathbf{Y} components is changed.

Setting Window Variables

To display the window variable values, press WINDOW. These variables define the viewing window. The values below are defaults for Par graphing in Radian angle mode.

$\overline{\text { Tmin }}$ = 0	Smallest \mathbf{T} value to evaluate
Tmax=6.2831853...	Largest \mathbf{T} value to evaluate (2π)
Tstep=.1308996...	T value increment ($\pi / 24$)
$\mathrm{xmin}=-10$	Smallest \mathbf{X} value to be displayed
$X_{\text {max }}=10$	Largest \mathbf{X} value to be displayed
Xscl=1	Spacing between the \mathbf{X} tick marks
Ymin=-10	Smallest \mathbf{Y} value to be displayed
Y max $=10$	Largest \mathbf{Y} value to be displayed
$\underline{Y s c l=1}$	Spacing between the \mathbf{Y} tick marks

Note: To ensure that sufficient points are plotted, you may want to change the \mathbf{T} window variables.

Setting the Graph Format

To display the current graph format settings, press 2nd [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings; Seq graphing mode has an additional axes format setting.

Displaying a Graph

When you press GRAPH, the Tl-83 Plus plots the selected parametric equations. It evaluates the \mathbf{X} and \mathbf{Y} components for each value of \mathbf{T} (from Tmin to Tmax in intervals of Tstep), and then plots each point defined by \mathbf{X} and \mathbf{Y}. The window variables define the viewing window.

As the graph is plotted, \mathbf{X}, \mathbf{Y}, and \mathbf{T} are updated.
Smart Graph applies to parametric graphs (Chapter 3).

Window Variables and Y-VARS Menus

You can perform these actions from the home screen or a program.

- Access functions by using the name of the \mathbf{X} or \mathbf{Y} component of the equation as a variable.

```
X17*.5
```

－Store parametric equations．

	Floti F10te Fidts 甘टт＝

－Select or deselect parametric equations．

Frioff 1 ［10ヶワ	

－Store values directly to window variables．
3669 Tm． $3 \mathrm{x} \quad 36 \mathrm{a}$

Exploring Parametric Graphs

Free-Moving Cursor

The free-moving cursor in Par graphing works the same as in Func graphing.

In RectGC format, moving the cursor updates the values of \mathbf{X} and \mathbf{Y}; if CoordOn format is selected, \mathbf{X} and \mathbf{Y} are displayed.

In PolarGC format, $\mathbf{X}, \mathbf{Y}, \mathbf{R}$, and θ are updated; if CoordOn format is selected, \mathbf{R} and θ are displayed.

TRACE

To activate trace, press TRACE. When trace is active, you can move the trace cursor along the graph of the equation one Tstep at a time. When you begin a trace, the trace cursor is on the first selected function at Tmin. If ExprOn is selected, then the function is displayed.

In RectGC format, trace updates and displays the values of \mathbf{X}, \mathbf{Y}, and \mathbf{T} if CoordOn format is on.

In PolarGC format, $\mathbf{X}, \mathbf{Y}, \mathbf{R}, \theta$ and \mathbf{T} are updated; if CoordOn format is selected, \mathbf{R}, θ, and \mathbf{T} are displayed. The \mathbf{X} and \mathbf{Y} (or \mathbf{R} and θ) values are calculated from \mathbf{T}.

To move five plotted points at a time on a function, press 2nd \square or 2nd \square. If you move the cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.

Quick Zoom is available in Par graphing; panning is not (Chapter 3).

Moving the Trace Cursor to Any Valid T Value

To move the trace cursor to any valid \mathbf{T} value on the current function, enter the number. When you enter the first digit, a $\mathbf{T}=$ prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the $\mathbf{T}=$ prompt. The value must be valid for the current viewing window. When you have completed the entry, press ENTER to move the cursor.

> F10t1 Fiote Fidt

ZOOM

zoom operations in Par graphing work the same as in Func graphing. Only the \mathbf{X} ($\mathbf{X m i n}, \mathbf{X m a x}$, and $\mathbf{X s c l}$) and \mathbf{Y} ($\mathbf{Y m i n}, \mathbf{Y m a x}$, and $\mathbf{Y s c l}$) window variables are affected.

The T window variables (Tmin, Tmax, and Tstep) are only affected when you select $\mathbf{Z S t a n d a r d .}$. The vars zoom secondary menu $\mathbf{z t} / \mathbf{z} \theta$ items 1:ZTmin, 2:ZTmax, and 3:ZTstep are the zoom memory variables for Par graphing.

CALC

calc operations in Par graphing work the same as in Func graphing. The calculate menu items available in Par graphing are 1:value, 2:dy/dx, 3:dy/dt, and 4:dx/dt.

Chapter 5: Polar Graphing

Getting Started: Polar Rose

Getting Started is a fast-paced introduction. Read the chapter for details.
The polar equation $R=A \sin (B \theta)$ graphs a rose. Graph the rose for $A=8$ and $B=2.5$, and then explore the appearance of the rose for other values of A and B.

1. Press MODE to display the mode screen. Press $\square \square \square \square$ ENTER to select Pol graphing mode. Select the defaults (the options on the left) for the other mode settings.
2. Press $Y=$ to display the polar $Y=$ editor. Press 8 SIN $2.5 \times, \mathrm{T}, \Theta, n \square$ ENTER to define $\mathbf{r 1}$.
```
Flot1 Flote Flotz
*1日8=in(2.50)
*2=
r-3=
84=
15
*-6=
```

3. Press ZOOM 6 to select $6: Z$ Standard and graph the equation in the standard viewing window. The graph shows only five petals of the rose, and the rose does not appear to be symmetrical. This is because the standard
 window sets $\theta \max =2 \pi$ and defines the window, rather than the pixels, as square.
4. Press WINDOW to display the window variables.

Press 4 2nd $[\pi]$ to increase the value of θ max to 4π.

5. Press ZOOM 5 to select $5: Z$ Square and plot the graph.
6. Repeat steps 2 through 5 with new values for the variables \mathbf{A} and \mathbf{B} in the polar equation r1=Asin(B θ). Observe how the new values affect the graph.

Defining and Displaying Polar Graphs

TI-83 Plus Graphing Mode Similarities

The steps for defining a polar graph are similar to the steps for defining a function graph. Chapter 5 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 5 details aspects of polar graphing that differ from function graphing.

Setting Polar Graphing Mode

To display the mode screen, press MODE. To graph polar equations, you must select Pol graphing mode before you enter values for the window variables and before you enter polar equations.

Displaying the Polar $\mathrm{Y}=$ Editor

After selecting Pol graphing mode, press Y to display the polar $Y=$ editor.

```
F1ot1 Flotz Flotz
F1=
**z=
*-2=
+-4=
*-5=
*-6=
```

In this editor, you can enter and display up to six polar equations, r1 through r6. Each is defined in terms of the independent variable θ.

Selecting Graph Styles

The icons to the left of $\mathbf{r} 1$ through $\mathbf{r 6}$ represent the graph style of each polar equation (Chapter 3). The default in Pol graphing mode is : (line), which connects plotted points. Line, ${ }^{\prime \prime \prime}$ (thick), 4 (path), 4 (animate), and ': (dot) styles are available for polar graphing.

Defining and Editing Polar Equations

To define or edit a polar equation, follow the steps in Chapter 3 for defining a function or editing a function. The independent variable in a polar equation is θ. In Pol graphing mode, you can enter the polar variable θ in either of two ways.

- Press X,T,,π.
- Press ALPHA [θ].

Selecting and Deselecting Polar Equations

The TI-83 Plus graphs only the selected polar equations. In the $\mathbf{Y}=$ editor, a polar equation is selected when the $=$ sign is highlighted. You may select any or all of the equations.

To change the selection status, move the cursor onto the = sign, and then press ENTER.

Setting Window Variables

To display the window variable values, press WINDOW. These variables define the viewing window. The values below are defaults for Pol graphing in Radian angle mode.

$\theta \mathrm{min}=0$
өmax $=6.2831853 \ldots$
Өstep=.1308996...
Xmin=-10
Xmax $=10$
Xscl=1
Ymin $=-10$
Y max $=10$
Yscl=1

Smallest θ value to evaluate Largest θ value to evaluate (2π) Increment between θ values $(\pi / 24)$
Smallest \mathbf{X} value to be displayed
Largest \mathbf{X} value to be displayed
Spacing between the \mathbf{X} tick marks
Smallest \mathbf{Y} value to be displayed
Largest Y value to be displayed
Spacing between the \mathbf{Y} tick marks
Note: To ensure that sufficient points are plotted, you may want to change the θ window variables.

Setting the Graph Format

To display the current graph format settings, press 2nd [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings.

Displaying a Graph

When you press GRAPH, the TI-83 Plus plots the selected polar equations. It evaluates \mathbf{R} for each value of θ (from θ min to θ max in intervals of θ step) and then plots each point. The window variables define the viewing window.

As the graph is plotted, $\mathbf{X}, \mathbf{Y}, \mathbf{R}$, and θ are updated.
Smart Graph applies to polar graphs (Chapter 3).

Window Variables and Y-VARS Menus

You can perform these actions from the home screen or a program.

- Access functions by using the name of the equation as a variable.
$\stackrel{\mathrm{r} 1+\mathrm{r} 2}{ }$
- Store polar equations.

"59"+r*	Lorne	

- Select or deselect polar equations.

Froff 1	Floti Flote flots人1日 5 $\stackrel{r}{6}=$

- Store values directly to window variables.
-

Exploring Polar Graphs

Free-Moving Cursor

The free-moving cursor in Pol graphing works the same as in Func graphing. In RectGC format, moving the cursor updates the values of \mathbf{X} and \mathbf{Y}; if CoordOn format is selected, \mathbf{X} and \mathbf{Y} are displayed. In PolarGC format, $\mathbf{X}, \mathbf{Y}, \mathbf{R}$, and θ are updated; if CoordOn format is selected, \mathbf{R} and θ are displayed.

TRACE

To activate trace, press TRACE. When trace is active, you can move the trace cursor along the graph of the equation one θ step at a time. When you begin a trace, the trace cursor is on the first selected function at $\theta \mathbf{m i n}$. If ExprOn format is selected, then the equation is displayed.

In RectGC format, trace updates the values of \mathbf{X}, \mathbf{Y}, and θ; if CoordOn format is selected, \mathbf{X}, \mathbf{Y}, and θ are displayed. In PolarGC format, trace updates $\mathbf{X}, \mathbf{Y}, \mathbf{R}$, and θ; if CoordOn format is selected, \mathbf{R} and θ are displayed.

To move five plotted points at a time on a function, press 2nd \square or 2nd \square. If you move the trace cursor beyond the top or bottom of the
screen, the coordinate values at the bottom of the screen continue to change appropriately.

Quick Zoom is available in Pol graphing mode; panning is not (Chapter 3).

Moving the Trace Cursor to Any Valid θ Value

To move the trace cursor to any valid θ value on the current function, enter the number. When you enter the first digit, a $\theta=$ prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the $\theta=$ prompt. The value must be valid for the current viewing window. When you complete the entry, press ENTER to move the cursor.

ZOOM

zoom operations in Pol graphing work the same as in Func graphing. Only the \mathbf{X} ($\mathbf{X m i n}$, Xmax, and Xscl) and \mathbf{Y} (Ymin, Ymax, and Yscl) window variables are affected.

The θ window variables (θ min, θ max, and θ step) are not affected, except when you select ZStandard. The vars zoom secondary menu zt/ze items 4:Zөmin, 5:Zөmax, and 6:Zөstep are zoom memory variables for Pol graphing.

CALC

CALC operations in Pol graphing work the same as in Func graphing. The calculate menu items available in Pol graphing are 1:value, 2:dy/dx, and 3:dr/d θ.

Chapter 6: Sequence Graphing

Getting Started: Forest and Trees

Getting Started is a fast-paced introduction. Read the chapter for details.
A small forest of 4,000 trees is under a new forestry plan. Each year 20 percent of the trees will be harvested and 1,000 new trees will be planted. Will the forest eventually disappear? Will the forest size stabilize? If so, in how many years and with how many trees?

1. Press MODE. Press $\square_{\square} \square \square \square \square$ ENTER to select Seq graphing mode.

2. Press 2nd [FORMAT] and select Time axes format and ExprOn format if necessary.

3．Press $Y \neq$ ．If the graph－style icon is not ${ }^{\prime}$ ．（dot）， press \square ，press ENTER until＇ ：is displayed， and then press $\square \square$ ．

4．Press MATH $\square 3$ to select iPart（（integer part）

```
F1ot1 F10tE F10ts
mir=1
4(a)日iPart<, Buc
#-1)+160日>
\
v
un利吅=
Ow(n)=
``` because only whole trees are harvested．After each annual harvest， 80 percent（．80）of the trees remain．

Press \(\square 8\) 2nd \([u] \square X, T, \Theta, n \square 1 \square\) to define the number of trees after each harvest．Press \(\square 1000 \square\) to define the new trees．Press \(\square\) 4000 to define the number of trees at the beginning of the program．

5．Press WINDOW \(\mathbf{0}\) to set \(\boldsymbol{n M i n}=\mathbf{0}\) ．Press \(\boldsymbol{5 0}\) to set \(\boldsymbol{n M a x}=\mathbf{5 0}\) ． \(\boldsymbol{n M i n}\) and \(\boldsymbol{n M a x}\) evaluate forest size over 50 years．Set the other window variables．
\begin{tabular}{lll}
PlotStart＝1 & Xmin＝0 & Ymin＝0 \\
PlotStep＝1 & Xmax＝50 & Ymax \(=6000\) \\
& Xscl＝10 & Yscl＝1000
\end{tabular}
6. Press TRACE. Tracing begins at nMin (the start of the forestry plan). Press \(\square\) to trace the sequence year by year. The sequence is displayed at the top of the screen. The values for \(\boldsymbol{n}\) (number of years), \(X(X=n\), because \(\boldsymbol{n}\) is
 plotted on the \(x\)-axis), and \(\mathbf{Y}\) (tree count) are displayed at the bottom. When will the forest stabilize? With how many trees?

\section*{Defining and Displaying Sequence Graphs}

\section*{TI-83 Plus Graphing Mode Similarities}

The steps for defining a sequence graph are similar to the steps for defining a function graph. Chapter 6 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 6 details aspects of sequence graphing that differ from function graphing.

\section*{Setting Sequence Graphing Mode}

To display the mode screen, press MODE. To graph sequence functions, you must select Seq graphing mode before you enter window variables and before you enter sequence functions.

Sequence graphs automatically plot in Simul mode, regardless of the current plotting-order mode setting.

\section*{Tl-83 Plus Sequence Functions u, v, and w}

The TI-83 Plus has three sequence functions that you can enter from the keyboard: u, v, and w. They are above the 7, 8, and 9 keys.

You can define sequence functions in terms of：
－The independent variable \(\boldsymbol{n}\)
－The previous term in the sequence function，such as \(\mathbf{u}(\boldsymbol{n}-1)\)
－The term that precedes the previous term in the sequence function， such as u（n－2）
－The previous term or the term that precedes the previous term in another sequence function，such as \(\mathbf{u}(\boldsymbol{n}-\mathbf{1})\) or \(\mathbf{u}(\boldsymbol{n - 2})\) referenced in the sequence \(\mathbf{v}(\boldsymbol{n})\) ．
Note：Statements in this chapter about \(u(n)\) are also true for \(v(n)\) and \(w(n)\) ； statements about \(\mathbf{u}(\boldsymbol{n}-1)\) are also true for \(\mathbf{v}(\boldsymbol{n - 1})\) and \(\mathbf{w}(\boldsymbol{n}-1)\) ；statements about \(\mathbf{u}(n-2)\) are also true for \(\mathrm{v}(\boldsymbol{n - 2)}\) and \(\mathbf{w}(n-2)\) ．

\section*{Displaying the Sequence \(\mathrm{Y}=\) Editor}

After selecting Seq mode，press \(\gamma\) to display the sequence \(Y=\) editor．
```

Flot1 Flotz Flotz
\#相姩=1
-L(n)=

```

```

*(%)=
w(min)=
|(n)=
w(n両in)=

```

In this editor，you can display and enter sequences for \(\mathbf{u}(\boldsymbol{n}), \mathbf{v}(\boldsymbol{n})\) ，and \(w(n)\) ．Also，you can edit the value for \(n M i n\) ，which is the sequence window variable that defines the minimum \(\boldsymbol{n}\) value to evaluate．

The sequence \(\mathbf{Y}=\) editor displays the \(n\) Min value because of its relevance to \(\mathbf{u}(n M i n), \mathbf{v}(n M i n)\), and \(\mathbf{w}(n M i n)\), which are the initial values for the sequence equations \(u(n), v(n)\), and \(w(n)\), respectively.
\(\boldsymbol{n M i n}\) in the \(\mathbf{Y}=\) editor is the same as \(\boldsymbol{n M i n}\) in the window editor. If you enter a new value for \(\boldsymbol{n M i n}\) in one editor, the new value for \(n M i n\) is updated in both editors.
Note: Use \(u(n M i n), v(n M i n)\), or \(w(n M i n)\) only with a recursive sequence, which requires an initial value.

\section*{Selecting Graph Styles}

The icons to the left of \(\mathbf{u}(\boldsymbol{n}), \mathbf{v}(\boldsymbol{n})\), and \(\mathbf{w}(n)\) represent the graph style of each sequence (Chapter 3). The default in Seq mode is \({ }^{\prime}\). (dot), which shows discrete values. Dot, © (line), and \({ }^{\prime \prime \prime}\) (thick) styles are available for sequence graphing. Graph styles are ignored in Web format.

\section*{Selecting and Deselecting Sequence Functions}

The TI-83 Plus graphs only the selected sequence functions. In the \(\mathbf{Y}=\) editor, a sequence function is selected when the \(=\) signs of both \(\mathbf{u}(\boldsymbol{n})=\) and \(\mathbf{u}(n \mathrm{Min})=\) are highlighted.

To change the selection status of a sequence function, move the cursor onto the = sign of the function name, and then press ENTER. The status is changed for both the sequence function \(\mathbf{u}(n)\) and its initial value \(\mathbf{u}(n \mathrm{Min})\).

\section*{Defining and Editing a Sequence Function}

To define or edit a sequence function, follow the steps in Chapter 3 for defining a function. The independent variable in a sequence is \(\boldsymbol{n}\).

In Seq graphing mode, you can enter the sequence variable in either of two ways.
- Press X,T, \(\Theta, n\).
- Press [2nd [CATALOG] [n].

You can enter the function name from the keyboard.
- To enter the function name u, press 2nd [u] (above 7).
- To enter the function name v, press 2nd [v] (above 8).
- To enter the function name w, press 2nd [w] (above 9).

Generally, sequences are either nonrecursive or recursive. Sequences are evaluated only at consecutive integer values. \(\boldsymbol{n}\) is always a series of consecutive integers, starting at zero or any positive integer.

\section*{Nonrecursive Sequences}

In a nonrecursive sequence, the \(n\)th term is a function of the independent variable \(\boldsymbol{n}\). Each term is independent of all other terms.

For example, in the nonrecursive sequence below, you can calculate u(5) directly, without first calculating \(\mathbf{u}(1)\) or any previous term.
```

Flot1 Flote Flotz
N+1F=1

```


```

v(n)=
w(n+1%)=
4(n)=
心(n+1m)=

```

The sequence equation above returns the sequence \(\mathbf{2 , 4 , 6 , 8 , 1 0}\), ..for \(n=1,2,3,4,5, \ldots\).

Note: You may leave blank the initial value u(nMin) when calculating nonrecursive sequences.

\section*{Recursive Sequences}

In a recursive sequence, the \(n\)th term in the sequence is defined in relation to the previous term or the term that precedes the previous term, represented by \(\mathbf{u}(\boldsymbol{n}-1)\) and \(\mathbf{u}(\boldsymbol{n - 2})\). A recursive sequence may also be defined in relation to \(n\), as in \(\mathbf{u}(\boldsymbol{n})=\mathbf{u}(\boldsymbol{n}-\mathbf{1})+\boldsymbol{n}\).

For example, in the sequence below you cannot calculate \(\mathbf{u}(5)\) without first calculating \(\mathbf{u}(1), \mathbf{u}(2), \mathbf{u}(3)\), and \(\mathbf{u}(4)\).
```

Flot1 Flotz Flotz
mir=1
-4(n)日2*4(n-1)

```


Using an initial value \(\mathbf{u}(\boldsymbol{n M i n})=\mathbf{1}\), the sequence above returns 1, 2, 4, 8, 16, ...

Tip: On the Tl-83 Plus, you must type each character of the terms. For

Recursive sequences require an initial value or values, since they reference undefined terms.
- If each term in the sequence is defined in relation to the previous term, as in \(\mathbf{u}(\boldsymbol{n}-\mathbf{1})\), you must specify an initial value for the first term.
```

Flot1 Flote Flots
mirn=1
-4(n)日, 8u(n-1)+5
0

```

- If each term in the sequence is defined in relation to the term that precedes the previous term, as in \(\mathbf{u}(\boldsymbol{n}-\mathbf{2})\), you must specify initial values for the first two terms. Enter the initial values as a list enclosed in braces (\(\}\)) with commas separating the values.
```

Floti Flote Flots

```

```

O-N
-2)

```


The value of the first term is 0 and the value of the second term is 1 for the sequence \(u(n)\).

\section*{Setting Window Variables}

To display the window variables, press WINDOW. These variables define the viewing window. The values below are defaults for Seq graphing in both Radian and Degree angle modes.
\begin{tabular}{|c|c|}
\hline nM in=1 & Smallest \(\boldsymbol{n}\) value to evaluate \\
\hline \(n \mathrm{Max}=10\) & Largest \(\boldsymbol{n}\) value to evaluate \\
\hline PlotStart=1 & First term number to be plotted \\
\hline PlotStep=1 & Incremental \(\boldsymbol{n}\) value (for graphing only) \\
\hline Xmin \(=-10\) & Smallest \(\mathbf{X}\) value to be displayed \\
\hline \(X_{\text {max }}=10\) & Largest \(\mathbf{X}\) value to be displayed \\
\hline Xscl=1 & Spacing between the \(\mathbf{X}\) tick marks \\
\hline \(Y_{\text {min }}=-10\) & Smallest \(\mathbf{Y}\) value to be displayed \\
\hline \(Y\) max \(=10\) & Largest \(\mathbf{Y}\) value to be displayed \\
\hline \(\underline{Y s c l}=1\) & Spacing between the \(\mathbf{Y}\) tick marks \\
\hline
\end{tabular}
\(n\) Min must be an integer \(\geq 0\). nMax, PlotStart, and PlotStep must be integers \(\geq 1\).
\(\boldsymbol{n M i n}\) is the smallest \(\boldsymbol{n}\) value to evaluate. \(\boldsymbol{n}\) Min also is displayed in the sequence \(\mathbf{Y}=\) editor. \(\boldsymbol{n M a x}\) is the largest \(\boldsymbol{n}\) value to evaluate. Sequences are evaluated at \(\mathbf{u}(n M i n), \mathbf{u}(n M i n+1), \mathbf{u}(n M i n+2), \ldots, u(n M a x)\).

PlotStart is the first term to be plotted. PlotStart=1 begins plotting on the first term in the sequence. If you want plotting to begin with the fifth term in a sequence, for example, set PlotStart=5. The first four terms are evaluated but are not plotted on the graph.

PlotStep is the incremental \(\boldsymbol{n}\) value for graphing only. PlotStep does not affect sequence evaluation; it only designates which points are plotted on the graph. If you specify PlotStep=2, the sequence is evaluated at each consecutive integer, but it is plotted on the graph only at every other integer.

\section*{Selecting Axes Combinations}

\section*{Setting the Graph Format}

To display the current graph format settings, press 2nd [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings. The axes setting on the top line of the screen is available only in Seq mode.
\begin{tabular}{ll}
\hline Time Webuv vw uw & Type of sequence plot (axes) \\
RectGC PolarGC & Rectangular or polar output \\
CoordOn CoordOff & Cursor coordinate display on/off \\
GridOff GridOn & Grid display off or on \\
AxesOn AxesOff & Axes display on or off \\
Label0ff Labelon & Axes label display off or on \\
Expr0n Expr0ff & Expression display on or off \\
\hline
\end{tabular}

\section*{Setting Axes Format}

For sequence graphing, you can select from five axes formats. The table below shows the values that are plotted on the \(x\)-axis and \(y\)-axis for each axes setting.
\begin{tabular}{c|c|c}
\hline Axes Setting & x -axis & y -axis \\
\hline Time & \(n\) & \(\mathrm{u}(n), \mathrm{v}(n), \mathrm{w}(n)\) \\
\(\underline{\text { Web }}\) & \(\mathrm{u}(n-1), \mathrm{v}(n-1), \mathrm{w}(n-1)\) & \(\mathrm{u}(n), \mathrm{v}(n), \mathrm{w}(n)\) \\
\(\underline{\mathrm{uv}}\) & \(\mathrm{u}(n)\) & \(\mathrm{v}(n)\) \\
\(\underline{\mathrm{vw}}\) & \(\mathrm{v}(n)\) & \(\mathrm{w}(n)\) \\
\(\underline{\mathrm{uw}}\) & \(\mathrm{u}(n)\) & \(\mathrm{w}(n)\) \\
\hline
\end{tabular}

\section*{Displaying a Sequence Graph}

To plot the selected sequence functions, press GRAPH. As a graph is plotted, the TI-83 Plus updates \(\mathbf{X}, \mathbf{Y}\), and \(\boldsymbol{n}\).

Smart Graph applies to sequence graphs (Chapter 3).

\section*{Exploring Sequence Graphs}

\section*{Free-Moving Cursor}

The free-moving cursor in Seq graphing works the same as in Func graphing. In RectGC format, moving the cursor updates the values of \(\mathbf{X}\) and \(\mathbf{Y}\); if CoordOn format is selected, \(\mathbf{X}\) and \(\mathbf{Y}\) are displayed. In PolarGC format, \(\mathbf{X}, \mathbf{Y}, \mathbf{R}\), and \(\theta\) are updated; if CoordOn format is selected, \(\mathbf{R}\) and \(\theta\) are displayed.

\section*{TRACE}

The axes format setting affects trace.
When Time, uv, vw, or uw axes format is selected, trace moves the cursor along the sequence one PlotStep increment at a time. To move five plotted points at once, press 2nd \(\square\) or 2nd \(\square\).
- When you begin a trace, the trace cursor is on the first selected sequence at the term number specified by PlotStart, even if it is outside the viewing window.
- Quick Zoom applies to all directions. To center the viewing window on the current cursor location after you have moved the trace cursor, press ENTER. The trace cursor returns to nMin.

In Web format, the trail of the cursor helps identify points with attracting and repelling behavior in the sequence. When you begin a trace, the cursor is on the x-axis at the initial value of the first selected function.
Tip: To move the cursor to a specified \(\boldsymbol{n}\) during a trace, enter a value for \(\boldsymbol{n}\), and press ENTER. For example, to quickly return the cursor to the beginning of the sequence, paste nMin to the \(n=\) prompt and press ENTER.

\section*{Moving the Trace Cursor to Any Valid \(n\) Value}

To move the trace cursor to any valid \(n\) value on the current function, enter the number. When you enter the first digit, an \(\boldsymbol{n}=\) prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the \(\boldsymbol{n}=\) prompt. The value must be valid for the current viewing window. When you have completed the entry, press ENTER to move the cursor.

\section*{zOOM}
zoom operations in Seq graphing work the same as in Func graphing. Only the \(\mathbf{X}\) (\(\mathbf{X m i n}, \mathbf{X m a x}\), and \(\mathbf{X s c l}\)) and \(\mathbf{Y}\) (Ymin, Ymax, and Yscl) window variables are affected.

PlotStart, PlotStep, \(n\) Min, and \(n\) Max are only affected when you select ZStandard. The vars zoom secondary menu zu items \(\mathbf{1}\) through \(\mathbf{7}\) are the zOOM MEMORY variables for Seq graphing.

\section*{CALC}

The only calc operation available in Seq graphing is value.
- When Time axes format is selected, value displays \(\mathbf{Y}\) (the \(\mathbf{u}(n)\) value) for a specified \(n\) value.
- When Web axes format is selected, value draws the web and displays \(\mathbf{Y}\) (the \(\mathbf{u}(\boldsymbol{n})\) value) for a specified \(\boldsymbol{n}\) value.
- When uv, vw, or uw axes format is selected, value displays \(\mathbf{X}\) and \(\mathbf{Y}\) according to the axes format setting. For example, for uv axes format, \(\mathbf{X}\) represents \(\mathbf{u}(n)\) and \(\mathbf{Y}\) represents \(\mathbf{v}(n)\).

\section*{Evaluating \(\mathbf{u}, \mathbf{v}\), and w}

To enter the sequence names \(\mathbf{u}\), v, or w, press 2nd [u], [v], or [w]. You can evaluate these names in any of three ways.
- Calculate the nth value in a sequence.
- Calculate a list of values in a sequence.
- Generate a sequence with \(\mathbf{u}(n s t a r t, n s t o p[, n s t e p])\). nstep is optional; default is 1 .
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Graphing Web Plots}

\section*{Graphing a Web Plot}

To select Web axes format, press 2nd [FORMAT] [ENTER. A web plot graphs \(\mathbf{u}(\boldsymbol{n})\) versus \(\mathbf{u}(\boldsymbol{n}-1)\), which you can use to study long-term behavior (convergence, divergence, or oscillation) of a recursive sequence. You can see how the sequence may change behavior as its initial value changes.

\section*{Valid Functions for Web Plots}

When Web axes format is selected, a sequence will not graph properly or will generate an error.
- It must be recursive with only one recursion level (\(\mathbf{u}(\boldsymbol{n} \mathbf{- 1})\) but not \(u(n-2)\)).
- It cannot reference \(n\) directly.
- It cannot reference any defined sequence except itself.

\section*{Displaying the Graph Screen}

In Web format, press GRAPH to display the graph screen. The TI-83 Plus:
- Draws a \(y=x\) reference line in AxesOn format.
- Plots the selected sequences with \(\mathbf{u}(\boldsymbol{n}-\mathbf{1})\) as the independent variable.
Note: A potential convergence point occurs whenever a sequence intersects the \(y=x\) reference line. However, the sequence may or may not actually converge at that point, depending on the sequence's initial value.

\section*{Drawing the Web}

To activate the trace cursor, press TRACE. The screen displays the sequence and the current \(\boldsymbol{n}, \mathbf{X}\), and \(\mathbf{Y}\) values (\(\mathbf{X}\) represents \(\mathbf{u}(\boldsymbol{n}-\mathbf{1})\) and \(\mathbf{Y}\) represents \(\mathbf{u}(n)\)). Press \(\square\) repeatedly to draw the web step by step, starting at \(n M i n\). In Web format, the trace cursor follows this course.
1. It starts on the \(x\)-axis at the initial value \(\mathbf{u}(\mathbf{n M i n})\) (when PlotStart \(=1\)).
2. It moves vertically (up or down) to the sequence.
3. It moves horizontally to the \(y=x\) reference line.
4. It repeats this vertical and horizontal movement as you continue to press \(\square\).

\section*{Using Web Plots to Illustrate Convergence}

\section*{Example：Convergence}

1．Press \(Y\) in Seq mode to display the sequence \(Y=\) editor．Make sure the graph style is set to \({ }^{\circ}\) ．（dot），and then define \(\boldsymbol{n M i n}, \mathbf{u}(\boldsymbol{n})\) and \(\mathbf{u}(\boldsymbol{n M i n})\) as shown below．
```

Floti F10te FlotS
m|ir=1
O-木(n)日-.8-(n-1)+
3.6
HCNMin)日(-4)
Q(n)=
un|in)=
OW(n)=

```

2．Press 2nd［FORMAT］ENTER to set Time axes format．
3．Press WINDOW and set the variables as shown below．
\begin{tabular}{lll}
\(n\) Min＝1 & Xmin＝0 & Ymin＝－10 \\
\(n M a x=25\) & Xmax＝25 & Ymax \(=10\) \\
PlotStart＝1 & Xscl＝1 & Yscl＝1 \\
PlotStep＝1 & &
\end{tabular}
4. Press GRAPH to graph the sequence.

5. Press [2nd [FORMAT] and select the Web axes setting.
6. Press WINDOW and change the variables below.

Xmin=-10 \(\quad\) Xmax \(=10\)
7. Press GRAPH to graph the sequence.
8. Press TRACE, and then press \(\square\) to draw the web. The displayed cursor coordinates \(n, \mathbf{X}(\mathbf{u}(\boldsymbol{n}-\mathbf{1}))\), and
\(\mathbf{Y}(\mathbf{u}(\boldsymbol{n}))\) change accordingly. When you press \(\square\), a new \(\boldsymbol{n}\) value is displayed, and the trace cursor is on the sequence. When you press \(\square\) again, the \(n\) value remains the same, and the cursor moves to the \(\mathbf{y}=\mathbf{x}\) reference line. This pattern repeats as you trace the web.

\section*{Graphing Phase Plots}

Graphing with uv, vw, and uw
The phase-plot axes settings uv, vw, and uw show relationships between two sequences. To select a phase-plot axes setting, press [nd [FORMAT], press \(\square\) until the cursor is on uv, vw, or uw, and then press ENTER.
\begin{tabular}{c|c|c}
\hline Axes Setting & x -axis & y -axis \\
\hline uv & \(\mathrm{u}(n)\) & \(\mathrm{v}(n)\) \\
vw & \(\mathrm{v}(n)\) & \(\mathrm{w}(n)\) \\
uw & \(\mathrm{u}(n)\) & \(\mathrm{w}(n)\) \\
\hline
\end{tabular}

\section*{Example: Predator-Prey Model}

Use the predator-prey model to determine the regional populations of a predator and its prey that would maintain population equilibrium for the two species.

This example uses the model to determine the equilibrium populations of foxes and rabbits, with initial populations of 200 rabbits (\(\mathbf{u}(\mathbf{n M i n})\)) and 50 foxes (\(v(n M i n)\)).

These are the variables (given values are in parentheses):
\(\mathrm{R}=\) number of rabbits
\(\mathrm{M}=\) rabbit population growth rate without foxes
\(\mathrm{K}=\) rabbit population death rate with foxes
\(\mathrm{W}=\) number of foxes
\(G=\) fox population growth rate with rabbits
D = fox population death rate without rabbits
\(\boldsymbol{n}=\) time (in months)
\(\mathrm{R}_{n}=\mathrm{R}_{n-1}\left(1+\mathrm{M}-\mathrm{KW}_{n-1}\right)\)
\(\mathrm{W}_{n}=\mathrm{W}_{n-1}\left(1+\mathrm{GR}_{n-1}-\mathrm{D}\right)\)
1. Press \(Y\) in Seq mode to display the sequence \(Y=\) editor. Define the sequences and initial values for \(R_{n}\) and \(W_{n}\) as shown below. Enter the sequence \(R_{n}\) as \(u(n)\) and enter the sequence \(W_{n}\) as \(v(n)\).

2. Press 2nd [FORMAT] ENTER to select Time axes format.
3. Press WINDOW and set the variables as shown below.
\begin{tabular}{lll}
\(n\) Min=0 & Xmin=0 & \(Y \operatorname{Ymin}=0\) \\
\(n\) Max \(=400\) & Xmax \(=400\) & \(Y \operatorname{Ymax}=300\) \\
PlotStart=1 & Xscl=100 & Yscl=100
\end{tabular}
4. Press GRAPH to graph the sequence.

5. Press TRACE \(\square\) to individually trace the number of rabbits \((\mathbf{u}(\boldsymbol{n}))\) and foxes (\(\mathbf{v}(\boldsymbol{n})\)) over time (\(\boldsymbol{n}\)).
Tip: Press a number, and then press ENTER to jump to a specific \(\boldsymbol{n}\) value (month) while in TRACE.

6. Press [2nd [FORMAT] \(\square\) ENTER to select uv axes format.
7. Press WINDOW and change these variables as shown below.
\begin{tabular}{ll}
Xmin=84 & Ymin=25 \\
Xmax \(=237\) & Ymax \(=75\) \\
Xscl=50 & Yscl=10
\end{tabular}
8. Press TRACE. Trace both the number of rabbits \((\mathbf{X})\) and the number of foxes (Y) through 400 generations.

Note: When you press TRACE, the equation for \(u\) is displayed in the top-left corner. Press \(\Delta\) or \(\square\) to see the equation for \(v\).

\section*{Comparing TI-83 Plus and TI-82 Sequence Variables}

\section*{Sequences and Window Variables}

Refer to the table if you are familiar with the TI-82. It shows TI-83 Plus sequences and sequence window variables, as well as their Tl-82 counterparts.
\begin{tabular}{|c|c|}
\hline TI-83 Plus & TI-82 \\
\hline \multicolumn{2}{|l|}{In the \(\mathbf{Y}=\) editor:} \\
\hline \(\mathbf{u}(n)\) & Un \\
\hline \(\mathbf{u}(n \mathrm{Min})\) & UnStart (window variable) \\
\hline \(\mathrm{v}(\mathrm{n})\) & Vn \\
\hline v (\(n\) Min) & VnStart (window variable) \\
\hline w(\(n\)) & not available \\
\hline w(nMin) & not available \\
\hline \multicolumn{2}{|l|}{In the window editor:} \\
\hline \(n \mathrm{Min}\) & nStart \\
\hline nMax & \(n \mathrm{Max}\) \\
\hline PlotStart & \(n \mathrm{Min}\) \\
\hline PlotStep & not available \\
\hline
\end{tabular}

\section*{Keystroke Differences Between TI-83 Plus and TI-82}

\section*{Sequence Keystroke Changes}

Refer to the table if you are familiar with the TI-82. It compares TI-83 Plus sequence-name syntax and variable syntax with TI-82 sequence-name syntax and variable syntax.
\begin{tabular}{|c|c|c|}
\hline T1-83 Plus / T1-82 & On Tl-83 Plus, press: & On TI-82, press: \\
\hline \(n / n\) & X,T, , , , & [nd [\(n\)] \\
\hline \(u(n) / U n\) & \begin{tabular}{l}
2nd [u] \\
\(\square X, T, \Theta, n\) \\
\(\square\)
\end{tabular} & 2nd [Y-VARS] 4 1 \\
\hline \(\mathrm{v}(\mathrm{n}) / \mathrm{V} \boldsymbol{n}\) & \begin{tabular}{l}
2nd [v] \\
\(\square \times, \mathrm{T}, \mathrm{Q}, \mathrm{n}\) \\
\(\square\)
\end{tabular} & 2nd [Y -VARS] 4 2 \\
\hline w(n) & \begin{tabular}{l}
[2nd [w] \\
\(\square X, T, \Theta, n\)
\end{tabular} & not available \\
\hline \(\mathrm{u}(\mathrm{n}-1) / \mathrm{Un}\)-1 & \begin{tabular}{l}
[2nd [u] \\
\(\square \boxed{X, T, \Theta, n} \square \square \square\)
\end{tabular} & 2nd [\(U_{n-1}\)] \\
\hline \(\mathrm{v}(\mathrm{n}-1) / \mathrm{V}-1\) & \begin{tabular}{l}
[2nd [v] \\

\end{tabular} & [2nd [\(\mathrm{V}_{n-1}\)] \\
\hline \(w(n-1)\) & \begin{tabular}{l}
2nd [w] \\
\(\square \boxed{X, T, \Theta, n} \square \square \square\)
\end{tabular} & not available \\
\hline
\end{tabular}

\section*{Chapter 7: Tables}

\section*{Getting Started: Roots of a Function}

Getting Started is a fast-paced introduction. Read the chapter for details.
Evaluate the function \(Y=X^{3}-2 X\) at each integer between -10 and 10. How many sign changes occur, and at what \(X\) values?
1. Press MODE \(\square \square \square\) ENTER to set Func graphing mode.
2. Press \(Y=\). Press \(X, T, \Theta, \Pi\) MATH 3 to select 3 . Then press \(\square \mathbf{X} \mathrm{X}, \mathrm{T}, \Theta, \mathrm{n}\) to enter the function \(\mathbf{Y}_{1}=\mathbf{X}^{3} \mathbf{- 2 X}\).
3. Press 2nd [TBLSET] to display the table setup screen. Press \(-(-) 10\) ENTER to set TbIStart=-10. Press 1 ENTER to set \(\Delta\) Tbl=1.
```

Flot1 Flote Flotz
N1日x3-2X
vz=
vz=
H4=
*15=
,1%=
M7=

```
```

THELE SETUF

```

```

    *TG1=1
    IFGFrat:

```


Press ENTER to select Indpnt：Auto
（automatically generated independent values）．
Press \(⿴ 囗 十 \nabla\) ENTER to select Depend：Auto （automatically generated dependent values）．

4．Press 2nd［TABLE］to display the table screen．

5．Press until you see the sign changes in the value of \(\mathbf{Y}_{1}\) ．How many sign changes occur，and at what \(\mathbf{X}\) values？

\section*{Setting Up the Table}

\section*{TABLE SETUP Screen}

To display the table setup screen, press [2nd [TblSet].

TblStart, \(\Delta\) Tbl
TbIStart (table start) defines the initial value for the independent variable. TbIStart applies only when the independent variable is generated automatically (when Indpnt: Auto is selected).
\(\Delta \mathbf{T b l}\) (table step) defines the increment for the independent variable.
Note: In Seq mode, both TbIStart and \(\Delta\) Tbl must be integers.

Indpnt: Auto, Indpnt: Ask, Depend: Auto, Depend: Ask
\begin{tabular}{ll}
\hline Selections & Table Characteristics \\
\hline Indpnt: Auto & \begin{tabular}{l}
Values are displayed automatically in both the \\
Depend: Auto \\
independent-variable column and in all dependent- \\
variable columns.
\end{tabular} \\
\hline Indpnt: Ask & \begin{tabular}{l}
The table is empty; when you enter a value for the \\
independent variable, all corresponding dependent- \\
Depend: Auto \\
autiable values are calculated and displayed
\end{tabular} \\
\hline Indpnt: Auto & \begin{tabular}{l}
Values are displayed automatically for the independent \\
variable; to generate a value for a dependent variable, \\
move the cursor to that cell and press ENTER.
\end{tabular} \\
\hline Indpnt: Ask & \begin{tabular}{l}
The table is empty; enter values for the independent \\
variable; to generate a value for a dependent variable, \\
move the cursor to that cell and press ENTER.
\end{tabular} \\
\hline
\end{tabular}

\section*{Setting Up the Table from the Home Screen or a Program}

To store a value to TbStart, \(\Delta\) Tbl, or TbInput from the home screen or a program, select the variable name from the vars table secondary menu. TbInput is a list of independent-variable values in the current table.

When you press [nd [TBLSET] in the program editor, you can select IndpntAuto, IndpntAsk, DependAuto, and DependAsk.

\section*{Defining the Dependent Variables}

\section*{Defining Dependent Variables from the \(\mathrm{Y}=\) Editor}

In the \(\mathbf{Y}=\) editor, enter the functions that define the dependent variables.
Only functions that are selected in the \(\mathbf{Y}=\) editor are displayed in the table. The current graphing mode is used. In Par mode, you must define both components of each parametric equation (Chapter 4).

\section*{Editing Dependent Variables from the Table Editor}

To edit a selected \(\mathbf{Y}=\) function from the table editor, follow these steps.
1. Press \(2 n d\) [TABLE] to display the table, then press \(\square\) or \(\square\) to move the cursor to a dependent-variable column.
2. Press \(\Delta\) until the cursor is on the function name at the top of the column. The function is displayed on the bottom line.
\begin{tabular}{|c|c|c|}
\hline X & 11 & \\
\hline \% & \({ }_{4}\) & \\
\hline \(\frac{1}{2}\) & -1 & \\
\hline \(\frac{3}{4}\) & \(\frac{21}{56}\) & \\
\hline 5 & 1 & \\
\hline \multicolumn{3}{|l|}{Y1目3-2X} \\
\hline
\end{tabular}
3. Press ENTER. The cursor moves to the bottom line. Edit the function.

4. Press ENTER or \(\square\). The new values are calculated. The table and the \(\mathbf{Y}=\) function are updated automatically.

Note: You also can use this feature to view the function that defines a dependent variable without having to leave the table.

\section*{Displaying the Table}

\section*{The Table}

To display the table, press 2nd [TABLE].

Note: The table abbreviates the values, if necessary.

\section*{Independent and Dependent Variables}

The current graphing mode determines which independent and dependent variables are displayed in the table (Chapter 1). In the table above, for example, the independent variable \(\mathbf{X}\) and the dependent variables \(\mathbf{Y}_{1}\) and \(\mathbf{Y}_{2}\) are displayed because Func graphing mode is set.
\begin{tabular}{|c|c|c|}
\hline Graphing Mode & Independent Variable & Dependent Variable \\
\hline Func (function) & X & Y1 through Y9, and Y0 \\
\hline Par (parametric) & T & \\
\hline Pol (polar) & \(\theta\) & \(\mathbf{r 1}\) through r6 \\
\hline Seq (sequence) & \(n\) & \(\mathbf{u}(n), \mathrm{v}(\mathrm{n})\), and \(\mathbf{w}(n)\) \\
\hline
\end{tabular}

\section*{Clearing the Table from the Home Screen or a Program}

From the home screen, select the CIrTable instruction from the catalog. To clear the table, press ENTER.

From a program, select 9:CIrTable from the Prgm ioo menu or from the catalog. The table is cleared upon execution. If IndpntAsk is selected, all independent and dependent variable values on the table are cleared. If DependAsk is selected, all dependent variable values on the table are cleared.

\section*{Scrolling Independent-Variable Values}

If Indpnt: Auto is selected, you can press \(\Delta\) and \(\square\) in the independentvariable column to display more values. As you scroll the column, the corresponding dependent-variable values also are displayed. All dependent-variable values may not be displayed if Depend: Ask is selected.
\begin{tabular}{|c|c|c|}
\hline \(X\) & \(\mathrm{Y}^{1} 1\) & W \\
\hline 0 & 0 & 0 \\
\hline 1 & 4 & - \\
\hline 3 & 21 & 15 \\
\hline 4 & 5.5 & 4 C \\
\hline 5 & \(\underline{115}\) & 102 \\
\hline = & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline X & \(W^{1} 1\) & \(Y^{1} 2\) \\
\hline \(\square\) & 1 & 3 \\
\hline \% & 苟 & - \\
\hline \(\underline{2}\) & 4 & 0 \\
\hline 3 & 21 & 15 \\
\hline 5 & 115 & 105 \\
\hline
\end{tabular}

Note: You can scroll back from the value entered for Tblstart. As you scroll, TbIStart is updated automatically to the value shown on the top line of the table. In the example above, тbIStart=0 and \(\Delta\) Tbl= \(\mathbf{1}\) generates and displays values of \(\mathrm{X}=0, \ldots, 6\); but you can press \(\triangle\) to scroll back and display the table for \(\mathrm{X}=-1, \ldots, 5\)

\section*{Displaying Other Dependent Variables}

If you have defined more than two dependent variables, the first two selected \(\mathbf{Y}=\) functions are displayed initially. Press \(\square\) or \(\square\) to display dependent variables defined by other selected \(\mathbf{Y}=\) functions. The independent variable always remains in the left column, except during a trace with Par graphing mode and G-T split-screen mode set.
\begin{tabular}{|c|c|c|}
\hline X & \(W^{1}\) & Wz \\
\hline -4 & -4 & -rat \\
\hline - & -6 & -18 \\
\hline - & -6 & -10 \\
\hline ¢ & 0 & 0 \\
\hline \(\underline{1}\) & 6
14 & \(\underline{E}\) \\
\hline
\end{tabular}

Tip: To simultaneously display two dependent variables on the table that are not defined as consecutive \(Y\) = functions, go to the \(Y=\) editor and deselect the \(Y=\) functions between the two you want to display. For example, to simultaneously display \(\mathbf{Y}_{4}\) and \(\mathbf{Y}_{7}\) on the table, go to the \(\mathbf{Y}=\) editor and deselect \(\mathbf{Y}_{5}\) and \(\mathbf{Y}_{6}\).

\section*{Chapter 8: Draw Instructions}

\section*{Getting Started: Drawing a Tangent Line}

Getting Started is a fast-paced introduction. Read the chapter for details.
Suppose you want to find the equation of the tangent line at \(X=\sqrt{2} / 2\) for the function \(\mathrm{Y}=\boldsymbol{\operatorname { s i n }}(\mathrm{X})\).

Before you begin, select Radian and Func mode from the mode screen, if necessary.
1. Press \(Y\) to display the \(Y=\) editor. Press SIN \(X, T, \Theta, n \square\) to store \(\boldsymbol{\operatorname { s i n }}(\mathbf{X})\) in Y 1 .

2. Press ZOOM 7 to select 7:ZTrig, which graphs the equation in the Zoom Trig window.

3. Press [2nd [DRAW] 5 to select 5 :Tangent(. The tangent instruction is initiated.
4. Press 2nd \([v] 2 \square \div 2\).

5. Press ENTER. The tangent line is drawn; the \(\mathbf{X}\) value and the tangent-line equation are displayed on the graph.

\section*{Using the DRAW Menu}

\section*{DRAW Menu}

To display the draw menu, press 2nd [DRaw]. The Tl-83 Plus's interpretation of these instructions depends on whether you accessed the menu from the home screen or the program editor or directly from a graph.
\begin{tabular}{|c|c|}
\hline DRAW POINTS & \\
\hline 1:C1rDraw & Clears all drawn elements. \\
\hline 2:Line(& Draws a line segment between 2 points. \\
\hline 3:Horizontal & Draws a horizontal line. \\
\hline 4:Vertical & Draws a vertical line. \\
\hline 5:Tangent(& Draws a line segment tangent to a function. \\
\hline 6: DrawF & Draws a function. \\
\hline 7:Shade(& Shades an area between two functions. \\
\hline 8: DrawInv & Draws the inverse of a function. \\
\hline 9:Circle(& Draws a circle. \\
\hline \(0: T e x t(\) & Draws text on a graph screen. \\
\hline A: Pen & Activates the free-form drawing tool. \\
\hline
\end{tabular}

\section*{Before Drawing on a Graph}

The draw instructions draw on top of graphs. Therefore, before you use the DRAW instructions, consider whether you want to perform one or more of the following actions.
- Change the mode settings on the mode screen.
- Change the format settings on the format screen.
- Enter or edit functions in the \(\mathbf{Y}=\) editor.
- Select or deselect functions in the \(\mathbf{Y}=\) editor.
- Change the window variable values.
- Turn stat plots on or off.
- Clear existing drawings with ClrDraw.

Note: If you draw on a graph and then perform any of the actions listed above, the graph is replotted without the drawings when you display the graph again.

\section*{Drawing on a Graph}

You can use any draw menu instructions except DrawInv to draw on Func, Par, Pol, and Seq graphs. Drawlnv is valid only in Func graphing. The coordinates for all dRAW instructions are the display's x-coordinate and \(y\)-coordinate values.

You can use most draw menu and draw points menu instructions to draw directly on a graph, using the cursor to identify the coordinates. You also can execute these instructions from the home screen or from within a program. If a graph is not displayed when you select a draw menu instruction, the home screen is displayed.

\section*{Clearing Drawings}

\section*{Clearing Drawings When a Graph Is Displayed}

All points, lines, and shading drawn on a graph with DRAw instructions are temporary.

To clear drawings from the currently displayed graph, select 1:CIrDraw from the DRAW menu. The current graph is replotted and displayed with no drawn elements.

\section*{Clearing Drawings from the Home Screen or a Program}

To clear drawings on a graph from the home screen or a program, begin on a blank line on the home screen or in the program editor. Select 1:CIrDraw from the draw menu. The instruction is copied to the cursor location. Press ENTER.

When CIrDraw is executed, it clears all drawings from the current graph and displays the message Done. When you display the graph again, all drawn points, lines, circles, and shaded areas will be gone.
Clraraw

Note: Before you clear drawings, you can store them with StorePic.

\section*{Drawing Line Segments}

\section*{Drawing a Line Segment Directly on a Graph}

To draw a line segment when a graph is displayed, follow these steps.
1. Select 2 :Line(from the dRaw menu.
2. Place the cursor on the point where you want the line segment to begin, and then press ENTER.
3. Move the cursor to the point where you want the line segment to end. The line is displayed as you move the cursor. Press ENTER.

To continue drawing line segments, repeat steps 2 and 3 . To cancel Line(, press CLEAR.

\section*{Drawing a Line Segment from the Home Screen or a Program}

Line(also draws a line segment between the coordinates (XI,Y1) and (\(X 2, Y 2\)). The values may be entered as expressions.

Line (\(X 1, Y 1, X 2, Y 2\))
Line(0,0,6,9)

To erase a line segment, enter Line(X1,Y1,X2,Y2,0)
Line(2, \(3,4,6,6)\) П

\section*{Drawing Horizontal and Vertical Lines}

\section*{Drawing a Line Directly on a Graph}

To draw a horizontal or vertical line when a graph is displayed, follow these steps.
1. Select 3:Horizontal or \(4:\) Vertical from the draw menu. A line is displayed that moves as you move the cursor.
2. Place the cursor on the y-coordinate (for horizontal lines) or x-coordinate (for vertical lines) through which you want the drawn line to pass.
3. Press ENTER to draw the line on the graph.

To continue drawing lines, repeat steps 2 and 3 .
To cancel Horizontal or Vertical, press CLEAR.

\section*{Drawing a Line from the Home Screen or a Program}

Horizontal (horizontal line) draws a horizontal line at \(\mathbf{Y}=y . y\) can be an expression but not a list.

Horizontal \(y\)
Vertical (vertical line) draws a vertical line at \(\mathbf{X}=x . x\) can be an expression but not a list.

Vertical \(x\)
To instruct the TI-83 Plus to draw more than one horizontal or vertical line, separate each instruction with a colon (:).

\section*{Drawing Tangent Lines}

\section*{Drawing a Tangent Line Directly on a Graph}

To draw a tangent line when a graph is displayed, follow these steps.
1. Select \(5:\) Tangent(from the draw menu.
2. Press \(\square\) and \(\boxtimes\) to move the cursor to the function for which you want to draw the tangent line. The current graph's \(Y=\) function is displayed in the top-left corner, if ExprOn is selected.
3. Press \(\square\) and \(\square\) or enter a number to select the point on the function at which you want to draw the tangent line.
4. Press ENTER. In Func mode, the \(\mathbf{X}\) value at which the tangent line was drawn is displayed on the bottom of the screen, along with the equation of the tangent line. In all other modes, the dy/dx value is displayed.

Tip: Change the fixed decimal setting on the mode screen if you want to see fewer digits displayed for \(\mathbf{X}\) and the equation for \(\mathbf{Y}\).

\section*{Drawing a Tangent Line from the Home Screen or a Program}

Tangent((tangent line) draws a line tangent to expression in terms of \(\mathbf{X}\), such as \(\mathbf{Y}_{1}\) or \(\mathbf{X}^{\mathbf{2}}\), at point \(\mathbf{X}=\) value. \(\mathbf{X}\) can be an expression. expression is interpreted as being in Func mode.

Tangent(expression,value)

\section*{Drawing Functions and Inverses}

\section*{Drawing a Function}

DrawF (draw function) draws expression as a function in terms of \(\mathbf{X}\) on the current graph. When you select 6:DrawF from the draw menu, the Tl-83 Plus returns to the home screen or the program editor. DrawF is not interactive.

DrawF expression
DrawF Y1-5I

Note: You cannot use a list in expression to draw a family of curves.

\section*{Drawing an Inverse of a Function}

Drawlnv (draw inverse) draws the inverse of expression by plotting \(\mathbf{X}\) values on the \(y\)-axis and \(\mathbf{Y}\) values on the \(x\)-axis. When you select 8:DrawInv from the draw menu, the TI-83 Plus returns to the home screen or the program editor. DrawInv is not interactive. DrawInv works in Func mode only.

Drawlnv expression
DramIry \(\mathrm{Yt}^{\text {Dra }}\)

Note: You cannot use a list in expression to draw a family of curves.

\section*{Shading Areas on a Graph}

\section*{Shading a Graph}

To shade an area on a graph, select 7:Shade(from the Draw menu. The instruction is pasted to the home screen or to the program editor.

Shade(draws lowerfunc and upperfunc in terms of \(\mathbf{X}\) on the current graph and shades the area that is specifically above lowerfunc and below upperfunc. Only the areas where lowerfunc < upperfunc are shaded.

Xleft and Xright, if included, specify left and right boundaries for the shading. Xleft and Xright must be numbers between Xmin and Xmax, which are the defaults.
pattern specifies one of four shading patterns.
\begin{tabular}{ll}
pattern \(=\mathbf{1}\) & vertical (default) \\
pattern \(=\mathbf{2}\) & horizontal \\
pattern \(=3\) & negative-slope \(45^{\circ}\) \\
pattern \(=\mathbf{4}\) & positive-slope \(45^{\circ}\)
\end{tabular}
patres specifies one of eight shading resolutions.
patres \(=\mathbf{1}\)
patres \(=\mathbf{2}\)
patres=3
patres=4
patres=5
patres \(=6\)
patres=7
patres=8
shades every pixel (default)
shades every second pixel
shades every third pixel shades every fourth pixel shades every fifth pixel shades every sixth pixel shades every seventh pixel shades every eighth pixel

Shade(lowerfunc,upperfunc [,Xleft,Xright,pattern,patres])

\section*{Drawing Circles}

\section*{Drawing a Circle Directly on a Graph}

To draw a circle directly on a displayed graph using the cursor, follow these steps.
1. Select 9:Circle(from the draw menu.
2. Place the cursor at the center of the circle you want to draw. Press ENTER.
3. Move the cursor to a point on the circumference. Press ENTER to draw the circle on the graph.

Note: This circle is displayed as circular, regardless of the window variable values, because you drew it directly on the display. When you use the Circle(instruction from the home screen or a program, the current window variables may distort the shape.

To continue drawing circles, repeat steps 2 and 3. To cancel Circle(, press CLEAR.

\section*{Drawing a Circle from the Home Screen or a Program}

Circle(draws a circle with center (\(X, Y\)) and radius. These values can be expressions.

Circle(\(X, Y\), radius)

Tip: When you use Circle(on the home screen or from a program, the current window values may distort the drawn circle. Use ZSquare (Chapter 3) before drawing the circle to adjust the window variables and make the circle circular.

\section*{Placing Text on a Graph}

\section*{Placing Text Directly on a Graph}

To place text on a graph when the graph is displayed, follow these steps.
1. Select 0:Text(from the draw menu.
2. Place the cursor where you want the text to begin.
3. Enter the characters. Press ALPHA or 2nd [A-LOCK] to enter letters and \(\theta\). You may enter TI-83 Plus functions, variables, and instructions. The font is proportional, so the exact number of characters you can place on the graph varies. As you type, the characters are placed on top of the graph.

To cancel Text(, press CLEAR).

\section*{Placing Text on a Graph from the Home Screen or a Program}

Text(places on the current graph the characters comprising value, which can include TI-83 Plus functions and instructions. The top-left corner of the first character is at pixel (row,column), where row is an integer between 0 and 57 and column is an integer between 0 and 94 . Both row and column can be expressions.
\begin{tabular}{|c|c|}
\hline F & 40,94; \\
\hline \(4{ }^{57}\) & 4,5,94) \\
\hline
\end{tabular}

Text(row,column,value,value...)
value can be text enclosed in quotation marks ("), or it can be an expression. The TI-83 Plus will evaluate an expression and display the result with up to 10 characters.

\section*{Split Screen}

On a Horiz split screen, the maximum value for row is 25 . On a G-T split screen, the maximum value for row is 45 , and the maximum value for column is 46 .

\section*{Using Pen to Draw on a Graph}

\section*{Using Pen to Draw on a Graph}

Pen draws directly on a graph only. You cannot execute Pen from the home screen or a program.

To draw on a displayed graph, follow these steps.
1. Select A:Pen from the draw menu.
2. Place the cursor on the point where you want to begin drawing. Press ENTER to turn on the pen.
3. Move the cursor. As you move the cursor, you draw on the graph, shading one pixel at a time.
4. Press ENTER to turn off the pen.

For example, Pen was used to create the arrow pointing to the local minimum of the selected function.

Note: To continue drawing on the graph, move the cursor to a new position where you want to begin drawing again, and then repeat steps 2,3 , and 4 . To cancel Pen, press CLEAR.

\section*{Drawing Points on a Graph}

\section*{DRAW POINTS Menu}

To display the draw points menu, press 2nd [DRAW] \(\square\). The TI-83 Plus's interpretation of these instructions depends on whether you accessed this menu from the home screen or the program editor or directly from a graph.
\begin{tabular}{|c|c|}
\hline DRAW POINTS STO & \\
\hline 1: Pt-On(& Turns on a point. \\
\hline 2:Pt-Off(& Turns off a point. \\
\hline 3:Pt-Change(& Toggles a point on or off. \\
\hline 4: Pxi-On(& Turns on a pixel. \\
\hline 5:Px1-0ff(& Turns off a pixel. \\
\hline 6: Pxi-Change(& Toggles a pixel on or off. \\
\hline 7:px1-Test(& Returns 1 if pixel on, 0 if pixel off. \\
\hline
\end{tabular}

\section*{Drawing Points Directly on a Graph with Pt-On(}

To draw a point on a graph, follow these steps.
1. Select 1:Pt-On(from the draw points menu.
2. Move the cursor to the position where you want to draw the point.
3. Press ENTER to draw the point.

To continue drawing points, repeat steps 2 and 3. To cancel Pt-On(, press CLEAR.

\section*{Erasing Points with Pt-Off(}

To erase (turn off) a drawn point on a graph, follow these steps.
1. Select 2:Pt-Off((point off) from the draw points menu.
2. Move the cursor to the point you want to erase.
3. Press ENTER to erase the point.

To continue erasing points, repeat steps 2 and 3. To cancel Pt-Off(, press CLEAR.

\section*{Changing Points with Pt-Change(}

To change (toggle on or off) a point on a graph, follow these steps.
1. Select 3:Pt-Change((point change) from the draw points menu.
2. Move the cursor to the point you want to change.
3. Press ENTER to change the point's on/off status.

To continue changing points, repeat steps 2 and 3 . To cancel Pt-Change(, press CLEAR.

Drawing Points from the Home Screen or a Program
Pt-On((point on) turns on the point at (\(\mathbf{X}=x, \mathbf{Y}=y\)). \(\mathbf{P t - O f f}(\) turns the point off. Pt -Change(toggles the point on or off. mark is optional; it determines the point's appearance; specify 1, 2, or 3, where:
\(\mathbf{1}=\cdot(\) dot; default \() \quad \mathbf{2}=\square(\mathrm{box}) \quad \mathbf{3}=\boldsymbol{+}\) (cross)
Pt-On(x,y \([, m a r k])\)
Pt-Off(\(x, y[, m a r k]\))
Pt-Change \((x, y)\)

Note: If you specified mark to turn on a point with Pt-On(, you must specify mark when you turn off the point with Pt-Off. Pt-Change(does not have the mark option.

\section*{Drawing Pixels}

\section*{TI-83 Plus Pixels}

A pixel is a square dot on the Tl-83 Plus display. The Pxl- (pixel) instructions let you turn on, turn off, or reverse a pixel (dot) on the graph using the cursor. When you select a pixel instruction from the draw POINTS menu, the Tl-83 Plus returns to the home screen or the program editor. The pixel instructions are not interactive.

\section*{Turning On and Off Pixels with PxI-On(and PxI-Off(}

PxI-On((pixel on) turns on the pixel at (row,column), where row is an integer between 0 and 62 and column is an integer between 0 and 94 .

PxI-Off(turns the pixel off. Pxl-Change(toggles the pixel on and off.

\author{
PxI-On(row,column) \\ PxI-Off(row,column) \\ PxI-Change(row,column)
}

\section*{Using pxl-Test(}
pxl-Test((pixel test) returns 1 if the pixel at (row,column) is turned on or 0 if the pixel is turned off on the current graph. row must be an integer between 0 and 62. column must be an integer between 0 and 94 .
pxI-Test(row,column)

\section*{Split Screen}

On a Horiz split screen, the maximum value for row is 30 for Pxl-On(, PxI-Off(, Pxl-Change(, and pxl-Test(.

On a G-T split screen, the maximum value for row is 50 and the maximum value for column is 46 for PxI-On(, Pxl-Off(, PxI-Change(, and pxI-Test(.

\section*{Storing Graph Pictures (Pic)}

\section*{DRAW STO Menu}

To display the draw sto menu, press [2nd [DRAW] \(\square\). When you select an instruction from the draw sto menu, the TI-83 Plus returns to the home screen or the program editor. The picture and graph database instructions are not interactive.
DRAW POINTS STO
1: StorePic Stores the current picture.
2: Recallpic Recalls a saved picture.

3: StoreGDB Stores the current graph database.
4: RecallGDB
Recalls a saved graph database.

\section*{Storing a Graph Picture}

You can store up to 10 graph pictures, each of which is an image of the current graph display, in picture variables Pic1 through Pic9, or Pic0. Later, you can superimpose the stored picture onto a displayed graph from the home screen or a program.

A picture includes drawn elements, plotted functions, axes, and tick marks. The picture does not include axes labels, lower and upper bound indicators, prompts, or cursor coordinates. Any parts of the display hidden by these items are stored with the picture.

To store a graph picture, follow these steps.
1. Select 1:StorePic from the draw sto menu. StorePic is pasted to the current cursor location.
2. Enter the number (from 1 to 9, or 0) of the picture variable to which you want to store the picture. For example, if you enter 3, the TI-83 Plus will store the picture to Pic3.

Storefic 3

Note: You also can select a variable from the PICTURE secondary menu (VARS 4). The variable is pasted next to StorePic.
3. Press ENTER to display the current graph and store the picture.

\section*{Recalling Graph Pictures (Pic)}

\section*{Recalling a Graph Picture}

To recall a graph picture, follow these steps.
1. Select 2:RecallPic from the draw sto menu. RecallPic is pasted to the current cursor location.
2. Enter the number (from \(\mathbf{1}\) to \(\mathbf{9}\), or \(\mathbf{0}\)) of the picture variable from which you want to recall a picture. For example, if you enter 3, the TI-83 Plus will recall the picture stored to Pic3.

Rec:allfic 3

Note: You also can select a variable from the PICTURE secondary menu (VARS 4). The variable is pasted next to RecallPic.
3. Press ENTER to display the current graph with the picture superimposed on it.

Note: Pictures are drawings. You cannot trace a curve that is part of a picture.

\section*{Deleting a Graph Picture}

To delete graph pictures from memory, use the MEMORY MANAGEMENT /DELETE secondary menu (Chapter 18).

\section*{Storing Graph Databases (GDB)}

\section*{What Is a Graph Database?}

A graph database (GDB) contains the set of elements that defines a particular graph. You can recreate the graph from these elements. You can store up to 10 GDBs in variables GDB1 through GDB9, or GDB0 and recall them to recreate graphs.

A GDB stores five elements of a graph.
- Graphing mode
- Window variables
- Format settings
- All functions in the \(\mathbf{Y}=\) editor and the selection status of each
- Graph style for each \(Y=\) function

GDBS do not contain drawn items or stat plot definitions.

\section*{Storing a Graph Database}

To store a graph database, follow these steps.
1. Select 3:StoreGDB from the draw sto menu. StoreGDB is pasted to the current cursor location.
2. Enter the number (from \(\mathbf{1}\) to 9 , or \(\mathbf{0}\)) of the GDB variable to which you want to store the graph database. For example, if you enter 7 , the TI-83 Plus will store the GDB to GDB7.
Storerige 7

Note: You also can select a variable from the GDB secondary menu (VARS 3). The variable is pasted next to StoreGDB.
3. Press ENTER to store the current database to the specified GDB variable.

\section*{Recalling Graph Databases (GDB)}

\section*{Recalling a Graph Database}

CAUTION: When you recall a GDB, it replaces all existing \(Y=\) functions. Consider storing the current \(\mathbf{Y}=\) functions to another database before recalling a stored GDB.

To recall a graph database, follow these steps.
1. Select 4:RecalIGDB from the draw sto menu. RecallGDB is pasted to the current cursor location.
2. Enter the number (from 1 to 9, or 0) of the GdB variable from which you want to recall a gdb. For example, if you enter 7, the TI-83 Plus will recall the GDB stored to GDB7.
RecallgDE 7

Note: You also can select a variable from the GDB secondary menu (VARS 3). The variable is pasted next to RecallGDB.
3. Press ENTER to replace the current GDB with the recalled GDb. The new graph is not plotted. The Tl-83 Plus changes the graphing mode automatically, if necessary.

\section*{Deleting a Graph Database}

To delete a GDB from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).

\section*{Chapter 9: Split Screen}

\section*{Getting Started: Exploring the Unit Circle}

Getting Started is a fast-paced introduction. Read the chapter for details.
Use G-T (graph-table) split-screen mode to explore the unit circle and its relationship to the numeric values for the commonly used trigonometric angles of \(0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}\), and so on.
1. Press MODE to display the mode screen. Press \(\square \square\) ENTER to select Degree mode. Press \(\square\)
\(\square\) ENTER to select Par (parametric) graphing mode.

Press \(\square_{\square} \rightarrow \square \square\) ENTER to select G-T (graph-table) split-screen mode.
2. Press [2nd [FORMAT] to display the format screen. Press \(\nabla^{\square} \nabla^{\square} \square\) ENTER to select ExprOff.

3．Press \(Y \equiv\) to display the \(\mathbf{Y}=\) editor for Par graphing mode．Press COS X，T，\(\Theta, n \square\) ENTER to store \(\cos (T)\) to \(\mathbf{X 1 t}\) ．Press SIN X，T，\(\Theta, n \square\) ENTER to store \(\boldsymbol{\operatorname { s i n }}(\mathbf{T})\) to Y 1 T ．
```

Flot1 F10tz Flots

```

```

1т日至款行)
<zт=
<\tau=
<ET=

# 

*4T=

```

4．Press WINDOW to display the window editor． Enter these values for the window variables．
\begin{tabular}{lll}
Tmin＝0 & Xmin＝－2．3 & Ymin＝－2．5 \\
Tmax \(=360\) & Xmax \(=2.3\) & Ymax \(=2.5\) \\
Tstep＝15 & Xscl＝1 & Yscl＝1
\end{tabular}

5．Press TRACE．On the left，the unit circle is graphed parametrically in Degree mode and the trace cursor is activated．When \(\mathbf{T}=\mathbf{0}\)（from the graph trace coordinates），you can see from the table on the right that the value of \(\mathrm{X}_{1 \mathrm{~T}}(\cos (\mathrm{~T}))\) is
 1 and \(\mathrm{Y}_{1 \mathrm{~T}}(\sin (\mathrm{~T}))\) is 0 ．Press \(\square\) to move the cursor to the next \(15^{\circ}\) angle increment．As you trace around the circle in steps of \(15^{\circ}\) ，an approximation of the standard value for each angle is highlighted in the table．

\section*{Using Split Screen}

\section*{Setting a Split-Screen Mode}

To set a split-screen mode, press MODE, and then move the cursor to the bottom line of the mode screen.
- Select Horiz (horizontal) to display the graph screen and another screen split horizontally.
- Select G-T (graph-table) to display the graph screen and table screen split vertically.

The split screen is activated when you press any key that applies to either half of the split screen.

Some screens are never displayed as split screens. For example, if you press MODE in Horiz or G-T mode, the mode screen is displayed as a full screen. If you then press a key that displays either half of a split screen, such as TRACE, the split screen returns.

When you press a key or key combination in either Horiz or G-T mode, the cursor is placed in the half of the display for which that key applies. For example, if you press [TRACE, the cursor is placed in the half in which the graph is displayed. If you press [2nd [TABLE], the cursor is placed in the half in which the table is displayed.

The TI-83 Plus will remain in split-screen mode until you change back to Full screen mode.

\section*{Horiz (Horizontal) Split Screen}

\section*{Horiz Mode}

In Horiz (horizontal) split-screen mode, a horizontal line splits the screen into top and bottom halves.

The top half displays the graph.
The bottom half displays any of these editors.
- Home screen (four lines)
- \(\mathbf{Y}=\) editor (four lines)
- Stat list editor (two rows)
- Window editor (three settings)
- Table editor (two rows)

\section*{Moving from Half to Half in Horiz Mode}

To use the top half of the split screen:
- Press GRAPH or TRACE.
- Select a zoom or calc operation.

To use the bottom half of the split screen:
- Press any key or key combination that displays the home screen.
- Press \(Y=\) (\(\mathbf{Y}=\) editor).
- Press STAT ENTER (stat list editor).
- Press WINDOW (window editor).
- Press [2nd [TABLE] (table editor).

\section*{Full Screens in Horiz Mode}

All other screens are displayed as full screens in Horiz split-screen mode.
To return to the Horiz split screen from a full screen when in Horiz mode, press any key or key combination that displays the graph, home screen, \(Y=\) editor, stat list editor, window editor, or table editor.

\section*{G-T (Graph-Table) Split Screen}

\section*{G-T Mode}

In G-T (graph-table) split-screen mode, a vertical line splits the screen into left and right halves.

The left half displays the graph.
The right half displays the table.

\section*{Moving from Half to Half in G-T Mode}

To use the left half of the split screen:
- Press GRAPH or TRACE.
- Select a zoom or calc operation.

To use the right half of the split screen, press 2nd [TABLE].

\section*{Using TRACE in G-T Mode}

As you move the trace cursor along a graph in the split screen's left half in G-T mode, the table on the right half automatically scrolls to match the current cursor values.

Note: When you trace in Par graphing mode, both components of an equation (\(\mathbf{X I T}_{\mathbf{T}}\) and \(\mathrm{Y}_{\boldsymbol{n} \mathbf{T}}\)) are displayed in the two columns of the table. As you trace, the current value of the independent variable \(\boldsymbol{T}\) is displayed on the graph.

\section*{Full Screens in G-T Mode}

All screens other than the graph and the table are displayed as full screens in G-T split-screen mode.

To return to the G-T split screen from a full screen when in G-T mode, press any key or key combination that displays the graph or the table.

\section*{TI-83 Plus Pixels in Horiz and G-T Modes}

\section*{TI-83 Plus Pixels in Horiz and G-T Modes}

Note: Each set of numbers in parentheses above represents the row and column of a corner pixel, which is turned on.

\section*{DRAW POINTS Menu Pixel Instructions}

\section*{For PxI-On(, PxI-Off(, PxI-Change(, and pxl-Test(:}
- In Horiz mode, row must be \(\leq 30\); column must be \(\leq 94\).
- In G-T mode, row must be \(\leq 50\); column must be \(\leq 46\).

\section*{PxI-On(row,column)}

\section*{DRAW Menu Text(Instruction}

For the Text(instruction:
- In Horiz mode, row must be \(\leq 25\); column must be \(\leq 94\).
- In G-T mode, row must be \(\leq 45\); column must be \(\leq 46\).

Text(row,column,"text')

\section*{PRGM I/O Menu Output(Instruction}

For the Output(instruction:
- In Horiz mode, row must be \(\leq 4\); column must be \(\leq 16\).
- In G-T mode, row must be \(\leq 8\); column must be \(\leq 16\).

Output(row,column,"text")

\section*{Setting a Split-Screen Mode from the Home Screen or a Program}

To set Horiz or G-T from a program, follow these steps.
1. Press MODE while the cursor is on a blank line in the program editor.
2. Select Horiz or G-T.

The instruction is pasted to the cursor location. The mode is set when the instruction is encountered during program execution. It remains in effect after execution.

Note: You also can paste Horiz or G-T to the home screen or program editor from the CATALOG (Chapter 15).

\section*{Chapter 10: Matrices}

\section*{Getting Started: Systems of Linear Equations}

Getting Started is a fast-paced introduction. Read the chapter for details.
Find the solution of \(X+2 Y+3 Z=3\) and \(2 X+3 Y+4 Z=3\). On the TI-83 Plus, you can solve a system of linear equations by entering the coefficients as elements in a matrix, and then using rref(to obtain the reduced row-echelon form.
1. Press 2nd [MATrix]. Press \(\square \square\) to display the matrx edit menu. Press 1 to select 1: [A],
2. Press 2 ENTER 4 ENTER to define a \(2 \times 4\) matrix. The rectangular cursor indicates the current element. Ellipses (...) indicate additional columns beyond the screen.
3. Press 1 ENTER to enter the first element. The rectangular cursor moves to the second column of the first row.
\begin{tabular}{llll}
MFTRIX[A] & \(2 \times 4\) \\
0 & 8 & 8 & \(=\) \\
0 & & & \\
\(1: 1=0\)
\end{tabular}

4. Press 2 ENTER 3 ENTER 3 ENTER to complete the first row for \(X+2 Y+3 Z=3\).
5. Press 2 ENTER 3 ENTER 4 ENTER 3 ENTER to enter the second row for \(2 X+3 Y+4 Z=3\).

6. Press 2nd [QUIT] to return to the home screen. If necessary, press CLEAR to clear the home screen. Press 2nd [MATRIX] \(\square\) to display the matrx math menu. Press to wrap to the end of the menu. Select B:rref(to copy ref(to the home screen.
7. Press [2nd [MATRIX] 1 to select 1: [A] from the MATRX NAMES menu. Press ENTER. The reduced row-echelon form of the matrix is displayed and stored in Ans.
\(1 X-1 Z=-3\) therefore \(\quad X=-3+Z\)
\(1 Y+2 Z=3 \quad\) therefore \(\quad Y=3-2 Z\)

\section*{Defining a Matrix}

\section*{What Is a Matrix?}

A matrix is a two-dimensional array. You can display, define, or edit a matrix in the matrix editor. The Tl-83 Plus has 10 matrix variables, [A] through [J]. You can define a matrix directly in an expression. A matrix, depending on available memory, may have up to 99 rows or columns. You can store only real numbers in TI-83 Plus matrices.

\section*{Selecting a Matrix}

Before you can define or display a matrix in the editor, you first must select the matrix name. To do so, follow these steps.
1. Press [2nd [MATRIX] \(\square\) to display the matrx edit menu. The dimensions of any previously defined matrices are displayed.

2. Select the matrix you want to define. The matrx edit screen is displayed.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{MATRIX[E] \(1 \times 1\)} \\
\hline \\
\hline
\end{tabular}

\section*{Accepting or Changing Matrix Dimensions}

The dimensions of the matrix (row \(\times\) column) are displayed on the top line. The dimensions of a new matrix are \(1 \times 1\). You must accept or change the dimensions each time you edit a matrix. When you select a matrix to define, the cursor highlights the row dimension.
- To accept the row dimension, press ENTER.
- To change the row dimension, enter the number of rows (up to 99), and then press ENTER.

The cursor moves to the column dimension, which you must accept or change the same way you accepted or changed the row dimension. When you press ENTER, the rectangular cursor moves to the first matrix element.

\section*{Viewing and Editing Matrix Elements}

\section*{Displaying Matrix Elements}

After you have set the dimensions of the matrix, you can view the matrix and enter values for the matrix elements. In a new matrix, all values are zero.

Select the matrix from the matrx edit menu and enter or accept the dimensions. The center portion of the matrix editor displays up to seven rows and three columns of a matrix, showing the values of the elements in abbreviated form if necessary. The full value of the current element, which is indicated by the rectangular cursor, is displayed on the bottom line.
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

This is an \(8 \times 4\) matrix. Ellipses in the left or right column indicate additional columns. \(\uparrow\) or \(\downarrow\) in the right column indicate additional rows.

\section*{Deleting a Matrix}

To delete matrices from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).

\section*{Viewing a Matrix}

The matrix editor has two contexts, viewing and editing. In viewing context, you can use the cursor keys to move quickly from one matrix element to the next. The full value of the highlighted element is displayed on the bottom line.

Select the matrix from the matrx edit menu, and then enter or accept the dimensions.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{HATFIX[H] 8 x} \\
\hline [Efthri & \(-3.14 z\) & 13 & \\
\hline [-1 & 2.1416 & 0 & \\
\hline 0 & \% & 0 & \\
\hline 0 & ¢ & 时 & \\
\hline [1.8 & 0 & 0 & \\
\hline 5 & . 55714 & O! & \\
\hline [0 & & z & + \\
\hline \multicolumn{4}{|l|}{\(1: 1=3.1415965\)} \\
\hline
\end{tabular}

\section*{Viewing-Context Keys}
\begin{tabular}{ll}
\hline Key & Function \\
\hline\(\square\) or \(\square\) & Moves the rectangular cursor within the current row \\
\(\square\) or \(\square\) & \begin{tabular}{l}
Moves the rectangular cursor within the current column; \\
on the top row, \(\Delta\) moves the cursor to the column \\
dimension; on the column dimension, \(\Delta\) moves the \\
cursor to the row dimension
\end{tabular} \\
\hline ENTER & \begin{tabular}{l}
Switches to editing context; activates the edit cursor on \\
the bottom line
\end{tabular} \\
\hline CLEAR & \begin{tabular}{l}
Switches to editing context; clears the value on the \\
bottom line
\end{tabular} \\
\hline Any entry character & \begin{tabular}{l}
Switches to editing context; clears the value on the \\
bottom line; copies the character to the bottom line
\end{tabular} \\
\hline 2nd [ins] & Nothing \\
\hline DEL & Nothing \\
\hline
\end{tabular}

\section*{Editing a Matrix Element}

In editing context, an edit cursor is active on the bottom line. To edit a matrix element value, follow these steps.
1. Select the matrix from the matrix edit menu, and then enter or accept the dimensions.
2. Press \(\square, \square, \square\), and \(\square\) to move the cursor to the matrix element you want to change.
3. Switch to editing context by pressing ENTER, CLEAR, or an entry key.
4. Change the value of the matrix element using the editing-context keys described below. You may enter an expression, which is evaluated when you leave editing context.
Note: You can press CLEAR ENTER to restore the value at the rectangular cursor if you make a mistake.
5. Press ENTER, \(\Delta\), or \(\square\) to move to another element.

\begin{tabular}{|c|c|c|c|}
\hline HATE & [& \multicolumn{2}{|l|}{\(8 \times 4\)} \\
\hline 53.1416 & \(-3.14 z\) & 13 & \\
\hline [282 & 81.415 & & \\
\hline [0 & & 时 & \\
\hline if. B & 0 & 0 & \\
\hline & . 85714 & \% & \\
\hline 0 & & 2 & \(\pm\) \\
\hline z, z=0 & & & \\
\hline
\end{tabular}

\section*{Editing-Context Keys}
\begin{tabular}{ll}
\hline Key & Function \\
\hline\(\square\) or \(\square\) & Moves the edit cursor within the value \\
\(\square\) or \(\square\) & \begin{tabular}{l}
Stores the value displayed on the bottom line to the \\
matrix element; switches to viewing context and moves \\
the rectangular cursor within the column
\end{tabular} \\
\hline [ENTER & \begin{tabular}{l}
Stores the value displayed on the bottom line to the \\
matrix element; switches to viewing context and moves \\
the rectangular cursor to the next row element
\end{tabular} \\
\hline CLEAR & Clears the value on the bottom line \\
\hline Any entry character & \begin{tabular}{l}
Copies the character to the location of the edit cursor on \\
the bottom line
\end{tabular} \\
\hline 2nd [iNS] & \begin{tabular}{l}
Activates the insert cursor \\
\hline DEL
\end{tabular} \\
\hline
\end{tabular}

\section*{Using Matrices with Expressions}

\section*{Using a Matrix in an Expression}

To use a matrix in an expression, you can do any of the following.
- Copy the name from the matrx names menu.
- Recall the contents of the matrix into the expression with 2nd [RCL] (Chapter 1).
- Enter the matrix directly (see below).

\section*{Entering a Matrix in an Expression}

You can enter, edit, and store a matrix in the matrix editor. You also can enter a matrix directly in an expression.

To enter a matrix in an expression, follow these steps.
1. Press 2nd [[] to indicate the beginning of the matrix.
2. Press [2nd [[] to indicate the beginning of a row.
3. Enter a value, which can be an expression, for each element in the row. Separate the values with commas.
4. Press 2nd []] to indicate the end of a row.
5. Repeat steps 2 through 4 to enter all of the rows.
6. Press [2nd []] to indicate the end of the matrix.

Note: The closing]] are not necessary at the end of an expression or preceding \(\rightarrow\).

The resulting matrix is displayed in the form:
[[element \(1,1, \ldots\), element \(1, n], \ldots,[\) elementm, \(1, \ldots\), elementm, \(n]]\)
Any expressions are evaluated when the entry is executed.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

Note: The commas that you must enter to separate elements are not displayed on output.

\section*{Displaying and Copying Matrices}

\section*{Displaying a Matrix}

To display the contents of a matrix on the home screen, select the matrix from the matrx names menu, and then press ENTER.
[f]
```

[[$$
\begin{array}{lll}{7}&{8}&{9]}\\{1]}\end{array}
$$]

```

Ellipses in the left or right column indicate additional columns. \(\uparrow\) or \(\downarrow\) in the right column indicate additional rows. Press \(\square, \square, \square\), and \(\Delta\) to scroll the matrix.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[t]{4}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Copying One Matrix to Another}

To copy a matrix, follow these steps.
1. Press [2nd [matrix] to display the matrx names menu.
2. Select the name of the matrix you want to copy.
3. Press STO.
4. Press 2nd [MATRIX] again and select the name of the new matrix to which you want to copy the existing matrix.
5. Press ENTER to copy the matrix to the new matrix name.

\section*{Accessing a Matrix Element}

On the home screen or from within a program, you can store a value to, or recall a value from, a matrix element. The element must be within the currently defined matrix dimensions. Select matrix from the MATRX names menu.
[matrix](row,column)
\begin{tabular}{|c|}
\hline \\
\hline [B](2,3) \\
\hline
\end{tabular}

\section*{Using Math Functions with Matrices}

\section*{Using Math Functions with Matrices}

You can use many of the math functions on the TI-83 Plus keyboard, the math menu, the math num menu, and the math test menu with matrices. However, the dimensions must be appropriate. Each of the functions below creates a new matrix; the original matrix remains the same.
+ (Add), - (Subtract), * (Multiply)

To add (\(\square\)) or subtract (\(\square\)) matrices, the dimensions must be the same. The answer is a matrix in which the elements are the sum or difference of the individual corresponding elements.
matrixA \(\mathbf{+ m a t r i x} B\)
matrix \(A\)-matrix \(B\)
To multiply (\(\boxtimes\)) two matrices together, the column dimension of matrixA must match the row dimension of matrixB.
matrix \(A *\) matrix \(B\)
\begin{tabular}{|c|c|c|}
\hline [H\(]\) & & [H\(]+[\mathrm{B}]\) [\\
\hline & \(\left.\left[\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right]\right]\) & [时 [[[\(\left.\begin{array}{ll}2 & 7 \\ 7 & 7\end{array}\right]\) \\
\hline [B] & \(\left[\begin{array}{ll}{\left[\begin{array}{ll}6 & 5 \\ 4 & 3\end{array}\right]}\end{array}\right]\) & \[
[\mathrm{H}] *[\mathrm{~B}]\left[\begin{array}{cc}
{[8} & 16] \\
{[16} & 27
\end{array}\right]
\] \\
\hline
\end{tabular}

Multiplying a matrix by a value or a value by a matrix returns a matrix in which each element of matrix is multiplied by value.
matrix*value
value*matrix
\begin{tabular}{ll}
{\([\mathrm{A}] * \mathrm{~S}\)} & {\(\left[\begin{array}{cc}6 & 6 \\
\hline 9 & 12]\end{array}\right]\)}
\end{tabular}

\section*{- (Negation)}

Negating a matrix \((\mathbb{-})\)) returns a matrix in which the sign of every element is changed (reversed).
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{[F] [[[2-2]}} \\
\hline & \\
\hline -[A] & \(\left[\begin{array}{llll}{\left[\begin{array}{lll}-3 & 2\end{array}\right]}\end{array}\right]\) \\
\hline
\end{tabular}
abs(
abs((absolute value, MATH NUM menu) returns a matrix containing the absolute value of each element of matrix.
abs(matrix)
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{round(}
round((MATH NUM menu) returns a matrix. It rounds every element in matrix to \#decimals (\(\leq 9\)). If \#decimals is omitted, the elements are rounded to 10 digits.
round(matrix[,\#decimals])
\begin{tabular}{|c|c|}
\hline MPATRIX[A] \(2 \times 2\) & round [8], 2 \% \\
\hline & [5:66 4.12] \\
\hline
\end{tabular}
\({ }^{-1}\) (Inverse)
Use the \({ }^{-1}\) function (\(\left(x^{-1}\right)\) to invert a matrix (\(\wedge-1\) is not valid). matrix must be square. The determinant cannot equal zero.

\section*{matrix \({ }^{-1}\)}

\section*{Powers}

To raise a matrix to a power, matrix must be square. You can use \({ }^{2}\) (\(x^{2}\)), 3 (матн menu), or ^power (\(\triangle\)) for integer power between 0 and 255.
matrix \({ }^{2}\)
matrix \({ }^{3}\)
matrix^power

\section*{Relational Operations}

To compare two matrices using the relational operations \(=\) and \(\neq\) (TEST menu), they must have the same dimensions. = and \(\neq\) compare matrixA and matrixB on an element-by-element basis. The other relational operations are not valid with matrices.
matrixA=matrixB returns \(\mathbf{1}\) if every comparison is true; it returns \(\mathbf{0}\) if any comparison is false.
matrixA \(\neq\) matrixB returns \(\mathbf{1}\) if at least one comparison is false; it returns \(\mathbf{0}\) if no comparison is false.

\begin{tabular}{|c|c|}
\hline \(\left[{ }^{\text {[}}\right]=[8]\) & 0 \\
\hline \([\mathrm{F}] ⿻ \mathrm{~F}\) [B\(]\) & 1 \\
\hline
\end{tabular}

\section*{iPart(, fPart(, int(}
iPart((integer part), fPart((fractional part), and int((greatest integer) are on the math num menu.
iPart(returns a matrix containing the integer part of each element of matrix.
fPart(returns a matrix containing the fractional part of each element of matrix.
int(returns a matrix containing the greatest integer of each element of matrix.

\section*{Using the MATRX MATH Operations}

\section*{MATRX MATH Menu}

To display the matrx math menu, press 2nd [MATRIX] \(\square\).
\begin{tabular}{|c|c|}
\hline NAMES MATH EDIT & \\
\hline 1: det(& Calculates the determinant. \\
\hline 2: \({ }^{\text {' }}\) & Transposes the matrix. \\
\hline 3: dim(& Returns the matrix dimensions. \\
\hline 4: Fill & Fills all elements with a constant. \\
\hline 5: identity(& Returns the identity matrix. \\
\hline 6: randM(& Returns a random matrix. \\
\hline 7: augment(& Appends two matrices. \\
\hline 8: Matrılist(& Stores a matrix to a list. \\
\hline 9: Listrmatr(& Stores a list to a matrix. \\
\hline 0 : cumSum(& Returns the cumulative sums of a matrix. \\
\hline A: ref(& Returns the row-echelon form of a matrix. \\
\hline B: rref(& Returns the reduced row-echelon form. \\
\hline C: rowSwap(& Swaps two rows of a matrix. \\
\hline D: row+(& Adds two rows; stores in the second row. \\
\hline E: *row & Multiplies the row by a number. \\
\hline F: *row+(& Multiplies the row, adds to the second row. \\
\hline
\end{tabular}

\section*{\(\operatorname{det}(\)}
\(\operatorname{det}(\) (determinant) returns the determinant (a real number) of a square matrix.
\(\operatorname{det}\) (matrix)

\section*{\({ }^{\top}\) (Transpose)}
\({ }^{\top}\) (transpose) returns a matrix in which each element (row, column) is swapped with the corresponding element (column, row) of matrix.

\section*{matrix \({ }^{\top}\)}
[F]
\[
\left[\begin{array}{lll}
1 & 2 & 3 \\
5 & 2 & 1
\end{array}\right]
\]

\section*{Accessing Matrix Dimensions with dim(}
\(\operatorname{dim}\) ((dimension) returns a list containing the dimensions (\{rows columns\}) of matrix.
dim(matrix)
Note: \(\operatorname{dim}(\) matrix \() \rightarrow\) Ln: \(\operatorname{Ln}(1)\) returns the number of rows. \(\operatorname{dim}(\) matrix \() \rightarrow \mathrm{L} n: \operatorname{Ln}(\mathbf{2})\) returns the number of columns.
\begin{tabular}{|c|c|}
\hline dimid \([2,7,1][-8\), & \\
\hline 2 3) & \\
\hline & 2 \\
\hline
\end{tabular}

\section*{Creating a Matrix with dim(}

Use dim(with STO to create a new matrixname of dimensions rows \(\times\) columns with 0 as each element.
\(\{\) rows,columns \(\} \rightarrow \operatorname{dim}(\) matrixname)

\section*{Redimensioning a Matrix with dim(}

Use \(\operatorname{dim}\) (with STO to redimension an existing matrixname to dimensions rows \(\times\) columns. The elements in the old matrixname that are within the new dimensions are not changed. Additional created elements are zeros. Matrix elements that are outside the new dimensions are deleted.
\(\{\) rows,columns \(\} \rightarrow \operatorname{dim}(\) matrixname)

\section*{Fill(}

Fill(stores value to every element in matrixname.

Fill(value,matrixname)

\section*{identity(}
identity(returns the identity matrix of dimension rows \(\times\) dimension columns.
identity(dimension)

\section*{randM(}
randM((create random matrix) returns a rows \(\times\) columns random matrix of integers \(\geq-9\) and \(\leq 9\). The seed value stored to the rand function controls the values (Chapter 2).
randM(rows,columns)
\begin{tabular}{|c|}
\hline 0 \\
\hline \[
\left.8 g^{-7} 1\right]
\] \\
\hline
\end{tabular}

\section*{augment(}
augment(appends matrixA to matrixB as new columns. matrixA and matrix \(B\) both must have the same number of rows.

\section*{augment(matrixA,matrixB)}

\section*{Matr>list(}

Matrlist((matrix stored to list) fills each listname with elements from each column in matrix. Matrlist(ignores extra listname arguments. Likewise, Matrlist(ignores extra matrix columns.

Matrlist(matrix,listnameA,...,listname n)

Matrrist(also fills a listname with elements from a specified column\# in matrix. To fill a list with a specific column from matrix, you must enter column\# after matrix.

Matr>ist(matrix,column\#,listname)

\section*{List>matr(}

Listrmatr((lists stored to matrix) fills matrixname column by column with the elements from each list. If dimensions of all lists are not equal, Listrmatr(fills each extra matrixname row with \(\mathbf{0}\). Complex lists are not valid.

Listımatr(listA,...,list n,matrixname)
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline
\end{tabular}

\section*{cumSum(}
cumSum(returns cumulative sums of the elements in matrix, starting with the first element. Each element is the cumulative sum of the column from top to bottom.

\section*{cumSum(matrix)}
\begin{tabular}{|c|c|}
\hline [D] & \\
\hline & \(\left[\begin{array}{ll}{\left[\begin{array}{ll}1 & 2 \\ {\left[\begin{array}{l}3 \\ 5\end{array}\right]} \\ 6 & 6\end{array}\right]}\end{array}\right.\) \\
\hline
\end{tabular}
\[
\left|\begin{array}{r}
\text { Eumsuric }\left[\left.\begin{array}{lll}
{[1]} \\
{[1]} & 2 & 1 \\
{[94} & 6 & 121]
\end{array} \right\rvert\,\right.
\end{array}\right|
\]

\section*{Row Operations}
matrx math menu items A through \(\mathbf{F}\) are row operations. You can use a row operation in an expression. Row operations do not change matrix in memory. You can enter all row numbers and values as expressions. You can select the matrix from the matrx names menu.
ref(, rref(
ref((row-echelon form) returns the row-echelon form of a real matrix. The number of columns must be greater than or equal to the number of rows.
```

ref(matrix)

```
rref((reduced row-echelon form) returns the reduced row-echelon form of a real matrix. The number of columns must be greater than or equal to the number of rows.
\(\operatorname{rref}(\) matrix \()\)
\begin{tabular}{|c|c|}
\hline \([\mathrm{E}]\) [[[\(\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]\) & \\
\hline
\end{tabular}

\section*{rowSwap(}
rowSwap(returns a matrix. It swaps rowA and rowB of matrix.
rowSwap(matrix, rowA,rowB)
\begin{tabular}{|c|c|}
\hline [F] & \(\left[\begin{array}{llll}{\left[\begin{array}{lll}2 & 3 & 6 \\ 5 & 9\end{array}\right]} \\ {\left[\begin{array}{lll}8 & 5 & 1 \\ 6 & \frac{1}{3} & 8\end{array}\right]} \\ \hline 6 & 5\end{array}\right]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline rowSusf [F],2,4》 \\
\hline \(\left[\begin{array}{cccc}2 & 3 & 6 & 9 \\ {\left[\begin{array}{c}6 \\ 3\end{array}\right.} & 5 & 5 \\ 7 & 5 & 5 \\ 5 & 8 & 4 & 6 \\ 7 & 7\end{array}\right]\) \\
\hline
\end{tabular}

\section*{row+(}
row+((row addition) returns a matrix. It adds rowA and rowB of matrix and stores the results in row \(B\).
row+(matrix,rowA,rowB)
\begin{tabular}{|c|}
\hline [8,9,4]] \\
\hline \(\left[\begin{array}{lll}2 & 5 & 7 \\ 8 & 9 & 4\end{array}\right]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

\section*{*row(}
*row((row multiplication) returns a matrix. It multiplies row of matrix by value and stores the results in row.
*row(value,matrix,row)
*row+(
*row+((row multiplication and addition) returns a matrix. It multiplies rowA of matrix by value, adds it to rowB, and stores the results in rowB.
*row+(value,matrix,rowA,rowB)
```

[[1;2,3][4,5,6]]
G[E]

```
*row+(3, \([E], 1,2)\)
\(\left[\begin{array}{ccc}{[1} & 2 & 3 \\ {[7} & 1 & 15\end{array}\right]\)\(|\)

\section*{Chapter 11:}

\section*{Lists}

\section*{Getting Started: Generating a Sequence}

Getting Started is a fast-paced introduction. Read the chapter for details.
Calculate the first eight terms of the sequence \(1 / \mathrm{A}^{2}\). Store the results to a usercreated list. Then display the results in fraction form. Begin this example on a blank line on the home screen.
1. Press [2nd [LIST] \(\square\) to display the LISt ops menu.

2. Press 5 to select \(\mathbf{5}\) :seq(, which pastes seq(to the current cursor location.
3. Press \(1 \div\) ALPHA \([\mathrm{A}] x^{2} \square\) ALPHA \([\mathrm{A}] \square \mathbf{1} \mathbf{8}\)
\(\square 1 \square\) to enter the sequence.

```

OSEO1品

```
4. Press STO©, and then press 2nd ALPHA to turn on alpha-lock. Press [s] [E] [Q], and then press ALPHA to turn off alpha-lock. Press 1 to complete the list name.
5. Press ENTER to generate the list and store it in SEQ1. The list is displayed on the home screen. An ellipsis (...) indicates that the list continues beyond the viewing window. Press \(\square\) repeatedly (or press and hold \(\square\)) to scroll the list and view all the list elements.
6. Press [2nd [LIST] to display the List names menu. Press 7 to select 7:seq(to paste LSEQ1 to the current cursor location. (If SEQ1 is not item \(\mathbf{7}\) on your List names menu, move the cursor to SEQ1 before you press ENTER.)

7. Press MATH to display the math menu. Press 1 to select 1:/Frac, which pastes FFrac to the current cursor location.
8. Press ENTER to show the sequence in fraction
 form. Press \(\square\) repeatedly (or press and hold \(\square)\) to scroll the list and view all the list elements.

\section*{Naming Lists}

\section*{Using Tl-83 Plus List Names L1 through L6}

The TI-83 Plus has six list names in memory: L1, L2, L3, L4, L5, and L6. The list names \(L_{1}\) through \(\mathbf{L 6}\) are on the keyboard above the numeric keys 1 through 6. To paste one of these names to a valid screen, press 2nd, and then press the appropriate key. L1 through L6 are stored in stat list editor columns \(\mathbf{1}\) through \(\mathbf{6}\) when you reset memory.

\section*{Creating a List Name on the Home Screen}

To create a list name on the home screen, follow these steps.
1. Press 2nd [[], enter one or more list elements, and then press 2nd [[]. Separate list elements with commas. List elements can be real numbers, complex numbers, or expressions.
\((1,2,3,4)\)
2. Press STO.
3. Press ALPHA [letter from A to \(Z\) or \(\theta\)] to enter the first letter of the name.
4. Enter zero to four letters, \(\theta\), or numbers to complete the name. (\(1,2,3,4)\) TEST
5. Press ENTER. The list is displayed on the next line. The list name and its elements are stored in memory. The list name becomes an item on the list names menu.

Note: If you want to view a user-created list in the stat list editor, you must store it in the stat list editor (Chapter 12).

You also can create a list name in these four places.
- At the Name= prompt in the stat list editor
- At an Xlist:, Ylist:, or Data List: prompt in the stat plot editor
- At a List:, List1:, List2:, Freq:, Freq1:, Freq2:, XList:, or YList: prompt in the inferential stat editors
- On the home screen using SetUpEditor

You can create as many list names as your TI-83 Plus memory has space to store.

\section*{Storing and Displaying Lists}

\section*{Storing Elements to a List}

You can store list elements in either of two ways.
- Use braces and STO on the home screen.
\[
\mid 4+2 i, 5-3 i)+\frac{L}{6}+2 i, 5 \mid
\]
- Use the stat list editor (Chapter 12).

The maximum dimension of a list is 999 elements.
Tip: When you store a complex number to a list, the entire list is converted to a list of complex numbers. To convert the list to a list of real numbers, display the home screen, and then enter real(listname) \(\rightarrow\) listname.

\section*{Displaying a List on the Home Screen}

To display the elements of a list on the home screen, enter the name of the list (preceded by \(\underline{\text { L }}\), if necessary, and then press ENTER. An ellipsis indicates that the list continues beyond the viewing window. Press \(\square\) repeatedly (or press and hold \(\square\)) to scroll the list and view all the list elements.

\section*{Copying One List to Another}

To copy a list, store it to another list.
LTEST
LTESTTTETETE

\section*{Accessing a List Element}

You can store a value to or recall a value from a specific list element. You can store to any element within the current list dimension or one element beyond.
```

listname(element)

```


\section*{Deleting a List from Memory}

To delete lists from memory, including \(\mathbf{L}_{1}\) through L6, use the memory management/delete secondary menu (Chapter 18). Resetting memory restores L1 through L6. Removing a list from the stat list editor does not delete it from memory.

\section*{Using Lists in Graphing}

You can use lists to graph a family of curves (Chapter 3).

\section*{Entering List Names}

\section*{Using the LIST NAMES Menu}

To display the list names menu, press 2nd [LIST]. Each item is a usercreated list name. LISt names menu items are sorted automatically in alphanumerical order. Only the first 10 items are labeled, using 1 through 9, then 0 . To jump to the first list name that begins with a particular alpha character or \(\theta\), press ALPHA [letter from \(A\) to \(Z\) or \(\theta\)].

Tip: From the top of a menu, press \(\triangle\) to move to the bottom. From the bottom, press to move to the top.

Note: The LIST NAMES menu omits list names L1 through L6. Enter L1 through L6 directly from the keyboard.

When you select a list name from the List names menu, the list name is pasted to the current cursor location.
- The list name symbol l precedes a list name when the name is pasted where non-list name data also is valid, such as the home screen.
```

LTEST
<1234)

```
- The l symbol does not precede a list name when the name is pasted where a list name is the only valid input, such as the stat list editor's Name= prompt or the stat plot editor's XList: and YList: prompts.

\section*{Entering a User-Created List Name Directly}

To enter an existing list name directly, follow these steps.
1. Press 2nd [LIST] to display the LISt ops menu.
2. Select \(\mathrm{B}: \mathrm{L}\), which pastes L to the current cursor location. \(\underline{\underline{L}}\) is not always necessary.

Note: You also can paste L to the current cursor location from the CATALOG (Chapter 15).
3. Enter the characters that comprise the list name.

LT123I

\section*{Attaching Formulas to List Names}

\section*{Attaching a Formula to a List Name}

You can attach a formula to a list name so that each list element is a result of the formula. When executed, the attached formula must resolve to a list.

When anything in the attached formula changes, the list to which the formula is attached is updated automatically.
- When you edit an element of a list that is referenced in the formula, the corresponding element in the list to which the formula is attached is updated.
- When you edit the formula itself, all elements in the list to which the formula is attached are updated.

For example, the first screen below shows that elements are stored to L3, and the formula L3+10 is attached to the list name LADD10. The quotation marks designate the formula to be attached to LADD10. Each element of LADD10 is the sum of an element in L3 and 10.
```

<1,2,3)+L3
"し (123)
Lz+10
LHDIIG
lllll

```

The next screen shows another list, L4. The elements of L4 are the sum of the same formula that is attached to L3. However, quotation marks are not entered, so the formula is not attached to L4.

On the next line, \(-6 \rightarrow \mathrm{~L} 3(1): \mathrm{L} 3\) changes the first element in L3 to -6 , and then redisplays L3.

The last screen shows that editing L3 updated LADD10, but did not change L4. This is because the formula \(\mathbf{L 3 + 1 0}\) is attached to LADD10, but it is not attached to L4.
\begin{tabular}{|lrrr|}
\hline LFDC1E & 64 & 12 & 13 \\
L4 & 611 & 12 & 13
\end{tabular}\(|\)

Note: To view a formula that is attached to a list name, use the stat list editor (Chapter 12).

Attaching a Formula to a List on the Home Screen or in a Program
To attach a formula to a list name from a blank line on the home screen or from a program, follow these steps.
1. Press ALPHA ["], enter the formula (which must resolve to a list), and press ALPHA ["] again.

Note: When you include more than one list name in a formula, each list must have the same dimension.
2. Press \(5 T 0\).
3. Enter the name of the list to which you want to attach the formula.
- Press 2nd, and then enter a TI-83 Plus list name L1 through L6.
- Press 2nd [LIST] and select a user-created list name from the LIST NAMES menu.
- Enter a user-created list name directly using \(\underline{\underline{L}}\).
4. Press ENTER.
```

|4,8,9%->L1, lll

```

Note: The stat list editor displays a formula-lock symbol next to each list name that has an attached formula. Chapter 12 describes how to use the stat list editor to attach formulas to lists, edit attached formulas, and detach formulas from lists.

\section*{Detaching a Formula from a List}

You can detach (clear) an attached formula from a list in several ways.
For example:
- Enter ""' \(\rightarrow\) listname on the home screen.
- Edit any element of a list to which a formula is attached.
- Use the stat list editor (Chapter 12).
- Use CIrList or CIrAIIList to detach a formula from a list (Chapter 18).

\section*{Using Lists in Expressions}

\section*{Using a List in an Expression}

You can use lists in an expression in any of three ways. When you press ENTER, any expression is evaluated for each list element, and a list is displayed.
- Use L1-L6 or any user-created list name in an expression.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
- Enter the list elements directly.
20/C, 5, 19] 42
- Use 2 nd \([\mathrm{RCL}]\) to recall the contents of the list into an expression at the cursor location (Chapter 1).

Note: You must paste user-created list names to the Rcl prompt by selecting them from the LIST NAMES menu. You cannot enter them directly using t .

\section*{Using Lists with Math Functions}

You can use a list to input several values for some math functions. Other chapters and Appendix A specify whether a list is valid. The function is evaluated for each list element, and a list is displayed.
- When you use a list with a function, the function must be valid for every element in the list. In graphing, an invalid element, such as -1 in \(\sqrt{ }(\{1,0,-1\})\), is ignored.

This graphs \(\mathbf{x} * \sqrt{ }(\mathbf{1})\) and \(\mathbf{x} * \sqrt{ }(0)\), but skips \(X * \sqrt{(-1)}\).
- When you use two lists with a two-argument function, the dimension of each list must be the same. The function is evaluated for corresponding elements.
\[
61,2,3+4,5,69
\]
- When you use a list and a value with a two-argument function, the value is used with each element in the list.
```

[1,2,3)+4,66,7)

```

\section*{LIST OPS Menu}

\section*{LIST OPS Menu}

To display the list ops menu, press [2nd [LIST] \(\square\).
\begin{tabular}{ll}
\hline NAMES OPS & MATH \\
1: SortAl & \\
2: Sorts lists in ascending order. & Sorts lists in descending order. \\
3: dim(& Sets the list dimension. \\
4: Fill & Fills all elements with a constant. \\
5: seq(& Creates a sequence. \\
6: cumSum(& Returns a list of cumulative sums. \\
7: \(\Delta\) List (& Returns difference of successive elements. \\
8: Select & Selects specific data points. \\
9: augment (& Concatenates two lists. \\
0: Listrmatr & Stores a list to a matrix. \\
A: Matrlist & Stores a matrix to a list. \\
B: L & Designates the list-name data type. \\
\hline
\end{tabular}

\section*{SortA(, SortD(}

SortA((sort ascending) sorts list elements from low to high values. SortD((sort descending) sorts list elements from high to low values. Complex lists are sorted based on magnitude (modulus).

With one list, SortA(and SortD(sort the elements of listname and update the list in memory.

SortA(listname)

SortD(listname)

With two or more lists, SortA(and SortD(sort keylistname, and then sort each dependlist by placing its elements in the same order as the corresponding elements in keylistname. All lists must have the same dimension.

SortA(keylistname,dependlist \(1[\),dependlist \(2, \ldots\), ,dependlist \(n]\))
SortD(keylistname,dependlist \([\),dependlist \(2, \ldots\),dependlist \(n]\))
\begin{tabular}{|c|c|}
\hline 6, \(6,4 \geqslant 44\) 6 4, & \\
\hline & \begin{tabular}{ll}
L4 & 6456 \\
\hline 450
\end{tabular} \\
\hline & Ls \(\quad \begin{array}{llllll}3 & 1 & 2\end{array}\) \\
\hline
\end{tabular}

Note: In the example, \(\mathbf{5}\) is the first element in L4, and \(\mathbf{1}\) is the first element in L5. After SortA(L4,L5), \(\mathbf{5}\) becomes the second element of L4, and likewise, \(\mathbf{1}\) becomes the second element of L5.

Note: SortA(and SortD(are the same as SortA(and SortD(on the STAT EDIT menu (Chapter 12).

\section*{Using dim(to Find List Dimensions}
dim((dimension) returns the length (number of elements) of list.
\(\operatorname{dim}(\) list \()\)
\(\operatorname{dim}_{4}(1,3,5,7)\)
4

\section*{Using dim(to Create a List}

You can use dim(with STO to create a new listname with dimension length from 1 to 999. The elements are zeros.
length \(\rightarrow \operatorname{dim}\) (listname)

\section*{Using dim(to Redimension a List}

You can use dim with STO to redimension an existing listname to dimension length from 1 to 999.
- The elements in the old listname that are within the new dimension are not changed.
- Extra list elements are filled by 0.
- Elements in the old list that are outside the new dimension are deleted.
length \(\rightarrow \operatorname{dim}(\) listname \()\)
\begin{tabular}{|c|c|}
\hline 64, 8, 6) \(\mathrm{L}_{4}\) (86 & \(3 \rightarrow \mathrm{dim}^{\left(L_{1}\right)} 3\) \\
\hline & L1 4486 \\
\hline \(\begin{array}{lllllll}\text { Li } & 4 & 8 & 6 & 6\end{array}\) & \\
\hline
\end{tabular}

\section*{Fill(}

Fill(replaces each element in listname with value.
Fill(value,listname)
\begin{tabular}{|c|c|}
\hline 6,4,5>L \({ }^{\text {, }}\), & Fill \(4+3 \mathrm{~S}, \mathrm{~L} \%\) \\
\hline \[
\text { Fill(8,L; } 34
\] & Lz Elone \\
\hline Done & \(4+3 i, 4+3 i \quad 4+3 i .3\) \\
\hline c8 8 6) & \\
\hline
\end{tabular}

Note: \(\operatorname{dim}\) (and Fill(are the same as dim(and Fill(on the MATRX MATH menu (Chapter 10).
seq(
seq((sequence) returns a list in which each element is the result of the evaluation of expression with regard to variable for the values ranging from begin to end at steps of increment. variable need not be defined in memory. increment can be negative; the default value for increment is 1 . seq(is not valid within expression. Complex lists are not valid.
seq(expression,variable,begin,end[,increment])
```

se=(\mp@subsup{\boldsymbol{A}}{}{2},\textrm{A},1,11,3)
C1 16 49 1069

```

\section*{cumSum(}
cumSum((cumulative sum) returns the cumulative sums of the elements in list, starting with the first element. list elements can be real or complex numbers.
cumSum(list)
```

व,mSum(61,2,3,4,
5)
<1 3 6 1015%

```
\(\Delta\) List(
\(\Delta\) List(returns a list containing the differences between consecutive elements in list. \(\Delta\) List subtracts the first element in list from the second element, subtracts the second element from the third, and so on. The list of differences is always one element shorter than the original list. list elements can be a real or complex numbers.
\(\Delta\) List (list)
```

G0, 30,45,765* LD
IST
200 3045 70%
\&LEt< LIIST
1615 25%

```

\section*{Select(}

Select(selects one or more specific data points from a scatter plot or xyLine plot (only), and then stores the selected data points to two new lists, xlistname and ylistname. For example, you can use Select(to select and then analyze a portion of plotted CBL \(2^{\text {TM }} / \mathrm{CBL}^{\text {TM }}\) or \(\mathrm{CBR}^{\text {TM }}\) data.
Select(xlistname,ylistname)
Note: Before you use Select(, you must have selected (turned on) a scatter plot or xyLine plot. Also, the plot must be displayed in the current viewing window.

\section*{Before Using Select(}

Before using Select(, follow these steps.
1. Create two list names and enter the data.
2. Turn on a stat plot, select \(\ldots\) (scatter plot) or \(1 \sim\) (xyLine), and enter the two list names for Xlist: and Ylist: (Chapter 12).
3. Use ZoomStat to plot the data (Chapter 3).

\section*{Using Select(to Select Data Points from a Plot}

To select data points from a scatter plot or xyLine plot, follow these steps.
1. Press 2nd [LIST] \(\square 8\) to select 8 :Select(from the LISt ops menu. Select(is pasted to the home screen.
2. Enter xlistname, press \(\square\), enter ylistname, and then press \(\square\) to designate list names into which you want the selected data to be stored.

Select(Lis,Lz)|
3. Press ENTER. The graph screen is displayed with Left Bound? in the bottom-left corner.

4. Press \(\triangle\) or \(\square\) (if more than one stat plot is selected) to move the cursor onto the stat plot from which you want to select data points.
5. Press \(\square\) and \(\square\) to move the cursor to the stat plot data point that you want as the left bound.

6. Press ENTER. A indicator on the graph screen shows the left bound. Right Bound? is displayed in the bottom-left corner.

7. Press \(\square\) or to move the cursor to the stat plot point that you want for the right bound, and then press ENTER.

The x-values and \(y\)-values of the selected points are stored in xlistname and ylistname. A new stat plot of xlistname and ylistname replaces the stat plot from which you selected data points. The list names are updated in the stat plot editor.
44
4
4
6

Note: The two new lists (xlistname and ylistname) will include the points you select as left bound and right bound. Also, left-bound \(x\)-value \(\leq\) right-bound \(x\)-value must be true.

\section*{augment(}
augment(concatenates the elements of listA and listB. The list elements can be real or complex numbers.
augment (listA,listB)
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

\section*{Listımatr(}

Listrmatr((lists stored to matrix) fills matrixname column by column with the elements from each list. If the dimensions of all lists are not equal, then Listrmatr(fills each extra matrixname row with \(\mathbf{0}\). Complex lists are not valid.

Listrmatr(list1,list2, . . . ,list n,matrixname)

\section*{Matr)Iist(}

Matr>list((matrix stored to lists) fills each listname with elements from each column in matrix. If the number of listname arguments exceeds the number of columns in matrix, then Matrlist(ignores extra listname arguments. Likewise, if the number of columns in matrix exceeds the number of listname arguments, then Matrlist(ignores extra matrix columns.

> Matr>list(matrix,listname1,listname2, . . . ,listname n)

Matrlist(also fills a listname with elements from a specified column\# in matrix. To fill a list with a specific column from matrix, you must enter a column\# after matrix.

Matrlist(matrix,column\#,,listname)

ı preceding one to five characters identifies those characters as a usercreated listname. listname may comprise letters, \(\theta\), and numbers, but it must begin with a letter from \(A\) to \(Z\) or \(\theta\).

\author{
Llistname
}

Generally, l must precede a user-created list name when you enter a user-created list name where other input is valid, for example, on the home screen. Without the \(\mathbf{L}\), the TI-83 Plus may misinterpret a usercreated list name as implied multiplication of two or more characters.

L need not precede a user-created list name where a list name is the only valid input, for example, at the Name= prompt in the stat list editor or the XIist: and Ylist: prompts in the stat plot editor. If you enter L where it is not necessary, the TI-83 Plus will ignore the entry.

\section*{LIST MATH Menu}

\section*{LIST MATH Menu}

To display the LISt MATH menu, press 2nd [LIST] 0 .
\begin{tabular}{|c|c|}
\hline NAMES OPS MATH & \\
\hline 1:min(& Returns minimum element of a list. \\
\hline 2:max (& Returns maximum element of a list. \\
\hline 3:mean(& Returns mean of a list. \\
\hline 4:median(& Returns median of a list. \\
\hline 5: sum(& Returns sum of elements in a list. \\
\hline 6:prod(& Returns product of elements in list. \\
\hline 7:stdDev(& Returns standard deviation of a list. \\
\hline 8:variance(& Returns the variance of a list. \\
\hline
\end{tabular}

\section*{\(\min (, \max (\)}
\(\min (\) (minimum) and \(\max (\) (maximum) return the smallest or largest element of listA. If two lists are compared, it returns a list of the smaller or larger of each pair of elements in listA and listB. For a complex list, the element with smallest or largest magnitude (modulus) is returned.
```

$\min ($ list $A[$, list $B])$
$\max (l i s t A[, l i s t B])$

```


Note: \(\boldsymbol{\operatorname { m i n }}\) (and \(\boldsymbol{\operatorname { m a x }}\) (are the same as \(\boldsymbol{\operatorname { m i n }}\) (and \(\boldsymbol{\operatorname { m a x }}\) (on the MATH NUM menu.
mean(, median(
mean(returns the mean value of list. median(returns the median value of list. The default value for freqlist is 1 . Each freqlist element counts the number of consecutive occurrences of the corresponding element in list. Complex lists are not valid.
mean(list[freqlist])
median(list[freqlist])
```

mearc(1,2,3),6,
2,1))
1.666666667
medi.an(c1,2,3)
2

```

\section*{sum(, prod(}
sum((summation) returns the sum of the elements in list. start and end are optional; they specify a range of elements. list elements can be real or complex numbers.
prod(returns the product of all elements of list. start and end elements are optional; they specify a range of list elements. list elements can be real or complex numbers.
\begin{tabular}{|c|c|}
\hline & prod(list[,start,end]) \\
\hline & \\
\hline
\end{tabular}

\section*{Sums and Products of Numeric Sequences}

You can combine sum(or prod(with seq(to obtain:
\(\sum_{x=\text { lower }}^{\text {experession }(x)} \quad \prod_{x=\text { lower }}^{\text {upper }}\) expression \((x)\)

To evaluate \(\Sigma 2^{(\mathrm{N}-1)}\) from \(\mathrm{N}=1\) to 4 :
\begin{tabular}{|c|}
\hline \[
\mathrm{N}, 1,4,1 \mathrm{~s})(\mathrm{H}-1)
\] \\
\hline 15 \\
\hline
\end{tabular}

\section*{stdDev(, variance(}
stdDev(returns the standard deviation of the elements in list. The default value for freqlist is 1 . Each freqlist element counts the number of consecutive occurrences of the corresponding element in list. Complex lists are not valid.
variance(returns the variance of the elements in list. The default value for freqlist is 1 . Each freqlist element counts the number of consecutive occurrences of the corresponding element in list. Complex lists are not valid.
\begin{tabular}{|c|c|}
\hline stdDev(list[,freqlist]) & variance(list[,freqlis \\
\hline \[
5,-2,5,93,2,5,-6
\] & \\
\hline
\end{tabular}

\section*{Chapter 12: Statistics}

\section*{Getting Started: Pendulum Lengths and Periods}

Getting Started is a fast-paced introduction. Read the chapter for details.
A group of students is attempting to determine the mathematical relationship between the length of a pendulum and its period (one complete swing of a pendulum). The group makes a simple pendulum from string and washers and then suspends it from the ceiling. They record the pendulum's period for each of 12 string lengths.*
\begin{tabular}{clll}
\hline Length \((\mathbf{c m})\) & Time \((\mathbf{s e c})\) & Length \((\mathbf{c m})\) & Time \((\mathbf{s e c})\) \\
\hline 6.5 & 0.51 & 24.4 & 1.01 \\
11.0 & 0.68 & 26.6 & 1.08 \\
13.2 & 0.73 & 30.5 & 1.13 \\
15.0 & 0.79 & 34.3 & 1.26 \\
18.0 & 0.88 & 37.6 & 1.28 \\
23.1 & 0.99 & 41.5 & 1.32 \\
\hline
\end{tabular}
*This example is quoted and adapted from Contemporary Precalculus Through Applications, by the North Carolina School of Science and Mathematics, by permission of Janson Publications, Inc., Dedham, MA. 1-800-322-MATH. © 1992. All rights reserved.
1. Press MODE \(\square\) ENTER to set Func graphing mode.
2. Press STAT 5 to select \(\mathbf{5}\) :SetUpEditor. SetUpEditor is pasted to the home screen.

Press ENTER. This removes lists from stat list editor columns 1 through 20, and then stores lists L1 through L6 in columns 1 through 6.

Note: Removing lists from the stat list editor does not delete them from memory.
3. Press STAT 1 to select \(\mathbf{1 : E d i t}\) from the stat edit menu. The stat list editor is displayed. If elements are stored in L1 and L2, press \(\Delta\) to move the cursor onto L1, and then press CLEAR ENTER \(\square\) CLEAR ENTER to clear both lists. Press \(\square\) to move the rectangular cursor back to the first row in L1.
4. Press \(6 \square 5\) ENTER to store the first pendulum string length \((6.5 \mathrm{~cm})\) in \(\mathbf{L 1}\). The rectangular cursor moves to the next row. Repeat this step to enter each of the 12 string length values in the table.
Bet.IFEditor*

5. Press to move the rectangular cursor to the first row in L2.

Press \(\square 51\) ENTER to store the first time measurement \((.51 \mathrm{sec})\) in L2. The rectangular
\begin{tabular}{|c|c|c|c|}
\hline L1 & Lz & L3 & 2 \\
\hline 24.4 & 1. 11 & & \\
\hline E6.6 & 1.0 & & \\
\hline 30 & 1.12 & & \\
\hline 37. & 1.26 & & \\
\hline 41.5 & 2 & & \\
\hline --- & & & \\
\hline \multicolumn{4}{|l|}{Lects) =} \\
\hline
\end{tabular} cursor moves to the next row. Repeat this step to enter each of the 12 time values in the table.
6. Press \(Y\) to display the \(Y=\) editor.

If necessary, press CLEAR to clear the function Y1. As necessary, press \(\triangle\), ENTER, and \(\square\) to turn off Plot1, Plot2, and Plot3 from the top line of the \(Y=\) editor (Chapter 3). As necessary, press \(\square, ~(1\), and [ENTER to deselect functions.
7. Press 2nd [STAT PLOT] 1 to select 1:Plot1 from the stat plots menu. The stat plot editor is displayed for plot 1.

8. Press ENTER to select On, which turns on plot 1. Press \(\sigma\) ENTER to select \(\because \because \cdot\) (scatter plot). Press \(\square\) 2nd [L1] to specify Xlist:L1 for plot 1. Press \(\square\) 2nd [L2] to specify Ylist:L2 for plot 1. Press \(\square \square\) ENTER to select + as the Mark for each data point
 on the scatter plot.
9. Press ZOOM 9 to select \(9: Z o o m S t a t ~ f r o m ~ t h e ~\) zoom menu. The window variables are adjusted automatically, and plot 1 is displayed. This is a scatter plot of the time-versus-length data.

Since the scatter plot of time-versus-length data appears to be approximately linear, fit a line to the data.
10. Press STAT \(\square 4\) to select 4 :LinReg \((\mathbf{a x}+\mathbf{b})\) (linear
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{Linfeg (\(\mathrm{S}_{\text {人 }}+6\))} \\
\hline \\
\hline \\
\hline
\end{tabular}
11. Press 2nd [L1] 2nd [L2] \(\square\). Press VARS 1 to
 display the vars Y -vars function secondary menu, and then press 1 to select 1:Y1. L1, L2, and \(\mathbf{Y}_{1}\) are pasted to the home screen as arguments to LinReg(ax+b).
12. Press ENTER to execute LinReg(ax+b). The linear regression for the data in L1 and L2 is calculated. Values for \(\mathbf{a}\) and \(\mathbf{b}\) are displayed on the home screen. The linear regression equation is stored in Y1. Residuals are calculated and stored automatically in the list name RESID, which becomes an item on the list names menu.
13. Press GRAPH. The regression line and the scatter plot are displayed.

The regression line appears to fit the central portion of the scatter plot well. However, a residual plot may provide more information about this fit.
14. Press STAT \(\mathbf{1}\) to select 1:Edit. The stat list editor is displayed.

Press \(\square\) and \(\square\) to move the cursor onto L3.
\begin{tabular}{|c|c|c|}
\hline L1 & Lz & -1.an \\
\hline 6.5 & . 51 & \\
\hline \({ }_{13}^{11} 2\) & - 7 & \\
\hline 15 & 翟 & \\
\hline \({ }^{16} .1\) & - & \\
\hline 24.4 & 1.01 & \\
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

Press 2nd [INS]. An unnamed column is displayed in column 3; L3, L4, L5, and L6 shift right one column. The Name= prompt is displayed in the entry line, and alpha-lock is on.
15. Press [2nd [LISt] to display the List names menu.

RHRESEIFS MATH
If necessary, press to move the cursor onto the list name RESID.
16. Press ENTER to select RESID and paste it to the stat list editor's Name= prompt.
\begin{tabular}{|c|c|c|}
\hline L1 & Lz & +1, \\
\hline 6.5 & . 51 & \\
\hline 11.2 & . \({ }^{\text {c }}\) & \\
\hline 15 & 㫛 & \\
\hline \({ }_{2}^{2} \frac{1}{2}\) & - & \\
\hline 24.4 & 1.01 & \\
\hline
\end{tabular}
17. Press ENTER. RESID is stored in column 3 of the stat list editor.

Press repeatedly to examine the residuals.
\begin{tabular}{|c|c|c|c|}
\hline L1 & LE & [7575T] & 3 \\
\hline 6.5 & . 51 & -.069日 & \\
\hline 11 & & -.008 & \\
\hline 13.2 & .7\% & - 0 & \\
\hline \(1{ }^{16}\) & & . 014 & \\
\hline \(\underline{2} .1\) & . 9 & - 6 & \\
\hline 24.4 & 1.01 & . 0169 & \\
\hline \multicolumn{4}{|l|}{FESII \(=4-.669727\).} \\
\hline
\end{tabular}

Notice that the first three residuals are negative. They correspond to the shortest pendulum string lengths in L1. The next five residuals are positive, and three of the last four are negative. The latter correspond to the longer string lengths in L1. Plotting the residuals will show this pattern more clearly.
18. Press 2nd [STAT PLOT] 2 to select 2:Plot2 from the stat plots menu. The stat plot editor is displayed for plot 2.
19. Press ENTER to select On, which turns on plot 2.

Press \(\square\) ENTER to select \(\ldots\) (scatter plot). Press \(\square\) 2nd [L1] to specify Xlist:L1 for plot 2. Press \(\square\) [R] [E] [S] [1] [D] (alpha-lock is on) to specify Ylist:RESID for plot 2. Press © ENTER to select \(\square\) as the mark for each data point on the scatter plot.

20. Press \(Y\) to display the \(\mathbf{Y}=\) editor.

Press to move the cursor onto the \(=\) sign, and then press ENTER to deselect \(\mathbf{Y}\). Press \(\Delta\) ENTER to turn off plot 1.

21. Press ZOOM 9 to select 9 :ZoomStat from the zoom menu. The window variables are adjusted automatically, and plot 2 is displayed. This is a scatter plot of the residuals.

Notice the pattern of the residuals: a group of negative residuals, then a group of positive residuals, and then another group of negative residuals.

The residual pattern indicates a curvature associated with this data set for which the linear model did not account. The residual plot emphasizes a downward curvature, so a model that curves down with the data would be more accurate. Perhaps a function such as square root would fit. Try a power regression to fit a function of the form \(y=a * x^{b}\).
22. Press \(Y\) to display the \(\mathbf{Y}=\) editor.

Press CLEAR to clear the linear regression equation from \(\mathbf{Y}\). Press \(\triangle\) ENTER to turn on plot 1. Press © ENTER to turn off plot 2.
\begin{tabular}{|c|c|}
\hline 71014 & F10te Flots \\
\hline & \\
\hline - \({ }^{2}=\) & \\
\hline \(\mathrm{Y}_{4}=\) & \\
\hline Q5= & \\
\hline \(\mathrm{Y}_{6}=\) & \\
\hline & \\
\hline
\end{tabular}
23. Press ZOOM 9 to select 9 :ZoomStat from the zoom menu. The window variables are adjusted automatically, and the original scatter plot of time-versus-length data (plot 1) is displayed.
24. Press STAT ALPHA [A] to select A:PwrReg from the stat calc menu. PwrReg is pasted to the home screen.

Press 2nd [L1] [2nd [L2] \(\square\). Press VARS 1 to display the vars Y -vars function secondary menu, and then press 1 to select 1:Y1. L1, L2, and \(\mathbf{Y}_{1}\) are pasted to the home screen as arguments to PwrReg.
25. Press ENTER to calculate the power regression. Values for \(\mathbf{a}\) and \(\mathbf{b}\) are displayed on the home screen. The power regression equation is stored in Y1. Residuals are calculated and stored automatically in the list name RESID.

Fwrexeg Li,Lz, Yi■

Fwreeg \(\cdots=\overrightarrow{3}+\mathrm{x}\) ヨ= \(=.1922828621\)
26. Press GRAPH. The regression line and the scatter plot are displayed.

The new function \(\mathrm{y}=.192 \mathrm{x} \cdot 522\) appears to fit the data well. To get more information, examine a residual plot.
27. Press \(Y \neq\) to display the \(Y=\) editor.

Press \(\square\) ENTER to deselect \(\mathbf{Y} 1\).
Press \(\triangle\) ENTER to turn off plot 1. Press \(\square\)

ENTER to turn on plot 2.
Note: Step 19 defined plot 2 to plot residuals (RESID) versus string length (L1).
28. Press ZOOM 9 to select 9:ZoomStat from the zoom menu. The window variables are adjusted automatically, and plot 2 is displayed. This is a scatter plot of the residuals.

The new residual plot shows that the residuals are random in sign, with the residuals increasing in magnitude as the string length increases.

To see the magnitudes of the residuals, continue with these steps.
29. Press TRACE.

Press \(\square\) and \(\square\) to trace the data. Observe the values for \(\mathbf{Y}\) at each point.

With this model, the largest positive residual is about 0.041 and the smallest negative residual is about -0.027 . All other residuals are less than 0.02 in magnitude.

Now that you have a good model for the relationship between length and period, you can use the model to predict the period for a given string length. To predict the periods for a pendulum with string lengths of 20 cm and 50 cm , continue with these steps.
30. Press VARS 1 to display the vars Y -vars function secondary menu, and then press 1 to select 1:Y1. Y1 is pasted to the home screen.

31. Press \(\square \mathbf{2 0} \square\) to enter a string length of 20 cm .

Press ENTER to calculate the predicted time of about 0.92 seconds.

Based on the residual analysis, we would expect the prediction of about 0.92 seconds to be within about 0.02 seconds of the actual value.
32. Press 2nd [ENTRY] to recall the Last Entry.

Press \(\square \square 5\) to change the string length to 50 cm .
33. Press ENTER to calculate the predicted time of about 1.48 seconds.

Since a string length of 50 cm exceeds the lengths in the data set, and since residuals appear to be increasing as string length increases, we would expect more error with this estimate.

Note: You also can make predictions using the table with the table setup settings Indpnt:Ask and Depend:Auto (Chapter 7).

\section*{Setting Up Statistical Analyses}

\section*{Using Lists to Store Data}

Data for statistical analyses is stored in lists, which you can create and edit using the stat list editor. The TI-83 Plus has six list variables in memory, L1 through L6, to which you can store data for statistical calculations. Also, you can store data to list names that you create (Chapter 11).

\section*{Setting Up a Statistical Analysis}

To set up a statistical analysis, follow these steps. Read the chapter for details.
1. Enter the statistical data into one or more lists.
2. Plot the data.
3. Calculate the statistical variables or fit a model to the data.
4. Graph the regression equation for the plotted data.
5. Graph the residuals list for the given regression model.

\section*{Displaying the Stat List Editor}

The stat list editor is a table where you can store, edit, and view up to 20 lists that are in memory. Also, you can create list names from the stat list editor.

To display the stat list editor, press STAT, and then select 1:Edit from the STAT EDIT menu.

The top line displays list names. L1 through L6 are stored in columns 1 through 6 after a memory reset. The number of the current column is displayed in the top-right corner.

The bottom line is the entry line. All data entry occurs on this line. The characteristics of this line change according to the current context.

The center area displays up to seven elements of up to three lists; it abbreviates values when necessary. The entry line displays the full value of the current element.

\section*{Using the Stat List Editor}

\section*{Entering a List Name in the Stat List Editor}

To enter a list name in the stat list editor, follow these steps.
1. Display the Name= prompt in the entry line in either of two ways.
- Move the cursor onto the list name in the column where you want to insert a list, and then press 2nd [iNS]. An unnamed column is displayed and the remaining lists shift right one column.
- Press \(\square\) until the cursor is on the top line, and then press \(\square\) until you reach the unnamed column.

Note: If list names are stored to all 20 columns, you must remove a list name to make room for an unnamed column.

The Name= prompt is displayed and alpha-lock is on.

2. Enter a valid list name in any of four ways.
- Select a name from the List names menu (Chapter 11).
- Enter L1, L2, L3, L4, L5, or L6 from the keyboard.
- Enter an existing user-created list name directly from the keyboard.
- Enter a new user-created list name.

3. Press ENTER or to store the list name and its elements, if any, in the current column of the stat list editor.

To begin entering, scrolling, or editing list elements, press \(\square\). The rectangular cursor is displayed.
Note: If the list name you entered in step 2 already was stored in another stat list editor column, then the list and its elements, if any, move to the current column from the previous column. Remaining list names shift accordingly.

\section*{Creating a Name in the Stat List Editor}

To create a name in the stat list editor, follow these steps.
1. Display the Name \(=\) prompt.
2. Press [letter from \(A\) to \(Z\) or \(\theta\)] to enter the first letter of the name. The first character cannot be a number.
3. Enter zero to four letters, \(\theta\), or numbers to complete the new usercreated list name. List names can be one to five characters long.
4. Press ENTER or \(\square\) to store the list name in the current column of the stat list editor. The list name becomes an item on the list names menu (Chapter 11).

\section*{Removing a List from the Stat List Editor}

To remove a list from the stat list editor, move the cursor onto the list name and then press DEL. The list is not deleted from memory; it is only removed from the stat list editor.

Note1: To delete a list name from memory, use the MEMORY MANAGEMENT/ DELETE secondary menu (Chapter 18).
Note 2: If you archive a list, it will be removed from the stat list editor.

\section*{Removing All Lists and Restoring L1 through L6}

You can remove all user-created lists from the stat list editor and restore list names L1 through L6 to columns 1 through \(\mathbf{6}\) in either of two ways.
- Use SetUpEditor with no arguments.
- Reset all memory (Chapter 18).

\section*{Clearing All Elements from a List}

You can clear all elements from a list in any of five ways.
- Use CIrList to clear specified lists.
- In the stat list editor, press \(\Delta\) to move the cursor onto a list name, and then press CLEAR ENTER.
- In the stat list editor, move the cursor onto each element, and then press DEL one by one.
- On the home screen or in the program editor, enter \(0 \rightarrow \operatorname{dim}(\) listname) to set the dimension of listname to 0 (Chapter 11).
- Use CIrAllLists to clear all lists in memory (Chapter 18).

\section*{Editing a List Element}

To edit a list element, follow these steps.
1. Move the rectangular cursor onto the element you want to edit.
2. Press ENTER to move the cursor to the entry line.

Note: If you want to replace the current value, you can enter a new value without first pressing ENTER. When you enter the first character, the current value is cleared automatically.
3. Edit the element in the entry line.
- Press one or more keys to enter the new value. When you enter the first character, the current value is cleared automatically.
- Press \(\square\) to move the cursor to the character before which you want to insert, press [2nd [INS], and then enter one or more characters.
- Press \(\square\) to move the cursor to a character you want to delete, and then press DEL to delete the character.

To cancel any editing and restore the original element at the rectangular cursor, press [CLEAR ENTER.

Note: You can enter expressions and variables for elements.
4. Press ENTER, \(\triangle\), or \(\square\) to update the list. If you entered an expression, it is evaluated. If you entered only a variable, the stored value is displayed as a list element.
\begin{tabular}{|c|c|c|c|}
\hline HELC & |L1 & Lz & 1 \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{HEECLI \(=2 \mathbf{1 0}\)} \\
\hline
\end{tabular}

When you edit a list element in the stat list editor, the list is updated in memory immediately.

\section*{Attaching Formulas to List Names}

\section*{Attaching a Formula to a List Name in Stat List Editor}

You can attach a formula to a list name in the stat list editor, and then display and edit the calculated list elements. When executed, the attached formula must resolve to a list. Chapter 11 describes in detail the concept of attaching formulas to list names.

To attach a formula to a list name that is stored in the stat list editor, follow these steps.
1. Press STAT ENTER to display the stat list editor.
2. Press to move the cursor to the top line.
3. Press \(\square\) or \(\square\), if necessary, to move the cursor onto the list name to which you want to attach the formula.

Note: If a formula in quotation marks is displayed on the entry line, then a formula is already attached to the list name. To edit the formula, press ENTER, and then edit the formula.
4. Press ALPHA ["], enter the formula, and press ALPHA ["].

Note: If you do not use quotation marks, the TI-83 Plus calculates and displays the same initial list of answers, but does not attach the formula for future calculations.

Note: Any user-created list name referenced in a formula must be preceded by an ı symbol (Chapter 11).
5. Press [ENTER. The TI-83 Plus calculates each list element and stores it to the list name to which the formula is attached. A lock symbol is displayed in the stat list editor, next to the list name to which the formula is attached.

\section*{Using the Stat List Editor When Formula-Generated Lists Are Displayed}

When you edit an element of a list referenced in an attached formula, the TI-83 Plus updates the corresponding element in the list to which the formula is attached (Chapter 11).

When a list with a formula attached is displayed in the stat list editor and you edit or enter elements of another displayed list, then the TI-83 Plus takes slightly longer to accept each edit or entry than when no lists with formulas attached are in view.

Tip: To speed editing time, scroll horizontally until no lists with formulas are displayed, or rearrange the stat list editor so that no lists with formulas are displayed.

\section*{Handling Errors Resulting from Attached Formulas}

On the home screen, you can attach to a list a formula that references another list with dimension 0 (Chapter 11). However, you cannot display the formula-generated list in the stat list editor or on the home screen until you enter at least one element to the list that the formula references.

All elements of a list referenced by an attached formula must be valid for the attached formula. For example, if Real number mode is set and the attached formula is \(\log \left(\mathbf{L}_{1}\right)\), then each element of \(\mathbf{L} 1\) must be greater than 0 , since the logarithm of a negative number returns a complex result.
Tip: If an error menu is returned when you attempt to display a formulagenerated list in the stat list editor, you can select 2:Goto, write down the formula that is attached to the list, and then press [CLEAR ENTER to detach (clear) the formula. You then can use the stat list editor to find the source of the error. After making the appropriate changes, you can reattach the formula to a list.

If you do not want to clear the formula, you can select 1:Quit, display the referenced list on the home screen, and find and edit the source of the error. To edit an element of a list on the home screen, store the new value to listname(element\#) (Chapter 11).

\section*{Detaching Formulas from List Names}

Detaching a Formula from a List Name
You can detach (clear) a formula from a list name in several ways.
For example:
- In the stat list editor, move the cursor onto the name of the list to which a formula is attached. Press ENTER CLEAR ENTER. All list elements remain, but the formula is detached and the lock symbol disappears.
- In the stat list editor, move the cursor onto an element of the list to which a formula is attached. Press ENTER, edit the element, and then press ENTER. The element changes, the formula is detached, and the lock symbol disappears. All other list elements remain.
- Use ClrList. All elements of one or more specified lists are cleared, each formula is detached, and each lock symbol disappears. All list names remain.
- Use CIrAllLists (Chapter 18). All elements of all lists in memory are cleared, all formulas are detached from all list names, and all lock symbols disappear. All list names remain.

\section*{Editing an Element of a Formula-Generated List}

As described above, one way to detach a formula from a list name is to edit an element of the list to which the formula is attached. The TI-83 Plus protects against inadvertently detaching the formula from the list name by editing an element of the formula-generated list.

Because of the protection feature, you must press ENTER before you can edit an element of a formula-generated list.

The protection feature does not allow you to delete an element of a list to which a formula is attached. To delete an element of a list to which a formula is attached, you must first detach the formula in any of the ways described above.

\section*{Switching Stat List Editor Contexts}

\section*{Stat List Editor Contexts}

The stat list editor has four contexts.
- View-elements context - Edit-elements context
- View-names context - Enter-name context

The stat list editor is first displayed in view-elements context. To switch through the four contexts, select 1:Edit from the stat edit menu and follow these steps.

1. Press \(\Delta\) to move the cursor onto a list name. You are now in view-names context. Press \(\square\) and \(\square\) to view list names stored in other stat list editor columns.
2. Press ENTER. You are now in edit-elements context. You may edit any element in a list. All elements of the current list are displayed in braces (\{ \}) in the entry line. Press \(\square\) and to view more list elements.

6. Press CLEAR. You are now in view-names context.

7. Press \(\square\). You are now back in view-elements context.

\section*{Stat List Editor Contexts}

\section*{View-Elements Context}

In view-elements context, the entry line displays the list name, the current element's place in that list, and the full value of the current element, up to 12 characters at a time. An ellipsis (...) indicates that the element continues beyond 12 characters.

LUS=2SGIGE1G
To page down the list six elements, press ALPHA \(⿴\). To page up six elements, press ALPHA \(\Delta\). To delete a list element, press DEL. Remaining elements shift up one row. To insert a new element, press 2nd [iNS]. \(\mathbf{0}\) is the default value for a new element.

\section*{Edit-Elements Context}

In edit-elements context, the data displayed in the entry line depends on the previous context.
- When you switch to edit-elements context from view-elements context, the full value of the current element is displayed. You can edit the value of this element, and then press \(\square\) and \(\square\) to edit other list elements.

- When you switch to edit-elements context from view-names context, the full values of all elements in the list are displayed. An ellipsis indicates that list elements continue beyond the screen. You can press \(\square\) and to edit any element in the list.

Note: In edit-elements context, you can attach a formula to a list name only if you switched to it from view-names context.

\section*{View-Names Context}

In view-names context, the entry line displays the list name and the list elements.
\begin{tabular}{|c|c|c|c|}
\hline 7FIT & L1 \(\dagger\) & |Lz & 1 \\
\hline 5 & 15 & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{------}} \\
\hline 10 & 20 & & \\
\hline E000 & 25010 & & \\
\hline 25 & 35 & & \\
\hline \multicolumn{4}{|l|}{HEE = 5, 16, 2SEIE...} \\
\hline
\end{tabular}

To remove a list from the stat list editor, press DEL. Remaining lists shift to the left one column. The list is not deleted from memory.

To insert a name in the current column, press 2nd [iNS]. Remaining columns shift to the right one column.

\section*{Enter-Name Context}

In enter-name context, the Name= prompt is displayed in the entry line, and alpha-lock is on.

At the Name= prompt, you can create a new list name, paste a list name from L1 to L6 from the keyboard, or paste an existing list name from the list names menu (Chapter 11). The l symbol is not required at the Name= prompt.

To leave enter-name context without entering a list name, press CLEAR. The stat list editor switches to view-names context.

\section*{STAT EDIT Menu}

\section*{STAT EDIT Menu}

To display the stat edit menu, press STAT.
EDIT CALC TESTS
1: Edit... Displays the stat list editor.
2:SortA(Sorts a list in ascending order.
3:SortD \(\quad\) Sorts a list in descending order.

5:SetUpEditor

Deletes all elements of a list.
Stores lists in the stat list editor.

Note: Chapter 13: Inferential Statistics describes the STAT TESTS menu items.

\section*{SortA(, SortD(}

SortA((sort ascending) sorts list elements from low to high values. SortD((sort descending) sorts list elements from high to low values. Complex lists are sorted based on magnitude (modulus). SortA(and SortD(each can sort in either of two ways.
- With one listname, SortA(and SortD(sort the elements in listname and update the list in memory.
- With two or more lists, SortA(and SortD(sort keylistname, and then sort each dependlist by placing its elements in the same order as the corresponding elements in keylistname. This lets you sort two-variable data on \(\mathbf{X}\) and keep the data pairs together. All lists must have the same dimension.

The sorted lists are updated in memory.
SortA(listname)
SortD(listname)
SortA(keylistname,dependlist \([\),dependlist \(2, \ldots\), dependlist n])
SortD(keylistname,dependlist \([\),dependlist \(2, \ldots\), dependlist n])
\begin{tabular}{|c|c|c|}
\hline & Ls & 635 \\
\hline (1,2,3)+L4, 2 & & \(\begin{array}{lll}3 & 217\end{array}\) \\
\hline & & \\
\hline
\end{tabular}

Note: SortA(and SortD(are the same as SortA(and SortD(on the LIST OPS menu.

\section*{ClrList}

CIrList clears (deletes) from memory the elements of one or more listnames. CIrList also detaches any formula attached to a listname.

CIrList listname 1,listname2,...,listname \(n\)
Note: To clear from memory all elements of all list names, use ClrAllLists (Chapter 18).

\section*{SetUpEditor}

With SetUpEditor you can set up the stat list editor to display one or more listnames in the order that you specify．You can specify zero to 20 listnames．

Additionally，if you want to use listnames which happen to be archived，the SetUp Editor will automatically unarchive the listnames and place them in the stat list editor at the same time．

SetUpEditor［listname 1，listname2，．．．，listname n］
SetUpEditor with one to 20 listnames removes all list names from the stat list editor and then stores listnames in the stat list editor columns in the specified order，beginning in column 1.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{GeturEditor:RES
\(\qquad\)} \\
\hline \multicolumn{4}{|r|}{Cロトワ} \\
\hline FESID & L3 & L6 & 申 1 \\
\hline －iminic & 1 & 11 & \\
\hline ． 0.669 & \(\underline{2}\) & 12 & \\
\hline －8104 & 3 & 12 & \\
\hline －0015 & 4 & 14 & \\
\hline ． 0094 & 5 & 15 & \\
\hline －． 0106 & & & \\
\hline FiESIDId \(=\) & \multicolumn{2}{|l|}{fisinid＝．0．01312．．} & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TIHE & LDIİ & H1z3 & 4 \\
\hline Fin & 5 & 5 & \\
\hline 120 & 是 & 101 & \\
\hline 80 & 74 & \(\underline{15}\) & \\
\hline & 56 & 5 & \\
\hline & 䀎 & 30 & \\
\hline & 74 & & \\
\hline \multicolumn{4}{|l|}{TIHEX \(=6\)} \\
\hline
\end{tabular}

If you enter a listname that is not stored in memory already，then listname is created and stored in memory；it becomes an item on the LISt names menu．

\section*{Restoring L1 through L6 to the Stat List Editor}

SetUpEditor with no listnames removes all list names from the stat list editor and restores list names L1 through L6 in the stat list editor columns 1 through 6.

\begin{tabular}{|c|c|c|c|}
\hline L1 & Lz & L3 & 1 \\
\hline FFF & 51 & 1 & \\
\hline 11 & . & \(\underline{z}\) & \\
\hline 12. \({ }^{1}\) & .7 & 3 & \\
\hline \(1{ }^{1}\) & - \({ }^{\text {㫛 }}\) & 4 & \\
\hline E3.1 & -9 & \(\bar{\square}\) & \\
\hline 24.4 & 1.01 & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}

\section*{Regression Model Features}

\section*{Regression Model Features}
stat calc menu items 3 through \(\mathbf{C}\) are regression models. The automatic residual list and automatic regression equation features apply to all regression models. Diagnostics display mode applies to some regression models.

\section*{Automatic Residual List}

When you execute a regression model, the automatic residual list feature computes and stores the residuals to the list name RESID. RESID becomes an item on the list names menu (Chapter 11).
```

NHITES DFS MATH
18HE
2:RESID

```

The TI-83 Plus uses the formula below to compute RESID list elements. The next section describes the variable RegEQ.

\author{
RESID \(=\) Ylistname \(-\operatorname{RegEQ}(\) Xlistname)
}

\section*{Automatic Regression Equation}

Each regression model has an optional argument, regequ, for which you can specify a \(\mathbf{Y}=\) variable such as \(\mathbf{Y} 1\). Upon execution, the regression equation is stored automatically to the specified \(\mathbf{Y}=\) variable and the \(\mathbf{Y}=\) function is selected.

Regardless of whether you specify a \(\mathbf{Y}=\) variable for regequ, the regression equation always is stored to the TI-83 Plus variable RegEQ, which is item 1 on the vars Statistics EQ secondary menu.

Note: For the regression equation, you can use the fixed-decimal mode setting to control the number of digits stored after the decimal point (Chapter 1). However, limiting the number of digits to a small number could affect the accuracy of the fit.

\section*{Diagnostics Display Mode}

When you execute some regression models, the TI-83 Plus computes and stores diagnostics values for \(\mathbf{r}\) (correlation coefficient) and \(\mathrm{r}^{2}\) (coefficient of determination) or for \(\mathbf{R}^{2}\) (coefficient of determination).
\(\mathbf{r}\) and \(\mathbf{r}^{\mathbf{2}}\) are computed and stored for these regression models.
\begin{tabular}{lll}
LinReg(ax+b) & LnReg & PwrReg \\
LinReg(a+bx) & ExpReg &
\end{tabular}
\(\mathbf{R}^{\mathbf{2}}\) is computed and stored for these regression models.

\section*{QuadReg \\ CubicReg \\ QuartReg}

The \(\mathbf{r}\) and \(\mathbf{r}^{2}\) that are computed for LnReg, ExpReg, and PwrReg are based on the linearly transformed data. For example, for ExpReg \(\left(y=a b{ }^{\wedge} x\right), r\) and \(r^{2}\) are computed on \(\ln y=\ln a+x(\ln b)\).

By default, these values are not displayed with the results of a regression model when you execute it. However, you can set the diagnostics display mode by executing the DiagnosticOn or DiagnosticOff instruction. Each instruction is in the catalog (Chapter 15).

Note: To set DiagnosticOn or DiagnosticOff from the home screen, press 2nd [CATALOG], and then select the instruction for the mode you want. The instruction is pasted to the home screen. Press ENTER to set the mode.

When DiagnosticOn is set, diagnostics are displayed with the results when you execute a regression model.

When DiagnosticOff is set, diagnostics are not displayed with the results when you execute a regression model.
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Di.agroosticolf \\
LinRe9 (\(\mathrm{ax}+\mathrm{b}\)) L1, Le
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}
```

LinFeg
'コ=ヨх+6
B=-2
G=1,SSSSSSSSS

```

\section*{STAT CALC Menu}

\section*{STAT CALC Menu}

To display the stat calc menu, press STAT \(\square\).
\begin{tabular}{ll}
\hline EDIT CALC TESTS & \\
1:1-Var Stats & Calculates 1-variable statistics. \\
2:2-Var Stats & Calculates 2-variable statistics. \\
3:Med-Med & Calculates a median-median line. \\
4:LinReg(ax+b) & Fits a linear model to data. \\
5:QuadReg & Fits a quadratic model to data. \\
6:CubicReg & Fits a cubic model to data. \\
7:QuartReg & Fits a quartic model to data. \\
8:LinReg(a+bx) & Fits a linear model to data. \\
9:LnReg & Fits a logarithmic model to data. \\
\(0:\) ExpReg & Fits an exponential model to data. \\
A:PwrReg & Fits a power model to data. \\
B:Logistic & Fits a logistic model to data. \\
C:SinReg & Fits a sinusoidal model to data. \\
\hline
\end{tabular}

For each stat calc menu item, if neither Xlistname nor Ylistname is specified, then the default list names are L1 and L2. If you do not specify freqlist, then the default is \(\mathbf{1}\) occurrence of each list element.

\section*{Frequency of Occurrence for Data Points}

For most stat calc menu items, you can specify a list of data occurrences, or frequencies (freqlist).

Each element in freqlist indicates how many times the corresponding data point or data pair occurs in the data set you are analyzing.

For example, if \(\mathrm{L} 1=\{15,12,9,14\}\) and \(\operatorname{LFREQ}=\{1,4,1,3\}\), then the \(\mathrm{Tl}-83\) Plus interprets the instruction \(\mathbf{1 - V a r}\) Stats L1, LFREQ to mean that 15 occurs once, 12 occurs four times, 9 occurs once, and 14 occurs three times.

Each element in freqlist must be \(\geq 0\), and at least one element must be \(>0\).
Noninteger freqlist elements are valid. This is useful when entering frequencies expressed as percentages or parts that add up to 1 . However, if freqlist contains noninteger frequencies, Sx and Sy are undefined; values are not displayed for \(\mathbf{S x}\) and \(\mathbf{S y}\) in the statistical results.

\section*{1-Var Stats}

1-Var Stats (one-variable statistics) analyzes data with one measured variable. Each element in freqlist is the frequency of occurrence for each corresponding data point in Xlistname. freqlist elements must be real numbers >0.

1-Var Stats [Xlistname,freqlist]
\(\frac{1 \text {-War Stats Lin }}{\text { ■ }}\)

\section*{2-Var Stats}

2-Var Stats (two-variable statistics) analyzes paired data. Xlistname is the independent variable. Ylistname is the dependent variable. Each element in freqlist is the frequency of occurrence for each data pair (Xlistname, Ylistname).

2-Var Stats [Xlistname,Ylistname,freqlist]

\section*{Med-Med (ax+b)}

Med-Med (median-median) fits the model equation \(\mathrm{y}=\mathrm{ax}+\mathrm{b}\) to the data using the median-median line (resistant line) technique, calculating the summary points \(\mathbf{x 1}, \mathbf{y} 1, \mathbf{x} 2, \mathbf{y} 2, \mathbf{x} 3\), and \(\mathbf{y}\). Med-Med displays values for \(\mathbf{a}\) (slope) and \(\mathbf{b}\) (y-intercept).

Med-Med [Xlistname,Ylistname,freqlist,regequ]
\begin{tabular}{|l|l|}
\hline Med-Hed \(L 3, L 4, V z\) \\
\(b=1.5416666 .67\)
\end{tabular}\(|\)

\section*{LinReg (ax+b)}

LinReg(ax+b) (linear regression) fits the model equation \(y=a x+b\) to the data using a least-squares fit. It displays values for \(\mathbf{a}\) (slope) and \(\mathbf{b}\) (\(y\)-intercept); when DiagnosticOn is set, it also displays values for \(\mathrm{r}^{2}\) and r .

LinReg(ax+b) [Xlistname,Ylistname,freqlist,regequ]

\section*{QuadReg (ax²+bx+c)}

QuadReg (quadratic regression) fits the second-degree polynomial \(y=a x^{2}+b x+c\) to the data. It displays values for \(\mathbf{a}, \mathbf{b}\), and \(\mathbf{c}\); when DiagnosticOn is set, it also displays a value for \(\mathbf{R}^{2}\). For three data points, the equation is a polynomial fit; for four or more, it is a polynomial regression. At least three data points are required.

QuadReg [Xlistname,Ylistname,freqlist,regequ]
CubicReg- \(\left(a x^{3}+b x^{2}+c x+d\right)\)
CubicReg (cubic regression) fits the third-degree polynomial \(y=a x^{3}+b x^{2}+c x+d\) to the data. It displays values for \(\mathbf{a}, \mathbf{b}, \mathbf{c}\), and \(\mathbf{d}\); when DiagnosticOn is set, it also displays a value for \(\mathbf{R}^{2}\). For four points, the equation is a polynomial fit; for five or more, it is a polynomial regression. At least four points are required.

\section*{QuartReg-(ax \(\left.{ }^{4}+b x^{3}+c x^{2}+d x+e\right)\)}

QuartReg (quartic regression) fits the fourth-degree polynomial \(y=a x^{4}+b x^{3}+c x^{2}+d x+e\) to the data. It displays values for \(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\), and \(\mathbf{e}\); when DiagnosticOn is set, it also displays a value for \(\mathbf{R}^{2}\). For five points, the equation is a polynomial fit; for six or more, it is a polynomial regression. At least five points are required.

QuartReg [Xlistname,Ylistname,freqlist,regequ]

\section*{LinReg-(a+bx)}

LinReg(a+bx) (linear regression) fits the model equation \(y=a+b x\) to the data using a least-squares fit. It displays values for \(\mathbf{a}\) (y-intercept) and \(\mathbf{b}\) (slope); when DiagnosticOn is set, it also displays values for \(\mathbf{r}^{2}\) and \(\mathbf{r}\).

LinReg(a+bx) [Xlistname,Ylistname,freqlist,regequ]

\section*{LnReg-(a+b \(\ln (x))\)}

LnReg (logarithmic regression) fits the model equation \(y=a+b \ln (x)\) to the data using a least-squares fit and transformed values \(\ln (x)\) and \(y\). It displays values for a and \(\mathbf{b}\); when DiagnosticOn is set, it also displays values for \(\mathbf{r}^{2}\) and \(\mathbf{r}\).

\section*{ExpReg-(abx)}

ExpReg (exponential regression) fits the model equation \(y=a b^{x}\) to the data using a least-squares fit and transformed values \(x\) and \(\ln (y)\). It displays values for \(\mathbf{a}\) and \(\mathbf{b}\); when DiagnosticOn is set, it also displays values for \(\mathbf{r}^{\mathbf{2}}\) and \(\mathbf{r}\).

ExpReg [Xlistname,Ylistname,freqlist,regequ]

\section*{PwrReg-(ax \(\left.{ }^{b}\right)\)}

PwrReg (power regression) fits the model equation \(\mathrm{y}=\mathrm{ax}\) b to the data using a least-squares fit and transformed values \(\ln (x)\) and \(\ln (y)\). It displays values for \(\mathbf{a}\) and \(\mathbf{b}\); when DiagnosticOn is set, it also displays values for \(\mathbf{r}^{\mathbf{2}}\) and \(\mathbf{r}\).

PwrReg [Xlistname,Ylistname,freqlist,regequ]

Logistic-c/(1+a*e-bx)

Logistic fits the model equation \(\mathrm{y}=\mathrm{c} /\left(1+\mathrm{a} * \mathrm{e}^{-\mathrm{bx}}\right)\) to the data using an iterative least-squares fit. It displays values for \(\mathbf{a}, \mathbf{b}\), and \(\mathbf{c}\).

Logistic [Xlistname,Ylistname,freqlist,regequ]

\section*{SinReg-a \(\sin (b x+c)+d\)}

SinReg (sinusoidal regression) fits the model equation \(y=a \sin (b x+c)+d\) to the data using an iterative least-squares fit. It displays values for \(\mathbf{a}, \mathbf{b}, \mathbf{c}\), and d. At least four data points are required. At least two data points per cycle are required in order to avoid aliased frequency estimates.

SinReg [iterations,Xlistname,Ylistname,period,regequ]
iterations is the maximum number of times the algorithm will iterate to find a solution. The value for iterations can be an integer \(\geq 1\) and \(\leq 16\); if not specified, the default is 3 . The algorithm may find a solution before iterations is reached. Typically, larger values for iterations result in longer execution times and better accuracy for SinReg, and vice versa.

A period guess is optional. If you do not specify period, the difference between time values in Xlistname must be equal and the time values must be ordered in ascending sequential order. If you specify period, the algorithm may find a solution more quickly, or it may find a solution when it would not have found one if you had omitted a value for period. If you specify period, the differences between time values in Xlistname can be unequal.

Note: The output of SinReg is always in radians, regardless of the Radian/Degree mode setting.

\section*{SinReg Example: Daylight Hours in Alaska for One Year}

Compute the regression model for the number of hours of daylight in Alaska during one year.

Girfeg LivLz, Yi■|

With noisy data, you will achieve better convergence results when you specify an accurate estimate for period. You can obtain a period guess in either of two ways.
- Plot the data and trace to determine the x-distance between the beginning and end of one complete period, or cycle. The illustration above and to the right graphically depicts a complete period, or cycle.
- Plot the data and trace to determine the x-distance between the beginning and end of N complete periods, or cycles. Then divide the total distance by N .

After your first attempt to use SinReg and the default value for iterations to fit the data, you may find the fit to be approximately correct, but not optimal. For an optimal fit, execute SinReg 16,Xlistname,Ylistname, \(2 \pi\) / \(b\) where \(b\) is the value obtained from the previous SinReg execution.

\section*{Statistical Variables}

The statistical variables are calculated and stored as indicated below. To access these variables for use in expressions, press VARS, and select 5:Statistics. Then select the vars menu shown in the column below under vars menu. If you edit a list or change the type of analysis, all statistical variables are cleared.
\(\left.\begin{array}{lccc}\hline \text { Variables } & \begin{array}{c}1 \text {-Var } \\ \text { Stats }\end{array} & \begin{array}{c}\text { 2-Var } \\ \text { Stats }\end{array} & \text { Other }\end{array} \begin{array}{c}\text { VARS } \\ \text { menu }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|c|}
\hline Variables & 1-Var Stats & 2-Var Stats & Other & VARS menu \\
\hline maximum of \(\mathbf{x}\) values & maxX & max \(X\) & & XY \\
\hline minimum of \(\boldsymbol{y}\) values & & \(\min Y\) & & XY \\
\hline maximum of \(\mathbf{y}\) values & & max \(Y\) & & XY \\
\hline 1st quartile & Q1 & & & PTS \\
\hline median & Med & & & PTS \\
\hline 3 rd quartile & Q3 & & & PTS \\
\hline regression/fit coefficients & & & \(\mathrm{a}, \mathrm{b}\) & EQ \\
\hline polynomial, Logistic, and SinReg coefficients & & & \(\mathbf{a}, \mathbf{b}, \mathbf{c}\), d, e & EQ \\
\hline correlation coefficient & & & r & EQ \\
\hline coefficient of determination & & & \(\mathbf{r}^{\mathbf{2}}, \mathbf{R}^{\mathbf{2}}\) & EQ \\
\hline regression equation & & & RegEQ & EQ \\
\hline summary points (Med-Med only) & & & \[
\begin{aligned}
& \mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \\
& \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3
\end{aligned}
\] & PTS \\
\hline
\end{tabular}

\section*{Q1 and Q3}

The first quartile (\(\mathbf{Q}_{1}\)) is the median of points between \(\boldsymbol{m i n} \mathbf{X}\) and \(\mathbf{M e d}\) (median). The third quartile (\(\mathbf{Q}_{3}\)) is the median of points between Med and \(\max X\).

\section*{Statistical Analysis in a Program}

\section*{Entering Stat Data}

You can enter statistical data, calculate statistical results, and fit models to data from a program. You can enter statistical data into lists directly within the program (Chapter 11).
```

FROGRAM: STATS
{(1,2,-2,-5)+Lz

```

\section*{Statistical Calculations}

To perform a statistical calculation from a program, follow these steps.
1. On a blank line in the program editor, select the type of calculation from the stat calc menu.
2. Enter the names of the lists to use in the calculation. Separate the list names with a comma.
3. Enter a comma and then the name of a \(\mathbf{Y}=\) variable, if you want to store the regression equation to a \(\mathbf{Y}=\) variable.

\section*{Statistical Plotting}

\section*{Steps for Plotting Statistical Data in Lists}

You can plot statistical data that is stored in lists. The six types of plots available are scatter plot, xyLine, histogram, modified box plot, regular box plot, and normal probability plot. You can define up to three plots.

To plot statistical data in lists, follow these steps.
1. Store the stat data in one or more lists.
2. Select or deselect \(\mathbf{Y}=\) functions as appropriate.
3. Define the stat plot.
4. Turn on the plots you want to display.
5. Define the viewing window.
6. Display and explore the graph.

\section*{\(\because \cdot(\) Scatter}

Scatter plots plot the data points from Xlist and Ylist as coordinate pairs, showing each point as a box (\(\square\)), cross (+), or dot (\(\cdot\)). Xlist and Ylist must be the same length. You can use the same list for Xlist and Ylist.

\section*{\(\omega \sim\) (xyLine)}
xyLine is a scatter plot in which the data points are plotted and connected in order of appearance in Xlist and Ylist. You may want to use SortA(or SortD(to sort the lists before you plot them.

Histogram plots one-variable data. The Xscl window variable value determines the width of each bar, beginning at Xmin. ZoomStat adjusts Xmin, Xmax, Ymin, and Ymax to include all values, and also adjusts Xscl. The inequality (\(\mathbf{X m a x}\) - Xmin) / Xscl \(\leq 47\) must be true. A value that occurs on the edge of a bar is counted in the bar to the right.

느… (ModBoxplot)

ModBoxplot (modified box plot) plots one-variable data, like the regular box plot, except points that are 1.5 * Interquartile Range beyond the quartiles. (The Interquartile Range is defined as the difference between the third quartile Q3 and the first quartile Q1.) These points are plotted individually beyond the whisker, using the Mark (\(\square\) or + or \(\cdot\)) you select. You can trace these points, which are called outliers.

The prompt for outlier points is \(\mathbf{x}=\), except when the outlier is the maximum point \((\max \mathbf{X}\)) or the minimum point \((\boldsymbol{\operatorname { m i n }} \mathbf{X})\). When outliers exist, the end of each whisker will display \(x=\). When no outliers exist, \(\min X\) and \(\operatorname{maxX}\) are the prompts for the end of each whisker. Q1, Med (median), and Q3 define the box.

Box plots are plotted with respect to Xmin and Xmax, but ignore Ymin and Ymax. When two box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.

\section*{ㅁ. (Boxplot)}

Boxplot (regular box plot) plots one-variable data. The whiskers on the plot extend from the minimum data point in the set \((\min X)\) to the first quartile (\(\mathbf{Q 1}_{1}\)) and from the third quartile (\(\mathbf{Q}_{3}\)) to the maximum point (maxX). The box is defined by Q1, Med (median), and Q3.

Box plots are plotted with respect to Xmin and Xmax, but ignore Ymin and Ymax. When two box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.

\section*{\(\measuredangle\) (NormProbPlot)}

NormProbPlot (normal probability plot) plots each observation \(\mathbf{X}\) in Data List versus the corresponding quantile zof the standard normal distribution. If the plotted points lie close to a straight line, then the plot indicates that the data are normal.

Enter a valid list name in the Data List field. Select \(\mathbf{X}\) or \(\mathbf{Y}\) for the Data Axis setting.
- If you select \(\mathbf{X}\), the TI-83 Plus plots the data on the x -axis and the \(z\)-values on the \(y\)-axis.
- If you select \(\mathbf{Y}\), the TI-83 Plus plots the data on the \(y\)-axis and the \(z\)-values on the \(x\)-axis.

\section*{Defining the Plots}

To define a plot, follow these steps.
1. Press [2nd [stat plot]. The stat plots menu is displayed with the current plot definitions.

2. Select the plot you want to use. The stat plot editor is displayed for the plot you selected.

3. Press ENTER to select On if you want to plot the statistical data immediately. The definition is stored whether you select On or Off.
4. Select the type of plot. Each type prompts for the options checked in this table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Plot Type & XList & YList & Mark & Freq & Data List & Data Axis \\
\hline \(\ldots\) Scatter & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline \(1 \sim\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline Inm & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline + & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline 回 & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline \(\underline{L}\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline
\end{tabular}
5. Enter list names or select options for the plot type.
- Xlist (list name containing independent data)
- Ylist (list name containing dependent data)
- Mark (\(\square\) or + or \(\cdot\))
- Freq (frequency list for Xlist elements; default is \(\mathbf{1}\))
- Data List (list name for NormProbPlot)
- Data Axis (axis on which to plot Data List)

\section*{Displaying Other Stat Plot Editors}

Each stat plot has a unique stat plot editor. The name of the current stat plot (Plot1, Plot2, or Plot3) is highlighted in the top line of the stat plot editor. To display the stat plot editor for a different plot, press \(\triangle\), \(\square\), and
\(\checkmark\) to move the cursor onto the name in the top line, and then press ENTER. The stat plot editor for the selected plot is displayed, and the selected name remains highlighted.

```

Dr=107%
TMFE:E:口N
\l ítiLi
Mli=t.Lz
Mark: 靣 *

```

\section*{Turning On and Turning Off Stat Plots}

PlotsOn and PlotsOff allow you to turn on or turn off stat plots from the home screen or a program. With no plot number, PlotsOn turns on all plots and PlotsOff turns off all plots. With one or more plot numbers (1, 2, and 3), PlotsOn turns on specified plots, and PlotsOff turns off specified plots.
```

PlotsOff [1,2,3]
PlotsOn [1,2,3]

```
\begin{tabular}{|ll|}
\hline Plot \(=\) Off & Done \\
Flots On 3 & Done \\
\hline
\end{tabular}

Note: You also can turn on and turn off stat plots in the top line of the \(\mathrm{Y}=\) editor (Chapter 3).

\section*{Defining the Viewing Window}

Stat plots are displayed on the current graph. To define the viewing window, press WINDOW and enter values for the window variables. ZoomStat redefines the viewing window to display all statistical data points.

\section*{Tracing a Stat Plot}

When you trace a scatter plot or xyLine, tracing begins at the first element in the lists.

When you trace a histogram, the cursor moves from the top center of one column to the top center of the next, starting at the first column.

When you trace a box plot, tracing begins at Med (the median). Press \(\square\) to trace to Q1 and \(\operatorname{minX}\). Press \(\square\) to trace to Q3 and maxX.

When you press \(\Delta\) or to move to another plot or to another \(\mathrm{Y}=\) function, tracing moves to the current or beginning point on that plot (not the nearest pixel).

The ExprOn/ExprOff format setting applies to stat plots (Chapter 3). When ExprOn is selected, the plot number and plotted data lists are displayed in the top-left corner.

\section*{Statistical Plotting in a Program}

\section*{Defining a Stat Plot in a Program}

To display a stat plot from a program, define the plot, and then display the graph.

To define a stat plot from a program, begin on a blank line in the program editor and enter data into one or more lists; then, follow these steps.
1. Press 2nd [STAT PLOT] to display the stat plots menu.

2. Select the plot to define, which pastes Plot1(, Plot2(, or Plot3(to the cursor location.

3. Press 2nd [stat pLOT] to display the stat type menu.
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
4. Select the type of plot, which pastes the name of the plot type to the cursor location.
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
5. Press \(\square\). Enter the list names, separated by commas.
6. Press [2nd [STAT PLOT] to display the stat plot mark menu. (This step is not necessary if you selected 3 :Histogram or 5 :Boxplot in step 4.)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
PLOTS TYPE TiFEN \\
18: \\
Z:
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

Select the type of mark (\(\square\) or + or \(\cdot\)) for each data point. The selected mark symbol is pasted to the cursor location.
7. Press \(\square\) ENTER to complete the command line.
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
FROGRAM: FLOT \\
\(1,2,3,8)+\operatorname{L}^{1}\) \\
:Flotacsetter, \\
1, L2; \({ }^{\text {, }}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Displaying a Stat Plot from a Program}

To display a plot from a program, use the DispGraph instruction (Chapter 16) or any of the zoom instructions (Chapter 3).

\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

\section*{Chapter 13: Inferential Statistics and Distributions}

\section*{Getting Started: Mean Height of a Population}

Getting Started is a fast-paced introduction. Read the chapter for details.
Suppose you want to estimate the mean height of a population of women given the random sample below. Because heights among a biological population tend to be normally distributed, a \(t\) distribution confidence interval can be used when estimating the mean. The 10 height values below are the first 10 of 90 values, randomly generated from a normally distributed population with an assumed mean of 165.1 centimeters and a standard deviation of 6.35 centimeters (randNorm(165.1,6.35,90) with a seed of 789).

\section*{Height (in centimeters) of Each of 10 Women}
\begin{tabular}{llllllll}
169.43 & 168.33 & 159.55 & 169.97 & 159.79 & 181.42 & 171.17 & 162.04 \\
167.15 & 159.53 & & & & & &
\end{tabular}
1. Press STAT ENTER to display the stat list editor.

Press \(\Delta\) to move the cursor onto \(\mathbf{L 1}\), and then press [2nd [INS]. The Name= prompt is displayed on the bottom line. The il cursor indicates that alpha-lock is on. The existing list name columns shift to the right.
Note: Your stat editor may not look like the one pictured here, depending on the lists you have already stored.
2. Enter \([\mathrm{H}][\mathrm{G}][\mathrm{H}][\mathrm{T}]\) at the Name= prompt, and then press ENTER. The list to which you will store the women's height data is created.

Press \(\square\) to move the cursor onto the first row of the list. \(\operatorname{HGHT}(1)=\) is displayed on the bottom line.
3. Press \(169 \square 43\) to enter the first height value. As you enter it, it is displayed on the bottom line.

Press ENTER. The value is displayed in the first
 row, and the rectangular cursor moves to the next row.

Enter the other nine height values the same way.
4. Press STAT to display the stat tests menu, and then press until 8:TInterval is highlighted.

5. Press ENTER to select 8:TInterval. The inferential stat editor for Tinterval is displayed. If Data is not selected for Inpt:, press \(\square\) ENTER to select Data.

Press and \([\mathrm{H}][\mathrm{G}][\mathrm{H}][\mathrm{T}]\) at the List: prompt (alpha-lock is on).

Press \(\square \square 99\) to enter a 99 percent confidence level at the C-Level: prompt.
6. Press to move the cursor onto Calculate, and then press ENTER. The confidence interval is calculated, and the TInterval results are displayed on the home screen.

Interpret the results.
The first line, (159.74,173.94), shows that the 99 percent confidence interval for the population mean is between about 159.74 centimeters and 173.94 centimeters. This is about a 14.2 centimeters spread.

The . 99 confidence level indicates that in a very large number of samples, we expect 99 percent of the intervals calculated to contain the population mean. The actual mean of the population sampled is 165.1 centimeters, which is in the calculated interval.

The second line gives the mean height of the sample \(\bar{x}\) used to compute this interval. The third line gives the sample standard deviation Sx. The bottom line gives the sample size \(\mathbf{n}\).

To obtain a more precise bound on the population mean \(\mu\) of women's heights, increase the sample size to 90 . Use a sample mean \(\bar{x}\) of 163.8 and sample standard deviation Sx of 7.1 calculated from the larger random sample. This time, use the Stats (summary statistics) input option.
7. Press STAT 8 to display the inferential stat editor for TInterval.

Press [ENTER to select Inpt:Stats. The editor changes so that you can enter summary statistics as input.

8. Press \(163 \square 8\) ENTER to store 163.8 to \(\bar{x}\).

Press 7.1 ENTER to store 7.1 to \(\mathbf{S x}\).
Press 90 ENTER to store 90 to \(\mathbf{n}\).

9. Press to move the cursor onto Calculate, and then press ENTER to calculate the new 99 percent confidence interval. The results are displayed on the home screen.

If the height distribution among a population of women is normally distributed with a mean \(\mu\) of 165.1 centimeters and a standard deviation \(\sigma\) of 6.35 centimeters, what height is exceeded by only 5 percent of the women (the 95th percentile)?
10. Press CLEAR to clear the home screen.

Press 2nd [DISTR] to display the DISTR (distributions) menu.
11. Press 3 to paste invNorm(to the home screen. Press \(\square 95 \square 165 \square 1 \square 6 \square 35 \square\) ENTER. .95 is the area, 165.1 is \(\mu\), and 6.35 is \(\sigma\).
```

invitgr"@.95,165.
1,6.35% 55,5448205

```

The result is displayed on the home screen; it shows that five percent of the women are taller than 175.5 centimeters.

Now graph and shade the top 5 percent of the population.
12. Press WINDOW and set the window variables to these values.
\begin{tabular}{lll}
Xmin=145 & Ymin=-.02 & Xres=1 \\
Xmax=185 & Ymax \(=.08\) & \\
Xscl=5 & Yscl=0 &
\end{tabular}
\begin{tabular}{|c|}
\hline WIFITOU \\
\hline ¢mir \(=145\) \\
\hline \(8 \mathrm{max}=5\). \\
\hline ¢mirn= - 62 \\
\hline \(4 \mathrm{mex}=08\) \\
\hline Yscl= \\
\hline Xres=1 \\
\hline
\end{tabular}
13. Press 2nd [DISTR] \(\square\) to display the distr draw menu.

14. Press ENTER to paste ShadeNorm(to the home screen.

Press 2nd [ANS] \(\square 1\) [2nd [EE] \(99 \square 165 \square 1 \square 6\) \(\square 35 \square\).

Ans (175.5448205 from step 11) is the lower bound. 1 E 99 is the upper bound. The normal curve is defined by a mean \(\mu\) of 165.1 and a standard deviation \(\sigma\) of 6.35.
15. Press ENTER to plot and shade the normal curve.

Area is the area above the 95th percentile. low is the lower bound. up is the upper bound.
inutorm6.95:165.

\section*{Inferential Stat Editors}

\section*{Displaying the Inferential Stat Editors}

When you select a hypothesis test or confidence interval instruction from the home screen，the appropriate inferential statistics editor is displayed． The editors vary according to each test or interval＇s input requirements． Below is the inferential stat editor for \(\mathbf{T}\)－Test．
```

T-TESt.

```

```

以口:G
Li=t.ELi
FrF兑=ᅥ:1

```


Note：When you select the ANOVA（ instruction，it is pasted to the home screen． ANOVA（ does not have an editor screen．

\section*{Using an Inferential Stat Editor}

To use an inferential stat editor，follow these steps．
1．Select a hypothesis test or confidence interval from the stat tests menu．The appropriate editor is displayed．

2．Select Data or Stats input，if the selection is available．The appropriate editor is displayed．
3. Enter real numbers, list names, or expressions for each argument in the editor.
4. Select the alternative hypothesis (\(\neq,<\), or \(>\)) against which to test, if the selection is available.
5. Select No or Yes for the Pooled option, if the selection is available.
6. Select Calculate or Draw (when Draw is available) to execute the instruction.
- When you select Calculate, the results are displayed on the home screen.
- When you select Draw, the results are displayed in a graph.

This chapter describes the selections in the above steps for each hypothesis test and confidence interval instruction.

\section*{Selecting Data or Stats}

Most inferential stat editors prompt you to select one of two types of input. (1-PropZInt and 2-PropZTest, 1-PropZInt and 2-PropZInt, \(\chi^{2}\)-Test, and LinRegTTest do not.)
- Select Data to enter the data lists as input.
- Select Stats to enter summary statistics, such as \(\overline{\mathrm{x}}, \mathbf{S x}\), and \(\mathbf{n}\), as input.

To select Data or Stats, move the cursor to either Data or Stats, and then press ENTER.

\section*{Entering the Values for Arguments}

Inferential stat editors require a value for every argument. If you do not know what a particular argument symbol represents, see the Inferential Statistics Input Descriptions tables.

When you enter values in any inferential stat editor, the TI-83 Plus stores them in memory so that you can run many tests or intervals without having to reenter every value.

\section*{Selecting an Alternative Hypothesis (\(\neq<>\))}

Most of the inferential stat editors for the hypothesis tests prompt you to select one of three alternative hypotheses.
- The first is a \(\neq\) alternative hypothesis, such as \(\mu \neq \mu 0\) for the Z-Test.
- The second is a < alternative hypothesis, such as \(\mu 1<\mu 2\) for the 2-SampTTest.
- The third is a > alternative hypothesis, such as p1>p2 for the 2-PropZTest.

To select an alternative hypothesis, move the cursor to the appropriate alternative, and then press ENTER.

\section*{Selecting the Pooled Option}

Pooled (2-SampTTest and 2-SampTInt only) specifies whether the variances are to be pooled for the calculation.
- Select No if you do not want the variances pooled. Population variances can be unequal.
- Select Yes if you want the variances pooled. Population variances are assumed to be equal.

To select the Pooled option, move the cursor to Yes, and then press ENTER.

\section*{Selecting Calculate or Draw for a Hypothesis Test}

After you have entered all arguments in an inferential stat editor for a hypothesis test, you must select whether you want to see the calculated results on the home screen (Calculate) or on the graph screen (Draw).
- Calculate calculates the test results and displays the outputs on the home screen.
- Draw draws a graph of the test results and displays the test statistic and \(p\)-value with the graph. The window variables are adjusted automatically to fit the graph.

To select Calculate or Draw, move the cursor to either Calculate or Draw, and then press ENTER. The instruction is immediately executed.

\section*{Selecting Calculate for a Confidence Interval}

After you have entered all arguments in an inferential stat editor for a confidence interval, select Calculate to display the results. The Draw option is not available.

When you press ENTER, Calculate calculates the confidence interval results and displays the outputs on the home screen.

\section*{Bypassing the Inferential Stat Editors}

To paste a hypothesis test or confidence interval instruction to the home screen without displaying the corresponding inferential stat editor, select the instruction you want from the CATALOG menu. Appendix A describes the input syntax for each hypothesis test and confidence interval instruction.

2-5ampZTest:
Note: You can paste a hypothesis test or confidence interval instruction to a command line in a program. From within the program editor, select the instruction from either the CATALOG (Chapter 15) or the STAT TESTS menu.

\section*{STAT TESTS Menu}

\section*{STAT TESTS Menu}

To display the stat tests menu, press STAT \(\square\). When you select an inferential statistics instruction, the appropriate inferential stat editor is displayed.

Most stat tests instructions store some output variables to memory. For a list of these variables, see the Test and Interval Output Variables table.
\begin{tabular}{|c|c|}
\hline EDIT CALC TESTS & \\
\hline 1: Z-Test. & Test for \(1 \mu\), known \(\sigma\) \\
\hline 2: T-Test. & Test for \(1 \mu\), unknown \(\sigma\) \\
\hline 3: 2-SampZTest.. & Test comparing \(2 \mu\) 's, known \(\sigma\) 's \\
\hline 4: 2-SampTTest... & Test comparing \(2 \mu\) 's, unknown \(\sigma\) 's \\
\hline 5: 1-PropZTest... & Test for 1 proportion \\
\hline 6: 2-PropZTest. & Test comparing 2 proportions \\
\hline 7: ZInterval & Confidence interval for \(1 \mu\), known \(\sigma\) \\
\hline 8: TInterval. & Confidence interval for \(1 \mu\), unknown \(\sigma\) \\
\hline 9: 2-SampZInt. & Confidence interval for difference of \(2 \mu\) 's, known \(\sigma\) 's \\
\hline 0: 2-SampTInt... & Confidence interval for difference of \(2 \mu\) 's, unknown \(\sigma\) 's \\
\hline A: 1-PropZInt... & Confidence interval for 1 proportion \\
\hline B: 2-PropZInt. & Confidence interval for difference of 2 proportions \\
\hline C: \(\chi^{2-T e s t .}\) & Chi-square test for 2-way tables \\
\hline D: 2-SampFTest... & Test comparing 2 ''s \\
\hline
\end{tabular}

E: LinRegTTest... \(t\) test for regression slope and \(\rho\)
F: ANOVAC One-way analysis of variance
Note: When a new test or interval is computed, all previous output variables are invalidated.

\section*{Inferential Stat Editors for the STAT TESTS Instructions}

In this chapter, the description of each stat tests instruction shows the unique inferential stat editor for that instruction with example arguments.
- Descriptions of instructions that offer the Data/Stats input choice show both types of input screens.
- Descriptions of instructions that do not offer the Data/Stats input choice show only one input screen.

The description then shows the unique output screen for that instruction with the example results.
- Descriptions of instructions that offer the Calculate/Draw output choice show both types of screens: calculated and graphic results.
- Descriptions of instructions that offer only the Calculate output choice show the calculated results on the home screen.

\section*{Z-Test}

Z-Test (one-sample \(z\) test; item 1) performs a hypothesis test for a single unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is known. It tests the null hypothesis \(\mathrm{H}_{0}: \mu=\mu_{0}\) against one of the alternatives below.
- \(\mathrm{H}_{\mathrm{a}}: \mu \neq \mu_{0}(\mu: \neq \mu 0)\)
- \(\mathrm{H}_{\mathrm{a}}: \mu<\mu_{0}(\mu:<\mu 0)\)
- \(\mathrm{H}_{\mathrm{a}}: \mu>\mu_{0}(\mu:>\mu \mathbf{0})\)

In the example:

\section*{L1=\{299.4 297.7301298 .9300 .2 297\}}

Stats

Data

Calculated results:

Stats

Note: All STAT TESTS examples assume a fixed-decimal mode setting of 4 (Chapter 1). If you set the decimal mode to Float or a different fixed-decimal setting, your output may differ from the output in the examples.

\section*{T-Test}

T-Test (one-sample \(t\) test; item 2) performs a hypothesis test for a single unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is unknown. It tests the null hypothesis \(\mathrm{H}_{0}: \mu=\mu_{0}\) against one of the alternatives below.
- \(\mathrm{H}_{\mathrm{a}}: \mu \neq \mu_{0}(\mu: \neq \mu 0)\)
- \(\mathrm{H}_{\mathrm{a}}: \mu<\mu_{0}(\mu:<\mu 0)\)
- \(\mathrm{H}_{\mathrm{a}}: \mu>\mu_{0}(\mu:>\mu 0)\)

In the example:
TEST=\{91.9 97.8111 .4122 .3105 .495\(\}\)

Data

Input:

Calculated results:

Drawn results:

Stats

\section*{2-SampZTest}

2-SampZTest (two-sample \(z\) test; item 3) tests the equality of the means of two populations (\(\mu_{1}\) and \(\mu_{2}\)) based on independent samples when both population standard deviations (\(\sigma_{1}\) and \(\sigma_{2}\)) are known. The null hypothesis \(\mathrm{H}_{0}: \mu_{1}=\mu_{2}\) is tested against one of the alternatives below.
- \(\mathrm{H}_{\mathrm{a}}: \mu_{1} \neq \mu_{2}(\mu \mathbf{1}: \neq \mu \mathbf{2})\)
- \(\mathrm{H}_{\mathrm{a}}: \mu_{1}<\mu_{2}(\mu \mathbf{1}:<\mu \mathbf{2})\)
- \(\mathrm{H}_{\mathrm{a}}: \mu_{1}>\mu_{2}(\mu \mathbf{1}:>\mu \mathbf{2})\)

In the example:
```

LISTA={154 109 137 115 140}
LISTB={108 115 126 92 146}

```


Calculated results:

\(5 \times 2=20.1941\)
\(71=5\). 10616

Drawn results:

\section*{2-SampTTest}

2-SampTTest (two-sample \(t\) test; item 4) tests the equality of the means of two populations (\(\mu_{1}\) and \(\mu_{2}\)) based on independent samples when neither population standard deviation (\(\sigma_{1}\) or \(\sigma_{2}\)) is known. The null hypothesis \(\mathrm{H}_{0}: \mu_{1}=\mu_{2}\) is tested against one of the alternatives below.
- \(\mathrm{H}_{\mathrm{a}}: \mu_{1} \neq \mu_{2}(\mu \mathbf{1}: \neq \mu \mathbf{2})\)
- \(\mathrm{H}_{\mathrm{a}}: \mu_{1}<\mu_{2}(\mu \mathbf{1}:<\mu \mathbf{2})\)
- \(\mathrm{H}_{\mathrm{a}}: \mu_{1}>\mu_{2}(\mu \mathbf{1}:>\mu \mathbf{2})\)

In the example:
SAMP1=\{12.207 \(16.86925 .05 \quad 22.4298 .45610 .589\}\)
SAMP2=\{11.074 9.686 12.064 9.351 8.182 6.642\}

Data

Calculate Drow

\[
\begin{aligned}
& \begin{array}{l}
5 \times 1=6-7614 \\
\mathbf{E} \times 1-9501
\end{array} \\
& \mathfrak{n 1}=6 . \operatorname{GEG}
\end{aligned}
\]

Stats
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{} \\
\hline \end{tabular}

\[
\begin{aligned}
& \begin{array}{l}
5 \times 1=6,7 E 14 \\
\times 2=1.951
\end{array} \\
& \mathrm{Fi}_{1}=6, \mathrm{ELEN}
\end{aligned}
\]

Drawn results:

\section*{1-PropZTest}

1-PropZTest (one-proportion \(z\) test; item 5) computes a test for an unknown proportion of successes (prop). It takes as input the count of successes in the sample \(x\) and the count of observations in the sample \(n\). 1-PropZTest tests the null hypothesis \(\mathrm{H}_{0}\) : prop= \(\mathrm{p}_{0}\) against one of the alternatives below.
- \(\mathrm{H}_{\mathrm{a}}:\) prop \(\neq \mathrm{p}_{0}\) (prop: \(\neq \mathbf{p o}\))
- \(\mathrm{H}_{\mathrm{a}}: \operatorname{prop}<\mathrm{p}_{0}\) (prop:<po)
- \(\mathrm{H}_{\mathrm{a}}:\) prop \(>\mathrm{p}_{0}\) (prop:>po)

Calculated results:

Drawn results:

\section*{2-PropZTest}

2-PropZTest (two-proportion \(z\) test; item 6) computes a test to compare the proportion of successes (\(p_{1}\) and \(p_{2}\)) from two populations. It takes as input the count of successes in each sample (\(x_{1}\) and \(x_{2}\)) and the count of observations in each sample (\(n_{1}\) and \(n_{2}\)). 2-PropZTest tests the null hypothesis \(\mathrm{H}_{0}\) : \(\mathrm{p}_{1}=\mathrm{p}_{2}\) (using the pooled sample proportion \(\hat{p}\)) against one of the alternatives below.
- \(\mathrm{H}_{\mathrm{a}}: \mathrm{p}_{1} \neq \mathrm{p}_{2}(\mathbf{p} 1: \neq \mathbf{p} 2)\)
- \(\mathrm{H}_{\mathrm{a}}: \mathrm{p}_{1}<\mathrm{p}_{2}(\mathrm{p} 1:<\mathrm{p} 2)\)
- \(H_{a}: p_{1}>p_{2}(p 1:>p 2)\)
Calculated results:

\[
\begin{aligned}
& n_{1}=61 \cdot 960 \\
& n_{2}=62 \cdot 6010
\end{aligned}
\]
Drawn results:

\section*{ZInterval}

ZInterval (one-sample \(z\) confidence interval; item 7) computes a confidence interval for an unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is known. The computed confidence interval depends on the user-specified confidence level.

In the example:
```

L1={299.4 297.7 301 298.9 300.2 297}

```

Data

Calculated results:

Stats

\section*{TInterval}

TInterval (one-sample \(t\) confidence interval; item 8) computes a confidence interval for an unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is unknown. The computed confidence interval depends on the user-specified confidence level.

In the example:

\section*{L6=\{1.6 \(\left.1.7 \begin{array}{lll}1.8 & 1.9\end{array}\right\}\)}

\section*{2-SampZInt}

2-SampZInt (two-sample \(z\) confidence interval; item 9) computes a confidence interval for the difference between two population means (\(\mu_{1}-\mu_{2}\)) when both population standard deviations (\(\sigma_{1}\) and \(\sigma_{2}\)) are known. The computed confidence interval depends on the user-specified confidence level.

In the example:
LISTC=\{154 109137115 140\}
LISTD=\{108 11512692 146\}

Calculated results:

\(172=5.6060\)

\section*{2-SampTInt}

2-SampTInt (two-sample \(t\) confidence interval; item \(\mathbf{0}\)) computes a confidence interval for the difference between two population means (\(\mu_{1}-\mu_{2}\)) when both population standard deviations (\(\sigma_{1}\) and \(\sigma_{2}\)) are unknown. The computed confidence interval depends on the userspecified confidence level.

In the example:
SAMP1=\{12.207 \(16.869 \quad 25.05 \quad 22.4298 .45610 .589\}\)
SAMP2=\{11.074 9.68612 .064 9.351 8.1826 .642\(\}\)

Data
\begin{tabular}{|c|c|}
\hline \multirow{6}{*}{Input:} & \multirow[t]{2}{*}{2-SampInt} \\
\hline & \\
\hline & istismplo \\
\hline & real \({ }^{\text {a }}\) \\
\hline & reaz: 1 \\
\hline & oovedat 95 \\
\hline
\end{tabular}

Calculate

Stats
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{} \\
\hline \end{tabular}

\section*{1-PropZInt}

1-PropZInt (one-proportion \(z\) confidence interval; item A) computes a confidence interval for an unknown proportion of successes. It takes as input the count of successes in the sample \(x\) and the count of observations in the sample \(n\). The computed confidence interval depends on the user-specified confidence level.

\section*{2-PropZInt}

2-PropZInt (two-proportion \(z\) confidence interval; item B) computes a confidence interval for the difference between the proportion of successes in two populations \(\left(p_{1}-p_{2}\right)\). It takes as input the count of successes in each sample (\(x_{1}\) and \(x_{2}\)) and the count of observations in each sample (\(n_{1}\) and \(n_{2}\)). The computed confidence interval depends on the user-specified confidence level.

\section*{\(\chi^{2-T e s t}\)}
\(\chi^{2}\)-Test (chi-square test; item \(\mathbf{C}\)) computes a chi-square test for association on the two-way table of counts in the specified Observed matrix. The null hypothesis \(\mathrm{H}_{0}\) for a two-way table is: no association exists between row variables and column variables. The alternative hypothesis is: the variables are related.

Before computing a \(\chi^{2-T e s t, ~ e n t e r ~ t h e ~ o b s e r v e d ~ c o u n t s ~ i n ~ a ~ m a t r i x . ~ E n t e r ~}\) that matrix variable name at the Observed: prompt in the \(\chi^{2}\)-Test editor; default=[A]. At the Expected: prompt, enter the matrix variable name to which you want the computed expected counts to be stored; default=[B].

Note: Press [2nd MATRX [B] ENTER to display matrix [B].

\section*{2-SampFTest}

2-SampFTest (two-sample F-test; item D) computes an F-test to compare two normal population standard deviations (\(\sigma_{1}\) and \(\sigma_{2}\)). The population means and standard deviations are all unknown. 2-SampFTest, which uses the ratio of sample variances \(\mathrm{Sx1}^{2 /} / \mathrm{Sx} 2^{2}\), tests the null hypothesis \(H_{0}: \sigma_{1}=\sigma_{2}\) against one of the alternatives below.
- \(H_{a}: \sigma_{1} \neq \sigma_{2}(\sigma 1: \neq \sigma 2)\)
- \(\mathrm{H}_{\mathrm{a}}: \sigma_{1}<\sigma_{2}(\sigma 1:<\sigma 2)\)
- \(\mathrm{H}_{\mathrm{a}}: \sigma_{1}>\sigma_{2}(\sigma 1:>\sigma 2)\)

In the example:
\begin{tabular}{|c|c|c|}
\hline SAMP4=\{ & 7-41817-3-5 & 11011-2\} \\
\hline SAMP5=\{ & -1 12-1-3 \(3-5\) & 5 2-11-1-3\} \\
\hline
\end{tabular}

Calculated results:

Drawn results:

\section*{LinRegTTest}

LinRegTTest (linear regression \(t\) test; item E) computes a linear regression on the given data and a \(t\) test on the value of slope \(\beta\) and the correlation coefficient \(\rho\) for the equation \(y=\alpha+\beta x\). It tests the null hypothesis \(\mathrm{H}_{0}\) : \(\beta=0\) (equivalently, \(\rho=0\)) against one of the alternatives below.
- \(H_{a}: \beta \neq 0\) and \(\rho \neq 0(\beta\) \& \(\rho:=0)\)
- \(H_{a}: \beta<0\) and \(\rho<0(\beta \& \rho:<0)\)
- \(H_{a}: \beta>0\) and \(\rho>0(\beta \& \rho:>0)\)

The regression equation is automatically stored to RegEQ (vars Statistics EQ secondary menu). If you enter a \(\mathbf{Y}=\) variable name at the RegEQ: prompt, the calculated regression equation is automatically stored to the specified \(\mathbf{Y}=\) equation. In the example below, the regression equation is stored to \(\mathbf{Y} 1\), which is then selected (turned on).

In the example:
\(\mathrm{L} 3=\left\{\begin{array}{l}3856596474\} \\ \mathrm{L} 4 \\ =\{ \end{array} \quad 4163707284\right\}\)

Calculated results:

```

$\dagger b=1$ - 1969

```

```

    \(r=.9941\)
    ```

When LinRegTTest is executed, the list of residuals is created and stored to the list name RESID automatically. RESID is placed on the LISt names menu.

Note: For the regression equation, you can use the fix-decimal mode setting to control the number of digits stored after the decimal point (Chapter 1). However, limiting the number of digits to a small number could affect the accuracy of the fit.

\section*{ANOVA(}

ANOVA((one-way analysis of variance; item F) computes a one-way analysis of variance for comparing the means of two to 20 populations. The anova procedure for comparing these means involves analysis of the variation in the sample data. The null hypothesis \(\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{k}}\) is tested against the alternative \(\mathrm{H}_{\mathrm{a}}\) : not all \(\mu_{1} \ldots \mu_{\mathrm{k}}\) are equal.

ANOVA(list1,list2[,..,list20])
In the example:
```

L1={74464 5}
L2={6 5 5 8 7}
L3={4 7 6 7 6}

```


Note: SS is sum of squares and MS is mean square.

\section*{Inferential Statistics Input Descriptions}

The tables in this section describe the inferential statistics inputs discussed in this chapter. You enter values for these inputs in the inferential stat editors. The tables present the inputs in the same order that they appear in this chapter.
\begin{tabular}{ll}
\hline Input & Description \\
\hline\(\mu_{\mathbf{0}}\) & \begin{tabular}{l}
Hypothesized value of the population mean that you are \\
testing.
\end{tabular} \\
\hline\(\sigma\) & \begin{tabular}{l}
The known population standard deviation; must be a real \\
number \(>0\).
\end{tabular} \\
\hline List & \begin{tabular}{l}
The name of the list containing the data you are testing.
\end{tabular} \\
\hline Freq & \begin{tabular}{l}
The name of the list containing the frequency values for \\
the data in List. Default=1. All elements must be integers \\
\(\geq 0\).
\end{tabular} \\
\hline Calculate/Draw & \begin{tabular}{l}
Determines the type of output to generate for tests and \\
intervals. Calculate displays the output on the home \\
screen. In tests, Draw draws a graph of the results.
\end{tabular} \\
\hline\(\overline{\mathbf{x}}, \mathbf{S x}, \mathbf{n}\) & \begin{tabular}{l}
Summary statistics (mean, standard deviation, and \\
sample size) for the one-sample tests and intervals.
\end{tabular} \\
\hline\(\sigma \mathbf{1}\) & \begin{tabular}{l}
The known population standard deviation from the first \\
population for the two-sample tests and intervals. Must \\
be a real number > 0.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Input & Description \\
\hline \(\sigma 2\) & The known population standard deviation from the second population for the two-sample tests and intervals. Must be a real number \(>0\). \\
\hline List1, List2 & The names of the lists containing the data you are testing for the two-sample tests and intervals. Defaults are L1 and L2, respectively. \\
\hline Freq1, Freq2 & The names of the lists containing the frequencies for the data in List1 and List2 for the two-sample tests and intervals. Defaults \(=1\). All elements must be integers \(\geq 0\). \\
\hline \[
\begin{aligned}
& \bar{x} 1, S x 1, n 1, \bar{x} 2, S x 2, \\
& n 2
\end{aligned}
\] & Summary statistics (mean, standard deviation, and sample size) for sample one and sample two in the twosample tests and intervals. \\
\hline Pooled & Specifies whether variances are to be pooled for 2-SampTTest and 2-SampTInt. No instructs the TI-83 not to pool the variances. Yes instructs the \(\mathrm{TI}-83\) to pool the variances. \\
\hline \(\mathbf{p}_{0}\) & The expected sample proportion for 1-PropZTest. Must be a real number, such that \(0<p_{0}<1\). \\
\hline X & The count of successes in the sample for the 1-PropZTest and 1-PropZInt. Must be an integer \(\geq 0\). \\
\hline n & The count of observations in the sample for the 1-PropzTest and 1-PropzInt. Must be an integer > 0 . \\
\hline x 1 & The count of successes from sample one for the 2-PropZTest and 2-PropZInt. Must be an integer \(\geq 0\). \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Input & Description \\
\hline \(\mathbf{x 2}\) & \begin{tabular}{l}
The count of successes from sample two for the \\
2-PropZTest and 2-PropZInt. Must be an integer \(\geq 0\).
\end{tabular} \\
\hline \(\mathbf{n 1}\) & \begin{tabular}{l}
The count of observations in sample one for the \\
2-PropZTest and 2-PropZInt. Must be an integer \(>0\).
\end{tabular} \\
\hline \(\mathbf{n 2}\) & \begin{tabular}{l}
The count of observations in sample two for the \\
2-PropZTest and 2-PropZInt. Must be an integer \(>0\).
\end{tabular} \\
\hline \(\mathbf{C - L e v e l}\) & \begin{tabular}{l}
The confidence level for the interval instructions. Must be \\
\(\geq 0\) and \(<100\). If it is \(\geq 1\), it is assumed to be given as a \\
percent and is divided by 100. Default=0.95.
\end{tabular} \\
\hline Observed (Matrix) & \begin{tabular}{l}
The matrix name that represents the columns and rows \\
for the observed values of a two-way table of counts for \\
the \(\chi^{2}\)-Test. Observed must contain all integers \(\geq 0\). Matrix \\
dimensions must be at least \(2 \times 2\).
\end{tabular} \\
\hline Expected (Matrix) & \begin{tabular}{l}
The matrix name that specifies where the expected \\
values should be stored. Expected is created upon \\
successful completion of the \(\chi^{2}\)-Test.
\end{tabular} \\
\hline \(\mathbf{X l i s t , ~ Y l i s t ~}\) & \begin{tabular}{l}
The names of the lists containing the data for LinRegTTest. \\
Defaults are L1 and L2, respectively. The dimensions of \\
Xlist and Ylist must be the same.
\end{tabular} \\
\hline RegEQ & \begin{tabular}{l}
The prompt for the name of the \(\mathbf{Y}=\) variable where the \\
calculated regression equation is to be stored. If a \\
\(\mathbf{Y}=\) variable is specified, that equation is automatically \\
selected (turned on). The default is to store the \\
regression equation to the RegEQ variable only.
\end{tabular} \\
\hline
\end{tabular}

\section*{Test and Interval Output Variables}

The inferential statistics variables are calculated as indicated below. To access these variables for use in expressions, press VARS, 5 (5:Statistics), and then select the vars menu listed in the last column below.
\begin{tabular}{|c|c|c|c|c|}
\hline Variables & Tests & Intervals & LinRegTTest ANOVA & VARS Menu \\
\hline \(p\)-value & p & & p & TEST \\
\hline test statistics & z, t, \(\chi 2\), F & & t, F & TEST \\
\hline degrees of freedom & df & df & df & TEST \\
\hline sample mean of x values for sample 1 and sample 2 & \(\overline{\mathrm{x}} 1, \overline{\mathrm{x}} 2\) & \(\overline{\mathrm{x}} 1, \overline{\mathrm{x}} 2\) & & TEST \\
\hline sample standard deviation of x for sample 1 and sample 2 & \[
\begin{aligned}
& \mathrm{Sx} 1, \\
& \mathrm{Sx} 2
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Sx1}, \\
& \mathrm{Sx} 2
\end{aligned}
\] & & TEST \\
\hline number of data points for sample 1 and sample 2 & n1, n2 & n1, n2 & & TEST \\
\hline pooled standard deviation & SxP & SxP & SxP & TEST \\
\hline estimated sample proportion & \(\hat{p}\) & \(\hat{p}\) & & TEST \\
\hline estimated sample proportion for population 1 & \(\hat{p} 1\) & \(\hat{p} 1\) & & TEST \\
\hline estimated sample proportion for population 2 & \(\hat{p} 2\) & \(\hat{p} 2\) & & TEST \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\hline Variables & Tests & Intervals & \begin{tabular}{c}
LinRegTTest \\
ANOVA
\end{tabular} & \begin{tabular}{c}
VARS \\
Menu
\end{tabular} \\
\hline confidence interval pair & \begin{tabular}{c}
lower, \\
upper
\end{tabular} & & TEST \\
\hline mean of \(x\) values & \(\bar{x}\) & \(\bar{x}\) & & XY \\
\hline sample standard deviation of \(x\) & \(\mathbf{S x}\) & \(\mathbf{S x}\) & & XY \\
\hline number of data points & \(\mathbf{n}\) & \(\mathbf{n}\) & & XY \\
\hline standard error about the line & & & \(\mathbf{s}\) & TEST \\
\hline regression/fit coefficients & & & \(\mathbf{a , b}\) & EQ \\
\hline correlation coefficient & & & \(\mathbf{r}\) & EQ \\
\hline coefficient of determination & & r2 & EQ \\
\hline regression equation & & & RegEQ & EQ \\
\hline
\end{tabular}

Note: The variables listed above cannot be archived.

\section*{Distribution Functions}

\section*{DISTR menu}

To display the DISTR menu, press 2nd [DISTR].
\begin{tabular}{|c|c|}
\hline \(\overline{\text { DISTR DRAW }}\) & \\
\hline 1:normalpdf(& Normal probability density \\
\hline 2:normalcdf(& Normal distribution probability \\
\hline 3:invNorm(& Inverse cumulative normal distribution \\
\hline 4: tpdf(& Student-t probability density \\
\hline 5: tcdf (& Student-t distribution probability \\
\hline \(6: \chi^{2} \mathrm{pdf}(\) & Chi-square probability density \\
\hline \(7: \chi^{2} \mathrm{cdf}\) & Chi-square distribution probability \\
\hline 8:Fpdf(& \(F\) probability density \\
\hline 9:Fcdf(& \(F\) distribution probability \\
\hline 0:binompdf(& Binomial probability \\
\hline A: binomcdf(& Binomial cumulative density \\
\hline B:poissonpdf(& Poisson probability \\
\hline C: poissoncdf(& Poisson cumulative density \\
\hline D: geometpdf(& Geometric probability \\
\hline E:geometcdf(& Geometric cumulative density \\
\hline
\end{tabular}

Note: -1E99 and 1E99 specify infinity. If you want to view the area left of upperbound, for example, specify lowerbound \(=-1 \mathrm{E} 99\).

\section*{normalpdf(}
normalpdf(computes the probability density function (pdf) for the normal distribution at a specified \(x\) value. The defaults are mean \(\mu=0\) and standard deviation \(\sigma=1\). To plot the normal distribution, paste normalpdf(to the \(\mathbf{Y}=\) editor. The probability density function (pdf) is:
\(f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \sigma>0\)
normalpdf \((x[, \mu, \sigma])\)

Note: For this example,
\(X \min =28\)
\(X \max =42\)
\(Y \min =0\)
\(Y \max =.25\)

Tip: For plotting the normal distribution, you can set window variables Xmin and Xmax so that the mean \(\mu\) falls between them, and then select 0:ZoomFit from the zoom menu.

\section*{normalcdf(}
normalcdf(computes the normal distribution probability between lowerbound and upperbound for the specified mean \(\mu\) and standard deviation \(\sigma\). The defaults are \(\mu=0\) and \(\sigma=1\).
normalcdf(lowerbound,upperbound \([, \mu, \sigma]\))

\(5,3,2\)
.6914624678

\section*{invNorm(}
invNorm(computes the inverse cumulative normal distribution function for a given area under the normal distribution curve specified by mean \(\mu\) and standard deviation \(\sigma\). It calculates the \(x\) value associated with an area to the left of the \(x\) value. \(0 \leq\) area \(\leq 1\) must be true. The defaults are \(\mu=0\) and \(\sigma=1\).
invNorm(area \([, \mu, \sigma]\))
invorome.6914624
\(676,35,25\)
36.061610104

\section*{tpdf(}
tpdf(computes the probability density function (pdf) for the Student- \(t\) distribution at a specified \(x\) value. df (degrees of freedom) must be \(>0\). To plot the Student- \(t\) distribution, paste tpdf(to the \(\mathbf{Y}=\) editor. The probability density function (pdf) is:
\[
f(x)=\frac{\Gamma[(d f+1) / 2]}{\Gamma(d f / 2)} \quad \frac{\left(1+x^{2} / d f\right)-(d f+1) / 2}{\sqrt{\pi d f}}
\]
\(\operatorname{tpdf}(x, d f)\)

Note: For this example, \(X\) min \(=-4.5\)
Xmax \(=4.5\)
\(Y \min =0\)
Ymax \(=.4\)

\section*{tcdf(}
tcdf(computes the Student- \(t\) distribution probability between lowerbound and upperbound for the specified \(d f\) (degrees of freedom), which must be \(>0\).
tcdf(lowerbound,upperbound,df)
tcdf(\(-2,3,18)\)
.965746644

\section*{\(\chi^{2} \mathrm{pdf}(\)}
\(\chi^{2} \mathrm{pdf}\left(\right.\) computes the probability density function (pdf) for the \(\chi^{2}\) (chi-square) distribution at a specified \(x\) value. df (degrees of freedom) must be an integer \(>0\). To plot the \(\chi^{2}\) distribution, paste \(\chi^{2} \mathrm{pdf}(\) to the \(Y=\) editor. The probability density function (pdf) is:
\[
f(x)=\frac{1}{\Gamma(d f / 2)}(1 / 2)^{d f / 2} x^{d f / 2-1} e^{-x / 2}, x \geq 0
\]

\section*{\(\chi^{2} \operatorname{pdf}(x, d f)\)}

Note: For this example, Xmin = 0
\(X \max =30\)
\(Y \min =-.02\)
\(Y \max =.132\)

\section*{\(\chi^{2} \mathrm{cdf}(\)}
\(\chi^{2}\) cdf(computes the \(\chi^{2}\) (chi-square) distribution probability between lowerbound and upperbound for the specified \(d f\) (degrees of freedom), which must be an integer > 0 .
\(\chi^{2} \operatorname{cdf}(\) lowerbound,upperbound, \(d f)\)
```

<20.df(0,19.023,9
)
.975019601

```

\section*{Fpdf(}

Fpdf(computes the probability density function (pdf) for the F distribution at a specified \(x\) value. numerator df (degrees of freedom) and denominator df must be integers \(>0\). To plot the F distribution, paste \(\mathbf{F p d f}\) (to the \(\mathbf{Y}=\) editor. The probability density function (pdf) is:
\(f(x)=\frac{\Gamma[(n+d) / 2]}{\Gamma(n / 2) \Gamma(d / 2)}\left(\frac{n}{d}\right)^{n / 2} x^{n / 2-1}(1+n x / d)^{-(n+d) / 2}, x \geq 0\)
where \(n=\) numerator degrees of freedom
\(d=\) denominator degrees of freedom

Fpdf(\(x\),numerator \(d f\),denominator \(d f\))

Note: For this example,
Xmin = 0
\(X \max =5\)
Ymin \(=0\)
\(Y \max =1\)

\section*{Fcdf(}

Fcdf(computes the F distribution probability between lowerbound and upperbound for the specified numerator of (degrees of freedom) and denominator \(d f\). numerator \(d f\) and denominator df must be integers \(>0\).

Fcdf(lowerbound,upperbound,numerator df,denominator df)
```

Fcof (6, 2. 4523,24
, 19
.9749989576

```

\section*{binompdf}
binompdf(computes a probability at \(x\) for the discrete binomial distribution with the specified numtrials and probability of success \((p)\) on each trial. \(x\) can be an integer or a list of integers. \(0 \leq p \leq 1\) must be true. numtrials must be an integer \(>0\). If you do not specify \(x\), a list of
probabilities from 0 to numtrials is returned. The probability density function (pdf) is:
\(f(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1, \ldots, n\)
where \(n=\) numtrials
binompdf(numtrials, \(p[, x]\))
binomedf \(5,5,6,3\)
\(3.3456 \cdot 2592 \cdot 0 .\).

\section*{binomcdf(}
binomcdf(computes a cumulative probability at \(x\) for the discrete binomial distribution with the specified numtrials and probability of success (\(p\)) on each trial. \(x\) can be a real number or a list of real numbers. \(0 \leq p \leq 1\) must be true. numtrials must be an integer \(>0\). If you do not specify \(x\), a list of cumulative probabilities is returned.
binomcdf(numtrials, \(p[, x]\))

```

,4,5)
4.66.3044 .92224 ...

```

\section*{poissonpdf(}
poissonpdf(computes a probability at \(x\) for the discrete Poisson distribution with the specified mean \(\mu\), which must be a real number \(>0\). \(x\) can be an integer or a list of integers. The probability density function (pdf) is:
\[
f(x)=e^{-\mu} \mu^{x} / x!, x=0,1,2, \ldots
\]
poissonpdf(\(\mu, x\))
Foissorfdf(6,10)

\section*{poissoncdf(}
poissoncdf(computes a cumulative probability at \(x\) for the discrete Poisson distribution with the specified mean \(\mu\), which must be a real number \(>0\). \(x\) can be a real number or a list of real numbers.

\section*{poissoncdf \((\mu, x)\)}
```

FOissongdf(.126,
{1,1,2,3%)
G.8816148468 .9...

```

\section*{geometpdf(}
geometpdf(computes a probability at \(x\), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success \(p .0 \leq p \leq 1\) must be true. \(x\) can be an integer or a list of integers. The probability density function (pdf) is:
\[
f(x)=p(1-p)^{x-1}, x=1,2, \ldots
\]
geometpdf \((p, x)\)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{'9eometrifl} \\
\hline \\
\hline
\end{tabular}

\section*{geometcdf(}
geometcdf(computes a cumulative probability at \(x\), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success \(p .0 \leq p \leq 1\) must be true. \(x\) can be a real number or a list of real numbers.
geometcdf \((p, x)\)
```

gegmet.rdf(5,C1,
2,3)

```

\section*{Distribution Shading}

\section*{DISTR DRAW Menu}

To display the distr draw menu, press [2nd [DISTR] \(\square\). DIStr draw instructions draw various types of density functions, shade the area specified by lowerbound and upperbound, and display the computed area value.

To clear the drawings, select 1:CIrDraw from the draw menu (Chapter 8).
Note: Before you execute a DISTR DRAW instruction, you must set the window variables so that the desired distribution fits the screen.
DISTR DRAW

1: ShadeNorm(Shades normal distribution.
2: Shade_t (Shades Student- \(t\) distribution.
3: Shade \(\chi^{2}\) (Shades \(\chi^{2}\) distribution.
4: ShadeF(Shades F distribution.

Note: -1E99 and 1E99 specify infinity. If you want to view the area left of upperbound, for example, specify lowerbound=-1E99.

\section*{ShadeNorm(}

ShadeNorm(draws the normal density function specified by mean \(\mu\) and standard deviation \(\sigma\) and shades the area between lowerbound and upperbound. The defaults are \(\mu=0\) and \(\sigma=1\).

ShadeNorm(lowerbound,upperbound \([, \mu, \sigma]\))

Note: For this example, Xmin = 55
Xmax \(=72\)
\(Y \min =-.05\)
Ymax = 2

\section*{Shade_t(}

Shade_t(draws the density function for the Student- \(t\) distribution specified by \(d f\) (degrees of freedom) and shades the area between lowerbound and upperbound.

Shade_t(lowerbound,upperbound,df)

Note: For this example, Xmin =-3
\(X \max =3\)
\(Y \min =-.15\)
Ymax \(=.5\)

\section*{Shade \(\chi^{2}(\)}

Shade \(\chi^{2}\) (draws the density function for the \(\chi^{2}\) (chi-square) distribution specified by \(d f\) (degrees of freedom) and shades the area between lowerbound and upperbound.

Shade \(\chi^{2}\) (lowerbound,upperbound, \(d f\))

Fhadekz (0,4,16)

Note: For this example,
Xmin = 0
Xmax \(=35\)
\(Y\) min \(=-.025\)
Ymax =. 1

\section*{ShadeF(}

ShadeF(draws the density function for the F distribution specified by numerator of (degrees of freedom) and denominator df and shades the area between lowerbound and upperbound.

ShadeF(lowerbound,upperbound,numerator df,denominator df)

Note: For this example, Xmin \(=0\)
Xmax \(=5\)
\(Y_{\text {min }}=-.25\)
Ymax = 9

\section*{Chapter 14: Applications}

\section*{The Applications Menu}

The Tl-83 Plus comes with Finance and Cbl/Cbr applications already listed on the applications menu. Except for the Finance application, you can add and remove applications as space permits. The Finance application is built into the TI-83 Plus code and cannot be deleted.

You can buy additional TI-83 Plus software applications that allow you to customize further your calculator's functionality. The calculator reserves 1.54 M of space within ROM memory specifically for applications.

Your TI-83 Plus includes Flash applications in addition to the ones mentioned above. Press APPS to see the complete list of applications that came with your calculator.

Documentation for TI Flash applications is on the TI Resource CD. Visit education.ti.com/guides for additional Flash application guidebooks.

\section*{Steps for Running the Finance Application}

Follow these basic steps when using the Finance application.

\section*{Getting Started: Financing a Car}

Getting Started is a fast-paced introduction. Read the chapter for details.
You have found a car you would like to buy. The car costs 9,000 . You can afford payments of 250 per month for four years. What annual percentage rate (APR) will make it possible for you to afford the car?
1. Press MODE \(\square \square \square\) ENTER to set the fixeddecimal mode setting to 2 . The TI-83 Plus will display all numbers with two decimal places).
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Marmel Sci Eng Flogt 01E3456789 gedier Degree Gric Par Fol Se bonmeteg Dit seryential Simul \\

\end{tabular}} \\
\hline \end{tabular}
2. Press APPS ENTER to select 1:Finance from the APPLICATIONS menu.

3. Press ENTER to select 1:TVM Solver from the CALC VARS menu. The tvm Solver is displayed.

Press 48 [ENTER to store 48 months to N. Press 9000 ENTER to store 9,000 to PV. Press (-1) 250
\begin{tabular}{|c|}
\hline FMT: ERL BEGIN \\
\hline
\end{tabular} ENTER to store -250 to PMT. (Negation indicates cash outflow.) Press 0 ENTER to store 0 to FV.

Press 12 ENTER to store 12 payments per year to \(\mathbf{P} / \mathbf{Y}\) and 12 compounding periods per year to \(\mathbf{C} / \mathbf{Y}\). Setting P/Y to 12 will compute an annual percentage rate (compounded monthly) for I\%. Press \(\square\) ENTER to select PMT:END, which indicates that payments are due at the end of each period.
4. Press \(\triangle \square \triangle \Delta \square\) to move the cursor to the I\% prompt. Press ALPHA [SOLVE] to solve for I\%. What APR should you look for?
\(\mathrm{N}=4 \mathrm{~B}\) - \(\mathrm{El|c|}\)
\(I \%=6,6\)
\(\mathrm{P},=96 \mathrm{G}=\mathrm{G}\)
\(\mathrm{FMT}=-250.610\)
\(F=G\) GIG
\(\mathrm{P}, \mathrm{V}=1 \cdot \mathrm{~F}\)
\(\mathrm{C}, \mathrm{Y}=12\). 06
FWITEG BEGIN
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

\section*{Getting Started: Computing Compound Interest}

At what annual interest rate, compounded monthly, will 1,250 accumulate to 2,000 in 7 years?

Note: Because there are no payments when you solve compound interest problems, PMT must be set to 0 and P/Y must be set to 1 .
1. Press APPS ENTER to select 1:Finance from the APPLICATIONS menu.

2. Press [ENTER to select 1:TVM Solver from the CALC VARS menu. The tVm Solver is displayed. Press 7 to enter the number of periods in years. Press \(\square \mathbb{\square} \mathbf{1 2 5 0}\) to enter the present value as a cash outflow (investment). Press 0 to
\(\mathrm{N}=7\)
\(I \quad 1=5\)
\(\mathrm{PV}=-125 \mathrm{C}\)
\(\mathrm{P} \cdot \mathrm{dT}=\)
\(\mathrm{F}=0\)
\(\mathrm{F} \mathrm{V}=2 \mathrm{G} \mathrm{G} \mathrm{C}\)
\(\mathrm{F} \cdot \mathrm{Y}=1\)
\(\mathrm{C}, \mathrm{Y}=12\)
FMT: ERA BEGIH specify no payments. Press 2000 to enter the future value as a cash inflow (return). Press \(\square\) 1 to enter payment periods per year. Press \(\square\) 12 to set compounding periods per year to 12.
3. Press \(\Delta \Delta \Delta \Delta\) to place the cursor on the I\% prompt.

4. Press ALPHA [SOLVE] to solve for I\%, the annual interest rate.

\section*{Using the TVM Solver}

\section*{Using the TVM Solver}

The тvm Solver displays the time-value-of-money (tvm) variables. Given four variable values, the тvm Solver solves for the fifth variable.

The FINANCE VARS menu section describes the five TVM variables (\(\mathbf{N}, \mathrm{I} \%\), PV, PMT, and FV) and P/Y and C/Y.

PMT: END BEGIN in the TvM Solver corresponds to the finance calc menu items Pmt_End (payment at the end of each period) and Pmt_Bgn (payment at the beginning of each period).

To solve for an unknown тvм variable, follow these steps.
1. Press APPS ENTER ENTER to display the tvm Solver. The screen below shows the default values with the fixed-decimal mode set to two decimal places.
```

N=G1, E|0
I%=0, 500
FW=星, 昭
FHT=0,GL
Fv=G,G|
F
C
FWT:ENE BEGIN

```

2．Enter the known values for four tvm variables．
Note：Enter cash inflows as positive numbers and cash outflows as negative numbers．

3．Enter a value for \(\mathbf{P} / \mathbf{Y}\) ，which automatically enters the same value for \(\mathbf{C} / \mathbf{Y}\) ；if \(\mathbf{P} / \mathbf{Y} \neq \mathbf{C} / \mathbf{Y}\) ，enter a unique value for \(\mathbf{C} / \mathbf{Y}\) ．

4．Select END or BEGIN to specify the payment method．
5．Place the cursor on the tvm variable for which you want to solve．
6．Press ALPHA［SOLVE］．The answer is computed，displayed in the TVM Solver，and stored to the appropriate TVM variable．An indicator square in the left column designates the solution variable．
```

N=S6G, बN
I*=1 学, 矛家

```


```

FIN=G. FIN
FM=1'F.FG
BM=1FEG
FHT:ERI BEGIH

```

\section*{Using the Financial Functions}

\section*{Entering Cash Inflows and Cash Outflows}

When using the TI-83 Plus financial functions, you must enter cash inflows (cash received) as positive numbers and cash outflows (cash paid) as negative numbers. The Tl-83 Plus follows this convention when computing and displaying answers.

\section*{FINANCE CALC Menu}

To display the finance calc menu, press APPS ENTER.
\begin{tabular}{|c|c|}
\hline CALC VARS & \\
\hline 1: TVM Solver... & Displays the TVM Solver. \\
\hline 2: tvm_Pmt & Computes the amount of each payment. \\
\hline 3: tvm_1\% & Computes the interest rate per year. \\
\hline 4: tvm_PV & Computes the present value. \\
\hline 5: tvm_N & Computes the number of payment periods. \\
\hline 6: tvm_FV & Computes the future value. \\
\hline 7:npv(& Computes the net present value. \\
\hline 8: irrs & Computes the internal rate of return. \\
\hline 9: bal (& Computes the amortization sched. balance. \\
\hline 0: EPrn(& Computes the amort. sched. princ. sum. \\
\hline A: EInt(& Computes the amort. sched. interest sum. \\
\hline
\end{tabular}
CALC VARS
\begin{tabular}{ll}
B: \(\operatorname{Nom}(\) & Computes the nominal interest rate. \\
\(C: \operatorname{Eff}(\) & Computes the effective interest rate. \\
D: dbd (& Calculates the days between two dates. \\
E: Pmt_End & Selects ordinary annuity (end of period). \\
F: Pmt_Bgn & Selects annuity due (beginning of period).
\end{tabular}

Use these functions to set up and perform financial calculations on the home screen.

\section*{TVM Solver}

TVM Solver displays the TVM Solver.

\section*{Calculating Time Value of Money (TVM)}

\section*{Calculating Time Value of Money}

Use time-value-of-money (Tvm) functions (menu items 2 through 6) to analyze financial instruments such as annuities, loans, mortgages, leases, and savings.

Each tvm function takes zero to six arguments, which must be real numbers. The values that you specify as arguments for these functions are not stored to the tVm variables.

Note: To store a value to a тVM variable, use the TVm Solver or use STO and any TVM variable on the FINANCE VARS menu.

If you enter less than six arguments, the TI-83 Plus substitutes a previously stored тVM variable value for each unspecified argument.

If you enter any arguments with a тvm function, you must place the argument or arguments in parentheses.

\section*{tvm_Pmt}
tvm_Pmt computes the amount of each payment.
tvm_Pmt[(N,I\%,PV,FV,P/Y,C/Y)]

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{tomiFint. tum_Pmt(360:9.5:} \\
\hline \\
\hline -840.85 \\
\hline
\end{tabular}

Note: In the example above, the values are stored to the TVM variables in the tVm Solver. Then the payment (tvm_Pmt) is computed on the home screen using the values in the TVM Solver. Next, the interest rate is changed to 9.5 to illustrate the effect on the payment amount.
```

tvm_I%

```
tvm_1\% computes the annual interest rate.
tvm_1\%[(N,PV,PMT,FV,P/Y,C/Y)]

\section*{tvm_PV}
tvm_PV computes the present value.
tvm_PV[(N,I\%,PMT,FV,P/Y,C/Y)]

\section*{tvm_N}
tvm_N computes the number of payment periods.
tvm_N[(I\%,PV,PMT,FV,P/Y,C/Y)]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multirow{3}{*}{tum_N} & 3. 0.6 \\
\hline & \\
\hline & 36.47 \\
\hline
\end{tabular}

\section*{tvm_FV}
tvm_FV computes the future value.
tvm_FV[(N,I\%,PV,PMT,P/Y,C/Y)]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline tum FW & \\
\hline & 8727.81 \\
\hline
\end{tabular}

\section*{Calculating Cash Flows}

\section*{Calculating a Cash Flow}

Use the cash flow functions (menu items 7 and 8) to analyze the value of money over equal time periods. You can enter unequal cash flows, which can be cash inflows or outflows. The syntax descriptions for npv(and irr(use these arguments.
- interest rate is the rate by which to discount the cash flows (the cost of money) over one period.
- \(\quad C F 0\) is the initial cash flow at time 0 ; it must be a real number.
- CFList is a list of cash flow amounts after the initial cash flow CFO.
- CFFreq is a list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding element of CFList. The default is 1 ; if you enter values, they must be positive integers < 10,000.

For example, express this uneven cash flow in lists.

\(C F O=\mathbf{2 0 0 0}\)
CFList \(=\{2000,-\mathbf{3 0 0 0}, \mathbf{4 0 0 0}\}\)
CFFreq \(=\{\mathbf{2 , 1 , 2}\}\)

\section*{npv(, irr(}
npv((net present value) is the sum of the present values for the cash inflows and outflows. A positive result for npv indicates a profitable investment.
npv(interest rate,CF0,CFList[,CFFreq])
irr((internal rate of return) is the interest rate at which the net present value of the cash flows is equal to zero.
\(\operatorname{irr}(\) CFO,CFList[,CFFreq] \()\)

\section*{Calculating Amortization}

\section*{Calculating an Amortization Schedule}

Use the amortization functions (menu items \(\mathbf{9}, \mathbf{0}\), and \(\mathbf{A}\)) to calculate balance, sum of principal, and sum of interest for an amortization schedule.
bal(
bal(computes the balance for an amortization schedule using stored values for I\%, PV, and PMT. npmt is the number of the payment at which you want to calculate a balance. It must be a positive integer < 10,000. roundvalue specifies the internal precision the calculator uses to calculate the balance; if you do not specify roundvalue, then the TI-83 Plus uses the current Float/Fix decimal-mode setting.
\begin{tabular}{|c|c|}
\hline bal(npmt[,roundvalue]) & \\
\hline & b.al(12) 99244.07 \\
\hline
\end{tabular}

\section*{EPrn(, \(\operatorname{\Sigma Int(~}\)}
\(\Sigma \operatorname{Prn}(\) computes the sum of the principal during a specified period for an amortization schedule using stored values for I\%, PV, and PMT. pmtl is the starting payment. pmt2 is the ending payment in the range. pmtl and pmt2 must be positive integers < 10,000. roundvalue specifies the internal precision the calculator uses to calculate the principal; if you do not specify roundvalue, the TI-83 Plus uses the current Float/Fix decimal-mode setting.

Note: You must enter values for \(\mathbf{I} \%\), PV, PMT, and before computing the principal.
£Prn(pmt1,pmt2[,roundvalue])
\(\Sigma \operatorname{Int}(\) computes the sum of the interest during a specified period for an amortization schedule using stored values for I\%, PV, and PMT. pmt1 is the starting payment. pmt2 is the ending payment in the range.pmtl and pmt2 must be positive integers < 10,000. roundvalue specifies the internal precision the calculator uses to calculate the interest; if you do not specify roundvalue, the TI-83 Plus uses the current Float/Fix decimal-mode setting.
\(\Sigma \operatorname{lnt}(\) pmt1,pmt2 \([\),roundvalue])
\begin{tabular}{|c|c|}
\hline & \[
\left|\begin{array}{l}
\text { Frn }(1,12) \\
2 \operatorname{Int}(1,12) \\
-855.93 \\
-846.99
\end{array}\right|
\] \\
\hline
\end{tabular}

\section*{Amortization Example: Calculating an Outstanding Loan Balance}

You want to buy a home with a 30 -year mortgage at 8 percent APR. Monthly payments are 800. Calculate the outstanding loan balance after each payment and display the results in a graph and in the table.
1. Press MODE. Press \(\square \square \square\) ENTER to set the fixed-decimal mode setting to 2. Press \(\square \square \square\) ENTER to select Par graphing mode.

2. Press APPS ENTER ENTER to display the TVM Solver.
3. Press ENTER 360 to enter number of payments. Press \(\square 8\) to enter the interest rate. Press \(\square \square\) \(\square-(-) 800\) to enter the payment amount. Press \(\square 0\) to enter the future value of the mortgage. Press 12 to enter the payments per year, which
 also sets the compounding periods per year to 12. Press \(\square\) ENTER to select PMT:END.

4．Press \(\Delta \square \Delta \Delta\) to place the cursor on the PV prompt．Press ALPHA［SOLVE］to solve for the present value．

5．Press \(Y=\) to display the parametric \(Y=\) editor． Turn off all stat plots．Press \(X, T, \Theta, n\) to define \(\mathbf{X I T}_{1 \mathbf{T}}\)

```

Flot1 Flotz Flots
%1т目
G1т自家復(T)

``` as \(\mathbf{T}\) ．Press \(\square\) APPS ENTER \(9 \times, \mathrm{T}, \Theta, n \square\) to define Y1T as bal（T）．

6．Press WINDOW to display the window variables．
Enter the values below．
\begin{tabular}{lll}
Tmin＝0 & Xmin＝0 & Ymin＝0 \\
Tmax＝360 & Xmax＝360 & Ymax＝125000 \\
Tstep＝12 & Xscl＝50 & Yscl＝10000
\end{tabular}

7．Press TRACE to draw the graph and activate the trace cursor．Press \(\square\) and \(\square\) to explore the graph of the outstanding balance over time． Press a number and then press ENTER to view the balance at a specific time \(\mathbf{T}\) ．

8．Press［2nd［TBLSET］and enter the values below． TbIStart＝0
\(\Delta \mathrm{Tbl}=12\)
9. Press 2nd [TABLE] to display the table of outstanding balances (\(\mathrm{Y}_{1} \mathrm{~T}\)).
\begin{tabular}{|c|c|c|}
\hline T & X1t & Y1t \\
\hline mind & 0 & 10907 \\
\hline 12.0 & 1200 & 106il \({ }^{1}\) \\
\hline \(\underline{84.04}\) & E4.00 & 107180 \\
\hline 40.08 & 4 H & 104g \\
\hline 60.6 & 60.6 & 10865 \\
\hline 12.00 & 7.00 & 102895 \\
\hline \multicolumn{3}{|l|}{T=6} \\
\hline
\end{tabular}
 select G-T split-screen mode, in which the graph and table are displayed simultaneously.

Press TRACE to display \(\mathbf{X 1 T}\) (time) and \(\mathbf{Y}_{1 T}\)
 (balance) in the table.

\section*{Calculating Interest Conversion}

\section*{Calculating an Interest Conversion}

Use the interest conversion functions (menu items \(\mathbf{B}\) and \(\mathbf{C}\)) to convert interest rates from an annual effective rate to a nominal rate (N Nom() or from a nominal rate to an annual effective rate (\(\mathrm{PEff}(\)) .

Nom(
-Nom(computes the nominal interest rate. effective rate and compounding periods must be real numbers. compounding periods must be \(>0\).
-Nom(effective rate,compounding periods)
Hom(15.87,4) 15.06

\section*{Dff(}

DEff(computes the effective interest rate. nominal rate and compounding periods must be real numbers. compounding periods must be \(>0\).
-Eff(nominal rate,compounding periods)
PEff(3,12) \(\quad 8.30\)

\section*{Finding Days between Dates/Defining Payment Method}

\section*{dbd(}

Use the date function \(\mathbf{d b d}(\) (menu item \(\mathbf{D}\)) to calculate the number of days between two dates using the actual-day-count method. datel and date 2 can be numbers or lists of numbers within the range of the dates on the standard calendar.

Note: Dates must be between the years 1950 through 2049.
dbd(date1,date2)
You can enter datel and date 2 in either of two formats.
- MM.DDYY (United States)
- DDMM.YY (Europe)

The decimal placement differentiates the date formats.
\(\left|\begin{array}{r}\text { dbog 12.3190.12.3 } \\ 192 \\ 731.060\end{array}\right|\)

\section*{Defining the Payment Method}

Pmt_End and Pmt_Bgn (menu items E and F) specify a transaction as an ordinary annuity or an annuity due. When you execute either command, the тvm Solver is updated.

\section*{Pmt_End}

Pmt_End (payment end) specifies an ordinary annuity, where payments occur at the end of each payment period. Most loans are in this category. Pmt_End is the default.

\author{
Pmt_End
}

On the тvm Solver's PMT:END BEGIN line, select END to set PMT to ordinary annuity.

\section*{Pmt_Bgn}

Pmt_Bgn (payment beginning) specifies an annuity due, where payments occur at the beginning of each payment period. Most leases are in this category.

\section*{Pmt_Bgn}

On the TVM Solver's PMT:END BEGIN line, select BEGIN to set PMT to annuity due.

\section*{Using the TVM Variables}

\section*{FINANCE VARS Menu}

To display the finance vars menu, press APPS ENTER \(\square\). You can use tvm variables in tvm functions and store values to them on the home screen.

CALC VARS
\(1: \mathbf{N} \quad\) Total number of payment periods
2:1\% Annual interest rate
3: PV Present value
4: PMT Payment amount
5: FV Future value
6: P/Y Number of payment periods per year
7:C/Y Number of compounding periods/year

\section*{N, I\%, PV, PMT, FV}
\(\mathbf{N}, \mathbf{I} \%, \mathbf{P V}, \mathbf{P M T}\), and FV are the five tvm variables. They represent the elements of common financial transactions, as described in the table above. I\% is an annual interest rate that is converted to a per-period rate based on the values of P/Y and C/Y.

\section*{P/Y and C/Y}
\(\mathbf{P} / \mathbf{Y}\) is the number of payment periods per year in a financial transaction.
\(\mathbf{C} / \mathbf{Y}\) is the number of compounding periods per year in the same transaction.

When you store a value to \(\mathbf{P} / \mathbf{Y}\), the value for \(\mathbf{C} / \mathbf{Y}\) automatically changes to the same value. To store a unique value to \(\mathbf{C / Y}\), you must store the value to \(\mathbf{C / Y}\) after you have stored a value to \(\mathbf{P / Y}\).

\section*{The CBL/CBR Application}

The Cbl/Cbr application allows you to collect real world data. The TI-83 Plus comes with the CbL/CBR application already listed on the applications menu (बAPPS 2).

\section*{Steps for Running the CBL/CBR Application}

Follow these basic steps when using the cbl/cbr application. You may not have to do all of them each time.

Collect the data
Follow directions, if applicable.

Stop the data collection, if necessary. Repeat these steps or exit the APPLICATIONS menu.

Highlight options
or enter value and press ENTER.

Select Go... or START NOW.

Press 0 N and TRIGGER or ON/HALT.

\section*{Selecting the CBL/CBR Application}

To use a Cbl/CBr application, you need a CBL 2/CBL or CBR (as applicable), a TI-83 Plus, and a unit-to-unit link cable.
1. Press APPS.

2. Select 2:CBL/CBR to set up the Tl-83 Plus to use either of the applications. An informational screen appears first.
3. Press any key to continue to the next menu.

\section*{Data Collection Methods and Options}

\section*{Specifying the Data Collection Method from the CBL/CBR APP Menu}

With a Cbl \(\mathbf{2 / C B L}\) or Cbr, you can collect data in one of three ways: gauge (bar or meter), data logger (a Temp-Time, Light-Time, Volt-Time, or Sonic-Time graph), or RANGER, which runs the ranger program, the built-in CBR data collection program.

The CbL/CBR APP menu contains the following data collection methods:
\begin{tabular}{ll}
\hline CBL/CBR APP: & \\
1: GAUGE & Displays results as either a bar or meter. \\
2: DATA LOGGER & Displays results as a Temp-Time, Light-Time, Volt-Time, or \\
& Sonic-Time graph. \\
3: RANGER & Sets up and runs the RANGER program. \\
4: QUIT & Quits the CBL/CBR application.
\end{tabular}

Note: CBL 2/CBL and CBR differ in that CBL 2/CBL allows you to collect data using one of several different probes including: Temp (Temperature), Light, Volt (Voltage), or Sonic. CBR collects data using only the built-in Sonic probe. You can find more information on CBL 2/CBL and CBR in their user manuals.

\section*{Specifying Options for Each Data Collection Method}

After you select a data collection method from the CBL/CBR APP menu, a screen showing the options for that method is displayed. The method you choose, as well as the data collection options you choose for that method, determine whether you use the CBR or the CBL 2/CBL. Refer to the charts in the following sections to find the options for the application you are using.

\section*{GAUGE}

The gauge data collection method lets you choose one of four different probes: temp, Light, Volt, or Sonic.
1. Press \(A\) APSS 2 ENTER.
2. Select 1:GAUGE.

3. Select options.

When you select a probe option, all other options change accordingly. Use \(\square\) and \(\square\) to move between the probe options. To select a probe, highlight the one you want with the cursor keys, and then press ENTER.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ GAUGE Options (Defaults) } \\
\hline Probe: & Temp & Light & Volt & Sonic \\
\hline Type: & \multicolumn{5}{|c|}{ Bar or Meter } \\
\hline Min: & 0 & 0 & -10 & 0 \\
\hline Max: & 100 & 1 & 10 & 6 \\
\hline Units: & \({ }^{\circ} \mathrm{C}\) or \({ }^{\circ} \mathrm{F}\) & \(\mathrm{mW} / \mathrm{cm}^{2}\) & Volt & m or Ft \\
\hline Directions: & \multicolumn{5}{|c|}{ On or Off } \\
\hline
\end{tabular}

\section*{TYPE}

The gauge data collection results are represented according to TYPE: Bar or Meter. Highlight the one you want with the cursor keys, and then press ENTER.

\section*{MIN and MAX}

MIN and MAX refer to the minimum and maximum UNIT values for the specified probe. Defaults are listed in the Gauge Options table. See the CBL 2/CBL and CBR guidebook for specific min/max ranges. Enter values using the number keys.

\section*{UNITS}

The results are displayed according to the units specified. To specify a unit measurement (Temp or Sonic probes only), highlight the one you want using the cursor keys, enter a value using the number keys, and then press ENTER.

\section*{DIRECTNS (Directions)}

If directns=On, the calculator displays step-by-step directions on the screen, which help you set up and run the data collection. To select On or Off, highlight the one you want with the cursor keys, and then press ENTER.

With the Sonic data collection probe, if directns=On, the calculator displays a menu screen before starting the application asking you to select 1:CBL or 2:CBR. This ensures that you get the appropriate directions. Press 1 to specify CBL 2/CBL or 2 to specify CBR.

\section*{Data Collection Comments and Results}

To label a specific data point, press ENTER to pause the data collection. You will see a Reference\#: prompt. Enter a number using the number keys. The calculator automatically converts the reference numbers and the corresponding results into list elements using the following list names (you cannot rename these lists):
\begin{tabular}{|l|l|l|}
\hline Probe & Comment Labels \((X)\) Stored to: & Data Results \((\boldsymbol{Y})\) Stored to: \\
\hline Temp & LTREF & LTEMP \\
Light & LLREF & LLIGHT \\
Volt & LVREF & LVOLT \\
Sonic & LDREF & LDIST \\
\hline
\end{tabular}

To see all elements in one of these lists, you can insert these lists into the List editor just as you would any other list. Access list names from the 2nd [LIST] Names menu.

Note: These lists are only temporary placeholders for comment labels and data results for any particular probe. Therefore, every time you collect data and enter comments for one of the four probes, the two lists pertaining to that probe are overwritten with comment labels and data results from the most recently collected data..

If you want to save comment labels and data results from more than one data collection, copy all list elements that you want to save to a list with a different name.

Also, the data logger data collection method stores data results to the same list names, overwriting previously-collected data results, even those collected using the gauge data collection method.

\section*{DATA LOGGER}
1. Press APPS 2 ENTER.
2. Select 2:DATA LOGGER.

The data logger data collection method lets you choose one of four different probes: Temp, Light, Volt, or Sonic. You can use the CBL 2/CBL with all probes; you can use the CBR only with the Sonic probe.

When you select a probe option, all other options change accordingly. Use \(\square\) and to move between the probe options. To select a probe, highlight the one you want with the cursor keys, and then press ENTER.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{DATA LOGGER Options (Defaults)} \\
\hline & Temp & Light & Volt & Sonic \\
\hline \#SAMPLES: & 99 & 99 & 99 & 99 \\
\hline INTRVL (SEC): & 1 & 1 & 1 & 1 \\
\hline UNITS: & \({ }^{\circ} \mathrm{Cor}{ }^{\circ} \mathrm{F}\) & \(\mathrm{mW} / \mathrm{cm}^{2}\) & Volt & Cm or Ft \\
\hline PLOT: & \multicolumn{4}{|c|}{RealTme or End} \\
\hline DIRECTNS: & \multicolumn{4}{|c|}{On or Off} \\
\hline \begin{tabular}{l}
Ymin \\
(WINDOW):
\end{tabular} & 0 & 0 & -10 & 0 \\
\hline \begin{tabular}{l}
Ymax \\
(WINDOW):
\end{tabular} & 100 & 1 & 10 & 6 \\
\hline
\end{tabular}

The data logger data collection results are represented as a Temp-Time, Light-Time, Volt-Time, or Distance-Time graph.

A Distance-Time graph in meters (Sonic probe).

\section*{\#SAMPLES}
\#SAMPLES refers to how many data samples are collected and then graphed. For example, if \#SAMPLES=99, data collection stops after the \(99^{\text {th }}\) sample is collected. Enter values using the number keys.

\section*{INTRVL (SEC)}

INTRVL (SEC) specifies the interval in seconds between each data sample that is collected. For example, if you want to collect 99 samples and intrvL=1, it takes 99 seconds to finish data collection. Enter values using the number keys. See the Cbl \(2 /\) CBL or CbR guidebook for more information about interval limits.

\section*{UNITS}

The results are displayed according to the units specified. To specify a unit measurement (Temp or Sonic only), highlight the one you want using the cursor keys, and then press ENTER.

\section*{PLOT}

You can specify whether you want the calculator to collect realtime (RealTme) samples, which means that the calculator graphs data points immediately as they are being collected, or you can wait and show the graph only after all data points have been collected (End). Highlight the option you want with the cursor keys, and then press ENTER.

\section*{Ymin and Ymax}

To specify Ymin and Ymax values for the final graph, press WINDOW to view the plot window screen. Use \(\Delta\) and \(\sigma\) to move between options. Enter Ymin and Ymax using the number keys. Press [2nd [QUIT] to return to the data Logger options screen.

\section*{DIRECTNS (Directions)}

If directns=On, the calculator displays step-by-step directions on the screen, which help you set up and run the data collection. To select On or Off, highlight the one you want with the cursor keys, and then press ENTER.

With the Sonic data collection probe, if directns=On, the calculator displays a menu screen before starting the application asking you to select 1:CBL or 2:CBR. This ensures that you get the appropriate directions. Press 1 to specify CBL 2/CBL or 2 to specify CBr.

\section*{Data Collection Results}

The calculator automatically converts all collected data points into list elements using the following list names (you cannot rename the lists):
\begin{tabular}{|l|l|l|}
\hline Probe & Time Values \((X)\) stored to: & Data Results \((Y)\) Stored to: \\
\hline Temp & LTTEMP & LTEMP \\
Light & LTLGHT & LLIGHT \\
Volt & LTVOLT & LVOLT \\
Sonic & LTDIST & LDIST \\
\hline
\end{tabular}

To see all elements in one of these lists, you can insert these lists into the List editor just as you would any other list. Access list names from the [2nd [LIST] NAMES menu.

Note: These lists are only temporary placeholders for data results for any particular probe. Therefore, every time you collect data for one of the four probes, the list pertaining to that probe is overwritten with data results from the most recently collected data.

If you want to save data results from more than one data collection, copy all list elements that you want to save to a list with a different name.

Also, the gauge data collection method stores data results to the same list names, overwriting previously-collected data results, even those collected using the data logger data collection method.

\section*{RANGER}

Selecting the ranger data collection method runs the CBR ranger program, a customized program especially for the TI-83 Plus that makes it compatible with the CBR. When the collection process is halted, the cbr ranger is deleted from RAM. To run the CBR ranger program again, press APPS and select the CBL/CBR application.

Note: The Ranger data collection method only uses the Sonic probe.
1. Press \(\triangle\) APPS 2 ENTER.
2. Select 3:Ranger.

3. Press ENTER.

TEHAS IISTFUHEITS

Fifligen ful. ity

FFiES[E[ITEFi]
4. Select options.

For detailed information about the ranger program as well as option explanations, see the Getting Started with CBR guidebook.

\section*{Starting Data Collection}

\section*{Collecting the Data}

After you specify all of the options for your data collection method, select the Go option from the gauge or data logger options screen. If you are using the ranger data collection method, select 1:SETUP/SAMPLE from the main menu, and then start now.
- If directns=off, gauge and data logger data collection begin immediately.
- If directns=On, the calculator displays step-by-step directions.

If PROBE=Sonic, the calculator first displays a menu screen asking you to select 1:CBL or 2:CBR. This ensures that you get the appropriate directions. Press 1 to specify CBL 2/CBL or 2 to specify CBR.

If you select START NOW from the MAIN menu of the RANGER data collection method, the calculator displays one directions screen. Press ENTER to begin data collection.

\section*{Stopping Data Collection}

To stop the gauge data collection method, press CLEAR on the TI-83 Plus.

The data logger and ranger data collection methods stop after the specified number of samples have been collected. To stop them before this happens:
1. Press \(0 \mathbb{O N}\) on the TI-83 Plus.
2. Press TRIGGER on the CBR, ©TART/STTOP on the CBL 2, or ON/HALT on the CBL.

To exit from the gauge or data logger option menus without beginning data collection, press 2nd [QUIT].

To exit from the RANGER option menu without beginning data collection, select MAIN menu. Select 6:QUIT to return to the CBL/CBR APP menu.

Press 4:QUIT from the CBL/CBR APP menu to return to the TI-83 Plus Home screen.

\section*{Chapter 15: \\ CATALOG, Strings, Hyperbolic Functions}

\section*{Browsing the TI-83 Plus CATALOG}

\section*{What Is the CATALOG?}

The catalog is an alphabetical list of all functions and instructions on the TI-83 Plus. You also can access each catalog item from a menu or the keyboard, except:
- The six string functions
- The six hyperbolic functions
- The solve(instruction without the equation solver editor (Chapter 2)
- The inferential stat functions without the inferential stat editors (Chapter 13)

Note: The only CATALOG programming commands you can execute from the home screen are GetCalc(, Get, and Send.

\section*{Selecting an Item from the CATALOG}

To select a catalog item, follow these steps.
1. Press 2nd [catalog] to display the catalog.

The in the first column is the selection cursor.
2. Press or to scroll the catalog until the selection cursor points to the item you want.
- To jump to the first item beginning with a particular letter, press that letter; alpha-lock is on.
- Items that begin with a number are in alphabetical order according to the first letter after the number. For example, 2-PropZTest(is among the items that begin with the letter \(\mathbf{P}\).
- Functions that appear as symbols, such as +, \({ }^{\mathbf{1}}\), <, and \(\sqrt{ }\) (, follow the last item that begins with \(\mathbf{Z}\). To jump to the first symbol, !, press [\(\theta\)].
3. Press ENTER to paste the item to the current screen.
\(\overline{b l a c}\)
Tip: From the top of the CATALOG menu, press \(\checkmark\) to move to the bottom. From the bottom, press to move to the top.

\section*{Entering and Using Strings}

\section*{What Is a String?}

A string is a sequence of characters that you enclose within quotation marks. On the TI-83 Plus, a string has two primary applications.
- It defines text to be displayed in a program.
- It accepts input from the keyboard in a program.

Characters are the units that you combine to form a string.
- Count each number, letter, and space as one character.
- Count each instruction or function name, such as \(\boldsymbol{\operatorname { s i n }}\) (or \(\boldsymbol{\operatorname { c o s }}\) (, as one character; the TI-83 Plus interprets each instruction or function name as one character.

\section*{Entering a String}

To enter a string on a blank line on the home screen or in a program, follow these steps.
1. Press ALPHA ["] to indicate the beginning of the string.
2. Enter the characters that comprise the string.
- Use any combination of numbers, letters, function names, or instruction names to create the string.
- To enter a blank space, press ALPHA [-].
- To enter several alpha characters in a row, press 2nd [A-LOCK] to activate alpha-lock.
3. Press ALPHA ["] to indicate the end of the string.
"string"
4. Press ENTER. On the home screen, the string is displayed on the next line without quotations. An ellipsis (...) indicates that the string continues beyond the screen. To scroll the entire string, press \(\square\) and \(\square\).
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

Note: Quotation marks do not count as string characters.

\section*{Storing Strings to String Variables}

\section*{String Variables}

The Tl-83 Plus has 10 variables to which you can store strings. You can use string variables with string functions and instructions.

To display the vars string menu, follow these steps.
1. Press VARS to display the vars menu. Move the cursor to 7 :String.
2. Press ENTER to display the string secondary menu.

\section*{Storing a String to a String Variable}

To store a string to a string variable, follow these steps.
1. Press ALPHA ["], enter the string, and press ALPHA ["].
2. Press STO.
3. Press VARS 7 to display the vars string menu.
4. Select the string variable (from Str1 to Str9, or Str0) to which you want to store the string.

The string variable is pasted to the current cursor location, next to the store symbol \((\rightarrow)\).
5. Press ENTER to store the string to the string variable. On the home screen, the stored string is displayed on the next line without quotation marks.
HELEOTO" \({ }^{\text {Het.r2 }}\)

\section*{Displaying the Contents of a String Variable}

To display the contents of a string variable on the home screen, select the string variable from the vars string menu, and then press ENTER. The string is displayed.
HELCO

\section*{String Functions and Instructions in the CATALOG}

\section*{Displaying String Functions and Instructions in the CATALOG}

String functions and instructions are available only from the catalog. The table below lists the string functions and instructions in the order in which they appear among the other catalog menu items. The ellipses in the table indicate the presence of additional catalog items.

CATALOG
\begin{tabular}{|c|c|}
\hline Equstring(& Converts an equation to a string. \\
\hline expr \((\) & Converts a string to an expression. \\
\hline & \\
\hline inString(& Returns a character's place number. \\
\hline & \\
\hline length(& Returns a string's character length. \\
\hline String)Equ(& Converts a string to an equation. \\
\hline sub (& Returns a string subset as a string. \\
\hline
\end{tabular}
+ (Concatenation)
To concatenate two or more strings, follow these steps.
1. Enter stringl, which can be a string or string name.
2. Press \(\boxplus\).
3. Enter string2, which can be a string or string name. If necessary, press \(\dagger\) and enter string3, and so on. string1+string2 \(\mathbf{+}\) string3. . .
4. Press ENTER to display the strings as a single string.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\(1+\) "Lirider"} \\
\hline \\
\hline
\end{tabular}

\section*{Selecting a String Function from the CATALOG}

To select a string function or instruction and paste it to the current screen, follow the steps for selecting an item from the CATALOG.

\section*{EquiString(}

EqurString(converts to a string an equation that is stored to any vars Y-vars variable. Y \(n\) contains the equation. Strn (from Str1 to Str9, or Str0) is the string variable to which you want the equation to be stored as a string.

\section*{EquiString(Yn,Strn)}
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{expr(}
expr(converts the character string contained in string to an expression and executes it. string can be a string or a string variable.
expr(string)

\section*{inString(}
inString(returns the character position in string of the first character of substring. string can be a string or a string variable. start is an optional character position at which to start the search; the default is 1 .
inString(string,substring[start])
\begin{tabular}{|c|}
\hline instreingenPorstu \\
\hline instringe" ABCABC \\
\hline
\end{tabular}

Note: If string does not contain substring, or start is greater than the length of string, inString(returns \(\mathbf{0}\).

\section*{length(}
length(returns the number of characters in string. string can be a string or string variable.
Note: An instruction or function name, such as \(\boldsymbol{\operatorname { s i n }}\) (or \(\boldsymbol{\operatorname { c o s }}\) (, counts as one character.
length(string)

\section*{String＞Equ（}

StringrEqu（ converts string into an equation and stores the equation to \(\mathrm{Y} n\) ． string can be a string or string variable．String）Equ（ is the inverse of EquiString（．

String）Equ（string， \(\mathrm{Y} n\) ）
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}
```

Flot1 Flotz Flots
N1=
*%日Zタ

```

\section*{sub（}
sub（returns a string that is a subset of an existing string．string can be a string or a string variable．begin is the position number of the first character of the subset．length is the number of characters in the subset．
sub（string，begin，length）
＂AECDEFG＂ \(\mathrm{Ft} . \mathrm{r} 5\) ABCDEFG謂
DE

\section*{Entering a Function to Graph during Program Execution}

In a program, you can enter a function to graph during program execution using these commands.
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
FROGRAM: IAFUT \\
Infut "EHTRY=", \\
5 tr 3 \\
:StringrEatctrs \\
, Y 3 \\
: DierGr: afh
\end{tabular} \\
\hline
\end{tabular}

Note: When you execute this program, enter a function to store to \(\mathbf{Y} 3\) at the ENTRY= prompt.

\section*{Hyperbolic Functions in the CATALOG}

\section*{Hyperbolic Functions}

The hyperbolic functions are available only from the catalog. The table below lists the hyperbolic functions in the order in which they appear among the other catalog menu items. The ellipses in the table indicate the presence of additional catalog items.

\author{
CATALOG \\ cosh(Hyperbolic cosine \\ \(\cosh ^{-1}(\) \\ sinh(Hyperbolic sine \\ \(\sinh ^{-1}(\) \\ \(\tanh (\) \\ \(\tanh ^{-1}(\) \\ Hyperbolic tangent \\ Hyperbolic arctangent
}

\section*{\(\sinh (, \cosh (, \tanh (\)}
\(\boldsymbol{\operatorname { s i n h }}(, \cosh (\), and \(\boldsymbol{\operatorname { t a n h }}(\) are the hyperbolic functions. Each is valid for real numbers, expressions, and lists.
```

sinh(value)
cosh(value)
tanh(value)

$\begin{aligned} & \sinh (5) \\ & \cosh (2595355 \end{aligned}$
61.0314131 1.12

```
\(\sinh ^{-1}\left(, \cosh ^{-1}\left(\right.\right.\), tanh \(\left.^{-1}\right)\)
\(\boldsymbol{\operatorname { s i n h }}^{-1}\) (is the hyperbolic arcsine function. \(\boldsymbol{\operatorname { c o s h }}^{-1}\) (is the hyperbolic arccosine function. \(\boldsymbol{t a n h}^{-1}\) (is the hyperbolic arctangent function. Each is valid for real numbers, expressions, and lists.
```

$\sinh ^{-1}$ (value)
$\cosh ^{-1}$ (value)
$\sinh ^{-1}$ (value)

```


\section*{Chapter 16: Programming}

\section*{Getting Started: Volume of a Cylinder}

Getting Started is a fast-paced introduction. Read the chapter for details.
A program is a set of commands that the TI-83 Plus executes sequentially, as if you had entered them from the keyboard. Create a program that prompts for the radius R and the height H of a cylinder and then computes its volume.
1. Press PRGM \(\square \square\) to display the PRGm new menu.
2. Press ENTER to select 1:Create New. The Name= prompt is displayed, and alpha-lock is on. Press \([\mathrm{C}][\mathrm{Y}][\mathrm{L}][1][\mathrm{N}][\mathrm{D}][\mathrm{E}][\mathrm{R}]\), and then press ENTER to name the program CYLINDER.

You are now in the program editor. The colon (:) in the first column of the second line indicates the beginning of a command line.
3. Press \(\operatorname{PRGM} \square 2\) to select 2:Prompt from the PRGM I/O menu. Prompt is copied to the command line. Press ALPHA [R] ALPHA [H] to enter the variable names for radius and height. Press ENTER.
4. Press [2nd \([\pi]\) ALPHA \([R]\) an ALPHA [H] STO© ALPHA [V] ENTER to enter the expression \(\pi \mathrm{R}^{2} \mathrm{H}\) and store it to the variable \(\mathbf{V}\).
5. Press PRGM \(\square\) to select 3:Disp from the PRGM I/O menu. Disp is pasted to the command line. Press 2nd [A-LOCK] ["] [v] [o] [L] [U] [M] [E][-] [I] [s] [" \(]\) ALPHA ALPHA [v] ENTER to set up the program to display the text VOLUME IS on one line and the calculated value of \(V\) on the next.
6. Press [2nd [QuIT] to display the home screen.
7. Press PRGM to display the Prgm exec menu. The items on this menu are the names of stored programs.

FROGRAM:CYLINDER
: Frompt R, H
- \(\square\)

FROGRHM: EYLIFDER : Proprt R:H
\(: \pi \mathbb{R}^{2} \mathrm{H}+\mathrm{y}\)
:

EXEC EDIT HEW 1:TLIMLER
8. Press ENTER to paste prgmCYLINDER to the current cursor location. (If CYLINDER is not item 1 on your PRGM EXEC menu, move the cursor to CYLINDER before you press ENTER.)
9. Press ENTER to execute the program. Enter 1.5 for the radius, and then press ENTER. Enter 3 for the height, and then press ENTER. The text VOLUME IS, the value of \(\mathbf{V}\), and Done are displayed.

Repeat steps 7 through 9 and enter different values for \(\mathbf{R}\) and \(\mathbf{H}\).

\section*{Creating and Deleting Programs}

\section*{What Is a Program?}

A program is a set of one or more command lines. Each line contains one or more instructions. When you execute a program, the TI-83 Plus performs each instruction on each command line in the same order in which you entered them. The number and size of programs that the TI-83 Plus can store is limited only by available memory.

\section*{Creating a New Program}

To create a new program, follow these steps.
1. Press PRGM to display the PRGM NEW menu.

EXEC EDIT RIEII
ticreate New
2. Press ENTER to select 1:Create New. The Name= prompt is displayed, and alpha-lock is on.
3. Press a letter from \(A\) to \(Z\) or \(\theta\) to enter the first character of the new program name.
Note: A program name can be one to eight characters long. The first character must be a letter from A to Z or \(\theta\). The second through eighth characters can be letters, numbers, or \(\theta\).
4. Enter zero to seven letters, numbers, or \(\theta\) to complete the new program name.
5. Press ENTER. The program editor is displayed.
6. Enter one or more program commands.
7. Press [2nd [QUIT] to leave the program editor and return to the home screen.

\section*{Managing Memory and Deleting a Program}

To check whether adequate memory is available for a program you want to enter:
1. Press [2nd [mem] to display the memory menu.
2. Select 2:Mem Mgmt/Del to display the memory management/Delete menu (Chapter 18).
3. Select 7:Prgm to display the PRGM editor.

The Tl-83 Plus expresses memory quantities in bytes.

You can increase available memory in one of two ways. You can delete one or more programs or you can archive some programs.

To increase available memory by deleting a specific program:
1. Press 2nd [MEM] and then select 2:Mem Mgmt/Del from the memory menu.
\begin{tabular}{|c|}
\hline \multirow[t]{8}{*}{} \\
\hline \end{tabular}
2. Select 7:Prgm to display the PRGM editor (Chapter 18).

3. Press \(\triangle\) and \(\square\) to move the selection cursor (\(\downarrow\)) next to the program you want to delete, and then press DEL. The program is deleted from memory.
Note: You will receive a message asking you to confirm this delete action. Select 2:yes to continue.

To leave the PRGM editor screen without deleting anything, press 2nd [QuIt], which displays the home screen.

To increase available memory by archiving a program:
1. Press 2nd [MEM] and then select 2:Mem Mgmt/Del from the memory menu.
2. Select 2:Mem Mgmt/Del to display the mem mamt/del menu.
3. Select 7:Prgm... to display the PRGM menu.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
4. Press ENTER to archive the program. An asterisk will appear to the left of the program to indicate it is an archived program.

To unarchive a program in this screen, put the cursor next to the archived program and press ENTER. The asterisk will disappear.
Note: Archive programs cannot be edited or executed. In order to edit or execute an archived program, you must first unarchive it.

\section*{Entering Command Lines and Executing Programs}

\section*{Entering a Program Command Line}

You can enter on a command line any instruction or expression that you could execute from the home screen. In the program editor, each new command line begins with a colon. To enter more than one instruction or expression on a single command line, separate each with a colon.
Note: A command line can be longer than the screen is wide; long command lines wrap to the next screen line.

While in the program editor, you can display and select from menus. You can return to the program editor from a menu in either of two ways.
- Select a menu item, which pastes the item to the current command line.
- Press CLEAR.

When you complete a command line, press ENTER. The cursor moves to the next command line.

Programs can access variables, lists, matrices, and strings saved in memory. If a program stores a new value to a variable, list, matrix, or string, the program changes the value in memory during execution.

You can call another program as a subroutine.

\section*{Executing a Program}

To execute a program, begin on a blank line on the home screen and follow these steps.
1. Press PRGM to display the PRGM EXEC menu.
2. Select a program name from the PRGM EXEC menu. prgmname is pasted to the home screen (for example, prgmCYLINDER).
3. Press ENTER to execute the program. While the program is executing, the busy indicator is on.

Last Answer (Ans) is updated during program execution. Last Entry is not updated as each command is executed (Chapter 1).

The TI-83 Plus checks for errors during program execution. It does not check for errors as you enter a program.

\section*{Breaking a Program}

To stop program execution, press 0 N . The err:break menu is displayed.
- To return to the home screen, select 1:Quit.
- To go where the interruption occurred, select 2:Goto.

\section*{Editing Programs}

\section*{Editing a Program}

To edit a stored program, follow these steps.
1. Press PRGM to display the PRGM EDIT menu.
2. Select a program name from the PRGM edit menu. Up to the first seven lines of the program are displayed.
Note: The program editor does not display a \(\downarrow\) to indicate that a program continues beyond the screen.
3. Edit the program command lines.
- Move the cursor to the appropriate location, and then delete, overwrite, or insert.
- Press CLEAR to clear all program commands on the command line (the leading colon remains), and then enter a new program command.

Tip: To move the cursor to the beginning of a command line, press 2nd \(\square\); to move to the end, press 2nd \(\square\). To scroll the cursor down seven command lines, press ALPHA \(\square\). To scroll the cursor up seven command lines, press ALPHA \(\triangle\).

\section*{Inserting and Deleting Command Lines}

To insert a new command line anywhere in the program, place the cursor where you want the new line, press 2nd [INS], and then press ENTER. A colon indicates a new line.

To delete a command line, place the cursor on the line, press CLEAR to clear all instructions and expressions on the line, and then press DEL to delete the command line, including the colon.

\section*{Copying and Renaming Programs}

\section*{Copying and Renaming a Program}

To copy all command lines from one program into a new program, follow steps 1 through 5 for Creating a New Program, and then follow these steps.
1. Press 2nd \(\left.^{[R C L}\right]\). Rcl is displayed on the bottom line of the program editor in the new program (Chapter 1).
2. Press PRGM \(\square\) to display the PRGM EXEC menu.
3. Select a name from the menu. prgm name is pasted to the bottom line of the program editor.
4. Press ENTER. All command lines from the selected program are copied into the new program.

Copying programs has at least two convenient applications.
- You can create a template for groups of instructions that you use frequently.
- You can rename a program by copying its contents into a new program.

Note: You also can copy all the command lines from one existing program to another existing program using RCL.

\section*{Scrolling the PRGM EXEC and PRGM EDIT Menus}

The TI-83 Plus sorts PRGM exec and PRGM edit menu items automatically into alphanumerical order. Each menu only labels the first 10 items using 1 through 9 , then 0.

To jump to the first program name that begins with a particular alpha character or \(\theta\), press ALPHA [letter from \(A\) to \(Z\) or \(\theta\)].
Tip: From the top of either the PRGM EXEC or PRGM EDIT menu, press \(\Delta\) to move to the bottom. From the bottom, press \(\square\) to move to the top. To scroll the cursor down the menu seven items, press ALPHA \(\square\). To scroll the cursor up the menu seven items, press ALPHA \(\triangle\).

\section*{PRGM CTL (Control) Instructions}

\section*{PRGM CTL Menu}

To display the PRGM CTL (program control) menu, press PRGM from the program editor only.
\begin{tabular}{|c|c|}
\hline CTL I/0 EXEC & \\
\hline 1:If & Creates a conditional test. \\
\hline 2:Then & Executes commands when if is true. \\
\hline 3: Else & Executes commands when if is false. \\
\hline 4:For (& Creates an incrementing loop. \\
\hline 5:While & Creates a conditional loop. \\
\hline 6: Repeat & Creates a conditional loop. \\
\hline 7: End & Signifies the end of a block. \\
\hline 8: Pause & Pauses program execution. \\
\hline 9: Lbl & Defines a label. \\
\hline 0:Goto & Goes to a label. \\
\hline A: IS> (& Increments and skips if greater than. \\
\hline B: DS< \({ }^{\text {c }}\) & Decrements and skips if less than. \\
\hline \(C\) C:Menul & Defines menu items and branches. \\
\hline D:prgm & Executes a program as a subroutine. \\
\hline E:Return & Returns from a subroutine. \\
\hline F:Stop & Stops execution. \\
\hline G: DelVar & Deletes a variable from within program. \\
\hline H:GraphStyle(& Designates the graph style to be drawn. \\
\hline
\end{tabular}

These menu items direct the flow of an executing program. They make it easy to repeat or skip a group of commands during program execution. When you select an item from the menu, the name is pasted to the cursor location on a command line in the program.

To return to the program editor without selecting an item, press CLEAR.

\section*{Controlling Program Flow}

Program control instructions tell the Tl-83 Plus which command to execute next in a program. If, While, and Repeat check a defined condition to determine which command to execute next. Conditions frequently use relational or Boolean tests (Chapter 2), as in:

If \(A<7: A+1 \rightarrow A\)
or
If \(\mathrm{N}=\mathbf{1}\) and \(\mathrm{M}=\mathbf{1}\) :Goto \(\mathbf{Z}\)

If
Use If for testing and branching. If condition is false (zero), then the command immediately following If is skipped. If condition is true (nonzero), then the next command is executed. If instructions can be nested.
:If condition
:command (if true)
:command

\section*{Program}

Output

\section*{If-Then}

Then following an If executes a group of commands if condition is true (nonzero). End identifies the end of the group of commands.

\author{
:If condition
}
:Then
:command (if true)
:command (if true)
:End
:command

\section*{Program}

Output
\begin{tabular}{|c|c|}
\hline FrgmTEST & \\
\hline & \[
\begin{aligned}
17 \\
\text { Done }
\end{aligned}
\] \\
\hline & \\
\hline
\end{tabular}

\section*{If-Then-Else}

Else following If-Then executes a group of commands if condition is false (zero). End identifies the end of the group of commands.
:If condition
:Then
:command (if true)
:command (if true)
:Else
:command (if false)
:command (if false)
:End
:command

\section*{Program}

\section*{Output}

:Disf © \(\mathrm{X}, \mathrm{Y}\)

\section*{For(}

For(loops and increments. It increments variable from begin to end by increment. increment is optional (default is 1) and can be negative (end<begin). end is a maximum or minimum value not to be exceeded. End identifies the end of the loop. For(loops can be nested.
:For(variable,begin,end[,increment])
:command (while end not exceeded)
:command (while end not exceeded)
:End
:command

\section*{Program}

\section*{Output}
\begin{tabular}{|rr|}
\hline FrgmEDUARE & 6 \\
& \(\frac{1}{4}\) \\
& \(\frac{1}{3}\) \\
& Done \\
&
\end{tabular}

\section*{While}

While performs a group of commands while condition is true. condition is frequently a relational test (Chapter 2). condition is tested when While is encountered. If condition is true (nonzero), the program executes a group of commands. End signifies the end of the group. When condition is false (zero), the program executes each command following End. While instructions can be nested.
:While condition
:command (while condition is true)
:command (while condition is true)
:End
:command

\section*{Program}

Output
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

\section*{Repeat}

Repeat repeats a group of commands until condition is true (nonzero). It is similar to While, but condition is tested when End is encountered; therefore, the group of commands is always executed at least once. Repeat instructions can be nested.
:Repeat condition
:command (until condition is true)
:command (until condition is true)
:End
:Command

\section*{Program}

Output

\section*{End}

End identifies the end of a group of commands. You must include an End instruction at the end of each For(, While, or Repeat loop. Also, you must paste an End instruction at the end of each If-Then group and each If-Then-Else group.

\section*{Pause}

Pause suspends execution of the program so that you can see answers or graphs. During the pause, the pause indicator is on in the top-right corner. Press ENTER to resume execution.
- Pause without a value temporarily pauses the program. If the DispGraph or Disp instruction has been executed, the appropriate screen is displayed.
- Pause with value displays value on the current home screen. value can be scrolled.

Pause [value]

\section*{Program}

Output

\section*{LbI, Goto}

LbI (label) and Goto (go to) are used together for branching.
Lbl specifies the label for a command. label can be one or two characters (A through Z, 0 through 99, or \(\theta\)).

Lbl label
Goto causes the program to branch to label when Goto is encountered.
Goto label

\section*{Program}

\section*{Output}
\begin{tabular}{|lr|}
\hline 8 PMCDEE & 8 \\
73 & 27 \\
7105 & Done \\
\hline
\end{tabular}

IS>(
IS>((increment and skip) adds 1 to variable. If the answer is \(>\) value (which can be an expression), the next command is skipped; if the answer is \(\leq\) value, the next command is executed. variable cannot be a system variable.

\section*{:IS>(variable,value)}
:command (if answer \(\leq\) value)
:command (if answer > value)

\section*{Program}

Output
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\[
\text { Pr } 9 \text { mISKIF }
\]} & \\
\hline & Cone \\
\hline
\end{tabular}

Note: IS>(is not a looping instruction.

\section*{DS<(}

DS<((decrement and skip) subtracts 1 from variable. If the answer is < value (which can be an expression), the next command is skipped; if the answer is \(\geq\) value, the next command is executed. variable cannot be a system variable.
:DS<(variable,value)
:command (if answer \(\geq\) value)
:command (if answer < value)

\section*{Program}

Output

Note: DS<(is not a looping instruction.

\section*{Menu(}

Menu(sets up branching within a program. If Menu(is encountered during program execution, the menu screen is displayed with the specified menu items, the pause indicator is on, and execution pauses until you select a menu item.

The menu title is enclosed in quotation marks ("). Up to seven pairs of menu items follow. Each pair comprises a text item (also enclosed in quotation marks) to be displayed as a menu selection, and a label item to which to branch if you select the corresponding menu selection.

Menu("title","text1",label1,"text2",label2, . . .)

\section*{Program}

\section*{Output}

The program above pauses until you select \(\mathbf{1}\) or \(\mathbf{2}\). If you select \(\mathbf{2}\), for example, the menu disappears and the program continues execution at Lbl B.

\section*{prgm}

Use prgm to execute other programs as subroutines. When you select prgm, it is pasted to the cursor location. Enter characters to spell a program name. Using prgm is equivalent to selecting existing programs from the PRGm EXEC menu; however, it allows you to enter the name of a program that you have not yet created.
prgmname

Note: You cannot directly enter the subroutine name when using RCL. You must paste the name from the PRGM EXEC menu.

\section*{Return}

Return quits the subroutine and returns execution to the calling program, even if encountered within nested loops. Any loops are ended. An implied Return exists at the end of any program that is called as a subroutine. Within the main program, Return stops execution and returns to the home screen.

\section*{Stop}

Stop stops execution of a program and returns to the home screen. Stop is optional at the end of a program.

\section*{DeIVar}

DelVar deletes from memory the contents of variable.
DeIVar variable
FEOGRAM: DELMATR : Delvar [A]

\section*{GraphStyle(}

GraphStyle(designates the style of the graph to be drawn. function\# is the number of the \(\mathbf{Y}=\) function name in the current graphing mode. graphstyle is a number from 1 to 7 that corresponds to the graph style, as shown below.
\(1=\) (line) \(\quad 5=4\) (path)
\(2={ }^{7}\) ithick) \(\quad 6=0\) (animate)
\(3=7\) (shade above) \(7=\therefore\) (dot)
\(4=\) 色. (shade below)
GraphStyle(function\#,graphstyle)
For example, GraphStyle(1,5) in Func mode sets the graph style for \(\mathbf{Y} 1\) to 4 (path; 5).

Not all graph styles are available in all graphing modes. For a detailed description of each graph style, see the Graph Styles table in Chapter 3.

\section*{PRGM I/O (Input/Output) Instructions}

\section*{PRGM I/O Menu}

To display the PRGM I/O (program input/output) menu, press PRGM from within the program editor only.
\begin{tabular}{|c|c|}
\hline CTL I/O EXEC & \\
\hline 1:Input & Enters a value or uses the cursor. \\
\hline 2:Prompt & Prompts for entry of variable values. \\
\hline 3:Disp & Displays text, value, or the home screen. \\
\hline 4:DispGraph & Displays the current graph. \\
\hline 5:DispTable & Displays the current table. \\
\hline 6:0utput (& Displays text at a specified position. \\
\hline 7:getKey & Checks the keyboard for a keystroke. \\
\hline 8:C1rHome & Clears the display. \\
\hline 9:C1rTable & Clears the current table. \\
\hline 0 GetCalc & Gets a variable from another TI-83 Plus. \\
\hline A:Get (& Gets a variable from CBL \(2^{\text {TM }} / \mathrm{CBL}^{\text {TM }}\) or \(\mathrm{CBR}^{\text {TM }}\). \\
\hline B:Send (& Sends a variable to CBL 2/CBL or CBR. \\
\hline
\end{tabular}

These instructions control input to and output from a program during execution. They allow you to enter values and display answers during program execution.

To return to the program editor without selecting an item, press CLEAR.

\section*{Displaying a Graph with Input}

Input without a variable displays the current graph. You can move the free-moving cursor, which updates \(\mathbf{X}\) and \(\mathbf{Y}\) (and \(\mathbf{R}\) and \(\theta\) for PolarGC format). The pause indicator is on. Press ENTER to resume program execution.

\section*{Input}

\section*{Program}

\section*{Output}

Frgmigivilil

\section*{Storing a Variable Value with Input}

Input with variable displays a ? (question mark) prompt during execution. variable may be a real number, complex number, list, matrix, string, or \(\mathbf{Y}=\) function. During program execution, enter a value, which can be an expression, and then press ENTER. The value is evaluated and stored to variable, and the program resumes execution.

Input [variable]
You can display text or the contents of Strn (a string variable) of up to 16 characters as a prompt. During program execution, enter a value after the prompt and then press ENTER. The value is stored to variable, and the program resumes execution.
```

Input ["text",variable]
Input [Strn,variable]

```

\section*{Program}

\section*{Output}

Note: When a program prompts for input of lists and Ynfunctions during execution, you must include the braces (\(\}\)) around the list elements and quotation marks (") around the expressions.

\section*{Prompt}

During program execution, Prompt displays each variable, one at a time, followed by =?. At each prompt, enter a value or expression for each variable, and then press ENTER. The values are stored, and the program resumes execution.

Prompt variableA[,variableB,...,variable n]
\begin{tabular}{|c|c|}
\hline Program & Output \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Note: \(\mathrm{Y}=\) functions are not valid with Prompt.

\section*{Displaying the Home Screen}

Disp (display) without a value displays the home screen. To view the home screen during program execution, follow the Disp instruction with a Pause instruction.

\section*{Disp}

\section*{Displaying Values and Messages}

Disp with one or more values displays the value of each.
Disp [valueA,valueB,valueC,...,value n]
- If value is a variable, the current value is displayed.
- If value is an expression, it is evaluated and the result is displayed on the right side of the next line.
- If value is text within quotation marks, it is displayed on the left side of the current display line. \(\rightarrow\) is not valid as text.

\section*{Program}

PROGR:M:

\section*{Output}

If Pause is encountered after Disp, the program halts temporarily so you can examine the screen. To resume execution, press ENTER.
Note: If a matrix or list is too large to display in its entirety, ellipses (...) are displayed in the last column, but the matrix or list cannot be scrolled. To scroll, use Pause value.

\section*{DispGraph}

DispGraph (display graph) displays the current graph. If Pause is encountered after DispGraph, the program halts temporarily so you can examine the screen. Press ENTER to resume execution.

\section*{DispTable}

DispTable (display table) displays the current table. The program halts temporarily so you can examine the screen. Press ENTER to resume execution.

\section*{Output(}

Output(displays text or value on the current home screen beginning at row (1 through 8) and column (1 through 16), overwriting any existing characters.

Tip: You may want to precede Output(with ClrHome.
Expressions are evaluated and values are displayed according to the current mode settings. Matrices are displayed in entry format and wrap to the next line. \(\rightarrow\) is not valid as text.

Output(row,column,"text")
Output(row,column,value)

\section*{Program}

\section*{Output}

For Output(on a Horiz split screen, the maximum value for row is 4 .

\section*{getKey}
getKey returns a number corresponding to the last key pressed, according to the key code diagram below. If no key has been pressed, getKey returns 0 . Use getKey inside loops to transfer control, for example, when creating video games.

\section*{Program}

\section*{Output}
\begin{tabular}{|c|c|}
\hline Fravigetkey & \\
\hline & (er \(\begin{array}{r}41 \\ 43 \\ \text { 165 } \\ \text { aone }\end{array}\) \\
\hline
\end{tabular}

Note: MATH, APPS, PRGM, and
EENTER were pressed during program execution.

Note: You can press 0 N at any time during execution to break the program.

\section*{TI-83 Plus Key Code Diagram}

\section*{CIrHome, ClrTable}

ClrHome (clear home screen) clears the home screen during program execution.

CIrTable (clear table) clears the values in the table during program execution.

\section*{GetCalc(}

GetCalc(gets the contents of variable on another TI-83 Plus and stores it to variable on the receiving TI-83 Plus. variable can be a real or complex number, list element, list name, matrix element, matrix name, string, \(\mathbf{Y}=\) variable, graph database, or picture.

GetCalc(variable)
Note: GetCalc(does not work between TI-82 and TI-83 Plus calculators.

\section*{Get(, Send(}

Get(gets data from the CBL 2/CBL or CBR and stores it to variable on the receiving Tl-83 Plus. variable can be a real number, list element, list name, matrix element, matrix name, string, \(\mathrm{Y}=\) variable, graph database, or picture.

\section*{Get(variable)}

Note: If you transfer a program that references the Get(command to the TI-83 Plus from a TI-82, the TI-83 Plus will interpret it as the Get(described above. Use GetCalc(to get data from another TI-83 Plus.

Send(sends the contents of variable to the CBL 2/CBL or CBR. You cannot use it to send to another TI-83 Plus. variable can be a real number, list element, list name, matrix element, matrix name, string, \(\mathbf{Y}=\) variable, graph database, or picture. variable can be a list of elements.

\section*{Send(variable)}

Note: This program gets sound data and time in seconds from CBL 2/CBL.

Note: You can access Get(, Send(, and GetCalc(from the CATALOG to execute them from the home screen (Chapter 15).

\section*{Calling Other Programs as Subroutines}

\section*{Calling a Program from Another Program}

On the TI-83 Plus, any stored program can be called from another program as a subroutine. Enter the name of the program to use as a subroutine on a line by itself.

You can enter a program name on a command line in either of two ways.
- Press PRGM to display the PRGm ExEc menu and select the name of the program prgmname is pasted to the current cursor location on a command line.
- Select prgm from the prgm cti menu, and then enter the program name.

\section*{prgmname}

When prgmname is encountered during execution, the next command that the program executes is the first command in the second program. It returns to the subsequent command in the first program when it encounters either Return or the implied Return at the end of the second program.

\section*{Program}

Output

Subroutine \(\downarrow \uparrow\)

\section*{Notes about Calling Programs}

Variables are global.
label used with Goto and LbI is local to the program where it is located. label in one program is not recognized by another program. You cannot use Goto to branch to a label in another program.

Return exits a subroutine and returns to the calling program, even if it is encountered within nested loops.

\section*{Running an Assembly Language Program}

You can run programs written for the Tl-83 Plus in assembly language. Typically, assembly language programs run much faster and provide greater control than than the keystroke programs that you write with the built-in program editor.
Note: Because an assembly langauge program has greater control over the calculator, if your assembly language program has error(s), it may cause your calculator to reset and lose all data, programs, and applications stored in memory.

When you download an assembly language program, it is stored among the other programs as a PRGM menu item. You can:
- Transmit it using the TI-83 Plus communication link (Chapter 19).
- Delete it using the mem mgmt del screen (Chapter 18).

To run an assembly Program, the syntax is: Asm(assemblyprgmname)
If you write an assembly language program, use the two instructions below from the catalog to identify and compile the program.
\begin{tabular}{ll}
\hline Instructions & Comments \\
\hline AsmComp(prgmASM1, & \begin{tabular}{l}
Compiles an assembly language program written in \\
prgmASM2)
\end{tabular} \\
\hline ASCII and stores the hex version
\end{tabular}

To compile an assembly program that you have written:
1. Follow the steps for writing a program (16-4) but be sure to include AsmPrgm as the first line of your program.
2. From the home screen, press [2nd [CATALOG] and then select AsmComp(to paste it to the screen
3. Press PRGM to display the Prgm exec menu.
4. Select the program you want to compile. It will be pasted to the home screen.
5. Press \(\square\) and then select prgm from the catalog
6. Key in the name you have chosen for the output program.

Note: This name must be unique - not a copy of an existing program name.
7. Press \(\square\) to complete the sequence.

The sequence of the arguments should be as follows:
AsmComp(prgmASM1, prgmASM2)
8. Press ENTER to compile your program and generate the output program.

\section*{Chapter 17: Activities}

\section*{The Quadratic Formula}

\section*{Entering a Calculation}

Use the quadratic formula to solve the quadratic equations \(3 X^{2}+5 X+2=0\) and \(2 X^{2}-X+3=0\). Begin with the equation \(3 X^{2}+5 X+2=0\).
1. Press 3 STO ALPHA [A] (above MATH) to store the coefficient of the \(\mathrm{X}^{2}\) term.
2. Press ALPHA [:] (above \(\square\)). The colon allows you to enter more than one instruction on a line.

3. Press 5 STO ALPHA [B] (above APPS) to store the coefficient of the X term. Press ALPHA [:] to enter a new instruction on the same line. Press 2 STOD ALPHA [c] (above PRGM) to store the constant.
4. Press ENTER to store the values to the variables \(A, B\), and \(C\).

The last value you stored is shown on the right side of the display. The cursor moves to the
 next line, ready for your next entry.

\(\square 4\) ALPHA [A] ALPHA [C] \(\square \square \square \square\) ALPHA [A]
\(\square\) to enter the expression for one of the solutions for the quadratic formula,
\(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)
6. Press ENTER to find one solution for the equation \(3 X^{2}+5 X+2=0\).

The answer is shown on the right side of the display. The cursor moves to the next line, ready for you to enter the next expression.

\section*{The Quadratic Formula}

\section*{Converting to a Fraction}

You can show the solution as a fraction.
1. Press MATH to display the mATH menu.
2. Press \(\mathbf{1}\) to select \(\mathbf{1}:\) :Frac from the math menu.

When you press 1, AnstFrac is displayed on the home screen. Ans is a variable that contains the last calculated answer.

3. Press ENTER to convert the result to a fraction.

To save keystrokes, you can recall the last expression you entered, and then edit it for a new calculation.
4. Press 2nd [ENTRY] (above ENTER) to recall the fraction conversion entry, and then press 2nd [ENTRY] again to recall the quadratic-formula expression,
\[
\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
\]
5. Press \(\Delta\) to move the cursor onto the + sign in the formula. Press \(\square\) to edit the quadraticformula expression to become:
\(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\)

6. Press ENTER to find the other solution for the quadratic equation \(3 X^{2}+5 X+2=0\).

\section*{The Quadratic Formula}

\section*{Displaying Complex Results}

Now solve the equation \(2 \mathrm{X}^{2}-\mathrm{X}+3=0\). When you set \(\mathbf{a}+\mathbf{b} \boldsymbol{i}\) complex number mode, the Tl-83 Plus displays complex results.
1. Press MODE \(\square \square \square \square\) (6 times), and then press \(\square\) to position the cursor over \(\mathbf{a}+\mathbf{b} i\). Press ENTER to select \(\mathbf{a}+\mathbf{b} \boldsymbol{i}\) complex-number mode.

2. Press [2nd [QuIT] (above MODE) to return to the home screen, and then press CLEAR to clear it.
3. Press 2 STO* ALPHA [A] ALPHA [:] 1 STO* ALPHA [B] ALPHA [:] 3 STO ALPHA [C] ENTER.

The coefficient of the \(\mathrm{X}^{2}\) term, the coefficient of the X term, and the constant for the new equation are stored to A, B, and C, respectively.
4. Press 2nd [ENTRY] to recall the store instruction, and then press 2nd [ENTRY] again to recall the quadratic-formula expression,
\(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\)
5. Press ENTER to find one solution for the equation \(2 \mathrm{X}^{2}-\mathrm{X}+3=0\).

6. Press [2nd [ENTRY] repeatedly until this quadraticformula expression is displayed:
\[
\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
\]

7. Press ENTER to find the other solution for the quadratic equation: \(2 X^{2}-X+3=0\).

Note: An alternative for solving equations for real numbers is to use the built-in Equation Solver (Chapter 2).

\section*{Box with Lid}

\section*{Defining a Function}

Take a \(20 \mathrm{~cm} \times 25 \mathrm{~cm}\). sheet of paper and cut \(X \times X\) squares from two corners. Cut \(X \times 12.5 \mathrm{~cm}\) rectangles from the other two corners as shown in the diagram below. Fold the paper into a box with a lid. What value of \(X\) would give your box the maximum volume \(V\) ? Use the table and graphs to determine the solution.

Begin by defining a function that describes the volume of the box.

From the diagram:
\[
\begin{aligned}
& 2 X+A=20 \\
& 2 X+2 B=25 \\
& V=A^{*} B^{*} X
\end{aligned}
\]

Substituting: \(V=(20-2 X)(25 / 2-X) X\)
1. Press \(Y=\) to display the \(Y=\) editor, which is where you define functions for tables and graphing.
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
2. Press \(\square 20 \square 2 X X, T, \Theta, n \square \square 25 \div 2 \square X, T, \Theta, n\) \(\square X, T, \Theta, n\) ENTER to define the volume function as \(\mathbf{Y}_{1}\) in terms of \(\mathbf{X}\).
\(X, T, \Theta, \eta\) lets you enter \(\mathbf{X}\) quickly, without having
 to press ALPHA. The highlighted = sign indicates that \(\mathbf{Y}_{1}\) is selected.

\section*{Box with Lid}

\section*{Defining a Table of Values}

The table feature of the TI-83 Plus displays numeric information about a function. You can use a table of values from the function you just defined to estimate an answer to the problem.
1. Press 2nd [TBLSET] (above WINDOW) to display the table setup menu.
2. Press ENTER to accept TbIStart=0.
3. Press 1 ENTER to define the table increment \(\Delta T b l=1\). Leave Indpnt: Auto and Depend: Auto so that the table will be generated automatically.

4. Press 2nd [TABLE] (above GRAPH) to display the table.

Notice that the maximum value for \(\mathrm{Y}_{1}\) (box's volume) occurs when \(\mathbf{X}\) is about \(\mathbf{4}\), between \(\mathbf{3}\)
 and 5.
5. Press and hold \(\square\) to scroll the table until a negative result for \(\mathbf{Y}_{1}\) is displayed.

Notice that the maximum length of \(\mathbf{X}\) for this problem occurs where the sign of \(\mathrm{Y}_{1}\) (box's
 volume) changes from positive to negative, between 10 and 11.
6. Press 2nd [TBLSET].

Notice that TbIStart has changed to 6 to reflect the first line of the table as it was last displayed. (In step 5, the first value of \(\mathbf{X}\) displayed in the

TAELE SETDF
 - Tbl=1

IndFint:
REtra
\(\mathrm{H}=\mathrm{F}\) table is 6 .)

\section*{Box with Lid}

\section*{Zooming In on the Table}

You can adjust the way a table is displayed to get more information about a defined function. With smaller values for \(\Delta \mathbf{T} \mathbf{I}\), you can zoom in on the table.
1. Press \(\mathbf{3}\) ENTER to set TbIStart. Press \(\square \mathbf{1}\) ENTER to set \(\Delta\) Tbl.

This adjusts the table setup to get a more accurate estimate of \(\mathbf{X}\) for maximum volume \(\mathbf{Y}_{1}\).
2. Press 2nd [TABLE].
3. Press \(\square\) and to scroll the table.

Notice that the maximum value for \(\mathrm{Y}_{1}\) is 410.26,

\begin{tabular}{|c|c|c|}
\hline X & Y1 & \\
\hline 3.6 & 410.11 & \\
\hline 8 & 410.94 & \\
\hline 3.9 & 409.19 & \\
\hline 4.1 & 406.39 & \\
\hline 4-1/20 & 404.36 & \\
\hline \% \(=4\). & & \\
\hline
\end{tabular} which occurs at \(\mathbf{X}=\mathbf{3 . 7}\). Therefore, the maximum occurs where \(3.6<X<3.8\).
4. Press 2nd [TBLSET]. Press \(3 \square 6\) ENTER to set TbIStart. Press 01 ENTER to set \(\Delta\) Tbl.

5. Press [2nd [TABLE], and then press \(\square\) and \(\Delta\) to scroll the table.

Four equivalent maximum values are shown, 410.26 at \(X=3.67,3.68,3.69\), and 3.70.
\begin{tabular}{|c|c|c|}
\hline X & \(Y_{1}\) & \\
\hline \% \({ }^{6}\) & \({ }^{411} 4.85\) & \\
\hline \% \({ }^{\text {¢ }}\) & \({ }^{410.2 .85}\) & \\
\hline 27 & \({ }^{41168}\) & \\
\hline 8=3. & & \\
\hline
\end{tabular}
6. Press \(\square\) or \(\triangle\) to move the cursor to 3.67 . Press \(\square\) to move the cursor into the \(\mathbf{Y}_{1}\) column.

The value of \(Y_{1}\) at \(X=3.67\) is displayed on the bottom line in full precision as \(\mathbf{4 1 0 . 2 6 1 2 2 6}\).
\begin{tabular}{|c|c|c|}
\hline X & V 1 & \\
\hline 3.6 & 41025 & \\
\hline \%里 & 410.26 & \\
\hline 3 & 410.26 & \\
\hline 3.71 & 410.25 & \\
\hline \multicolumn{3}{|l|}{\(\mathrm{Y}_{1}=416.261226\)} \\
\hline
\end{tabular}
7. Press to display the other maximum.

The value of \(\mathrm{Y}_{1}\) at \(\mathrm{X}=3.68\) in full precision is 410.264064, at \(X=3.69\) is 410.262318 and at \(X=3.7\) is 410.256 .
\begin{tabular}{|c|c|c|}
\hline X & \(Y 1\) & \\
\hline 3.6 & 410.25 & \\
\hline 3 & 41025 & \\
\hline \(\underline{3}\) & 410.26 & \\
\hline 3.71 & 410.26 & \\
\hline 3.72 & 410.2 & \\
\hline
\end{tabular}

The maximum volume of the box would occur at 3.68 if you could measure and cut the paper at .01-centimeter increments.

\section*{Box with Lid}

\section*{Setting the Viewing Window}

You also can use the graphing features of the TI-83 Plus to find the maximum value of a previously defined function. When the graph is activated, the viewing window defines the displayed portion of the coordinate plane. The values of the window variables determine the size of the viewing window.
1. Press WINDOW to display the window editor, where you can view and edit the values of the window variables.

The standard window variables define the viewing window as shown. Xmin, Xmax, Ymin, and Ymax define the boundaries of the display. Xscl and Yscl define the distance between tick marks on the \(\mathbf{X}\) and \(\mathbf{Y}\) axes. Xres controls
 resolution.
2. Press 0 ENTER to define Xmin.
3. Press \(\mathbf{2 0} \mathbf{2}\) to define Xmax using an expression.
4. Press ENTER. The expression is evaluated, and 10 is stored in Xmax. Press ENTER to accept Xscl as 1 .
5. Press 0 ENTER 500 ENTER 100 ENTER 1 ENTER to
 define the remaining window variables.

\section*{Box with Lid}

\section*{Displaying and Tracing the Graph}

Now that you have defined the function to be graphed and the window in which to graph it, you can display and explore the graph. You can trace along a function using the trace feature.
1. Press GRAPH to graph the selected function in the viewing window.

The graph of \(\mathrm{Y}_{1}=(\mathbf{2 0 - 2 X})(\mathbf{2 5} / \mathbf{2 - X}) \mathrm{X}\) is displayed.

2. Press to activate the free-moving graph cursor.

The \(\mathbf{X}\) and \(\mathbf{Y}\) coordinate values for the position of the graph cursor are displayed on the bottom
 line.
3. Press \(\square, \square, \square\), and \(\square\) to move the freemoving cursor to the apparent maximum of the function.

As you move the cursor, the \(\mathbf{X}\) and \(\mathbf{Y}\) coordinate
 values are updated continually.
4. Press TRACE. The trace cursor is displayed on the \(\mathrm{Y}_{1}\) function.

The function that you are tracing is displayed in the top-left corner.

5. Press \(\square\) and \(\square\) to trace along \(\mathbf{Y}_{1}\), one \(\mathbf{X}\) dot at a time, evaluating \(\mathbf{Y}_{1}\) at each \(\mathbf{X}\).

You also can enter your estimate for the maximum value of \(\mathbf{X}\).
6. Press \(3 \square 8\). When you press a number key while in trace, the \(\mathbf{X}=\) prompt is displayed in the
 bottom-left corner.

\section*{7. Press ENTER.}

The trace cursor jumps to the point on the \(\mathbf{Y}_{1}\) function evaluated at \(\mathrm{X}=3.8\).
8. Press \(\square\) and \(\square\) until you are on the maximum \(Y\) value.

This is the maximum of \(\mathbf{Y}_{1}(\mathbf{X})\) for the \(\mathbf{X}\) pixel values. The actual, precise maximum may lie
 between pixel values.

\section*{Box with Lid}

\section*{Zooming In on the Graph}

To help identify maximums, minimums, roots, and intersections of functions, you can magnify the viewing window at a specific location using the zoom instructions.
1. Press \(Z 00 \mathrm{M}\) to display the zoom menu.

This menu is a typical Tl-83 Plus menu. To select an item, you can either press the number or letter next to the item, or you can press \(\square\) until the item number or letter is highlighted, and then press ENTER.
2. Press \(\mathbf{2}\) to select 2:Zoom In.

The graph is displayed again. The cursor has changed to indicate that you are using a zoom instruction.
3. With the cursor near the maximum value of the function, press ENTER.

The new viewing window is displayed. Both Xmax-Xmin and Ymax-Ymin have been
 adjusted by factors of 4, the default values for the zoom factors.
4. Press WINDOW to display the new window settings.

\section*{Box with Lid}

\section*{Finding the Calculated Maximum}

You can use a calculate menu operation to calculate a local maximum of a function.
1. Press [2nd [CALC] (above TRACE) to display the calculate menu. Press 4 to select 4:maximum.

The graph is displayed again with a Left Bound? prompt.

2. Press to trace along the curve to a point to the left of the maximum, and then press ENTER.

A at the top of the screen indicates the selected bound.

A Right Bound? prompt is displayed.
3. Press to trace along the curve to a point to the right of the maximum, and then press ENTER.

A \(\leqslant\) at the top of the screen indicates the selected bound.

A Guess? prompt is displayed.
4. Press to trace to a point near the maximum, and then press ENTER.

Or, press \(3 \square\) 8, and then press ENTER to enter a guess for the maximum.

When you press a number key in trace, the \(\mathbf{X}=\) prompt is displayed in the bottom-left corner.

Notice how the values for the calculated maximum compare with the maximums found with the free-moving cursor, the trace cursor, and the table.

Note: In steps 2 and 3 above, you can enter values directly for Left Bound and Right Bound, in the same way as described in step 4.

\section*{Comparing Test Results Using Box Plots}

\section*{Problem}

An experiment found a significant difference between boys and girls pertaining to their ability to identify objects held in their left hands, which are controlled by the right side of their brains, versus their right hands, which are controlled by the left side of their brains. The TI Graphics team conducted a similar test for adult men and women.

The test involved 30 small objects, which participants were not allowed to see. First, they held 15 of the objects one by one in their left hands and guessed what they were. Then they held the other 15 objects one by one in their right hands and guessed what they were. Use box plots to compare visually the correct-guess data from this table.

Correct Guesses
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c}
Women \\
Left
\end{tabular} & \begin{tabular}{c}
Women \\
Right
\end{tabular} & \begin{tabular}{c}
Men \\
Left
\end{tabular} & \begin{tabular}{c}
Men \\
Right
\end{tabular} \\
\hline 8 & 4 & 7 & 12 \\
9 & 1 & 8 & 6 \\
12 & 8 & 7 & 12 \\
11 & 12 & 5 & 12 \\
10 & 11 & 7 & 7 \\
8 & 11 & 8 & 11
\end{tabular}
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c}
Women \\
Left
\end{tabular} & \begin{tabular}{c}
Women \\
Right
\end{tabular} & \begin{tabular}{c}
Men \\
Left
\end{tabular} & \begin{tabular}{c}
Men \\
Right
\end{tabular} \\
\hline 12 & 13 & 11 & 12 \\
7 & 12 & 4 & 8 \\
9 & 11 & 10 & 12 \\
11 & 12 & 14 & 11 \\
& & 13 & 9 \\
& & 5 & 9 \\
\hline
\end{tabular}

\section*{Procedure}
1. Press STAT 5 to select \(\mathbf{5}\) :SetUpEditor. Enter list names WLEFT, WRGHT, MLEFT, and MRGHT, separated by commas. Press ENTER. The stat list editor now contains only these four lists.
2. Press STAT 1 to select 1:Edit.
3. Enter into WLEFT the number of correct guesses each woman made using her left hand (Women Left). Press \(\square\) to move to WRGHT and enter the number of correct guesses each woman made using her right hand (Women Right).
4. Likewise, enter each man's correct guesses in MLEFT (Men Left) and MRGHT (Men Right).
5. Press 2nd [sTAT PLOT]. Select 1:Plot1. Turn on plot 1; define it as a modified box plot \(r\)... that uses WLEFT. Move the cursor to the top line and select Plot2. Turn on plot 2; define it as a modified box plot that uses WRGHT.
6. Press \(Y\). Turn off all functions.
7. Press WINDOW. Set Xscl=1 and Yscl=0. Press ZOOM \(\mathbf{9}\) to select 9:ZoomStat. This adjusts the viewing window and displays the box plots for the women's results.
8. Press TRACE.

\(\leftarrow\) Women's left-hand data
\(\leftarrow\) Women's right-hand data

Use \(\square\) and \(\square\) to examine \(\min X\), Q1, Med, Q3, and \(\max X\) for each plot. Notice the outlier to the women's right-hand data. What is the median for the left hand? For the right hand? With which hand were the women more accurate guessers, according to the box plots?
9. Examine the men's results. Redefine plot 1 to use MLEFT, redefine plot 2 to use MRGHT. Press TRACE.

 plot. What difference do you see between the plots?
10. Compare the left-hand results. Redefine plot 1 to use WLEFT, redefine plot 2 to use MLEFT, and then press TRACE to examine minX, Q1, Med, Q3, and maxX for each plot. Who were the better left-hand guessers, men or women?
11. Compare the right-hand results. Define plot 1 to use WRGHT, define plot 2 to use MRGHT, and then press TRACE to examine minX, Q1, Med, Q3, and maxX for each plot. Who were the better right-hand guessers?

In the original experiment boys did not guess as well with right hands, while girls guessed equally well with either hand. This is not what our box plots show for adults. Do you think that this is because adults have learned to adapt or because our sample was not large enough?

\section*{Graphing Piecewise Functions}

\section*{Problem}

The fine for speeding on a road with a speed limit of 45 kilometers per hour (kph) is 50 ; plus 5 for each kph from 46 to 55 kph ; plus 10 for each kph from 56 to 65 kph ; plus 20 for each kph from 66 kph and above. Graph the piecewise function that describes the cost of the ticket.

The fine \((Y)\) as a function of kilometers per hour \((X)\) is:
\(Y=0\)
\[
Y=50+5(X-45)
\]
\[
\begin{aligned}
& 0<X \leq 45 \\
& 45<X \leq 55 \\
& 55<X \leq 65 \\
& 65<X
\end{aligned}
\]

\section*{Procedure}
1. Press MODE. Select Func and the default settings.
2. Press \(Y=\). Turn off all functions and stat plots. Enter the \(Y=\) function to describe the fine. Use the test menu operations to define the piecewise function. Set the graph style for Y 1 to \({ }^{\circ}\). (dot).

3. Press WINDOW and set Xmin=-2, \(\mathbf{X s c l}=10, \mathrm{Ymin}=-5\), and \(\mathbf{Y s c l = 1 0}\). Ignore \(\mathbf{X m a x}\) and \(\mathbf{Y m a x}^{\text {; they are set by } \Delta \mathbf{X} \text { and } \Delta \mathbf{Y} \text { in step } 4 .}\)
4. Press [2nd [QUIT] to return to the home screen. Store \(\mathbf{1}\) to \(\Delta \mathbf{X}\), and then store 5 to \(\Delta \mathbf{Y}\). \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) are on the vars Window \(\mathbf{X} / \mathbf{Y}\) secondary menu. \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) specify the horizontal and vertical distance between the centers of adjacent pixels. Integer values for \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) produce nice values for tracing.
5. Press TRACE to plot the function. At what speed does the ticket exceed 250 ?

\section*{Graphing Inequalities}

\section*{Problem}

Graph the inequality \(0.4 \mathrm{X}^{3}-3 \mathrm{X}+5<0.2 \mathrm{X}+4\) ．Use the test menu operations to explore the values of \(X\) where the inequality is true and where it is false．

\section*{Procedure}

1．Press \(\operatorname{MODE}\) ．Select Dot，Simul，and the default settings．Setting Dot mode changes all graph style icons to \({ }^{\circ}\) ．（dot）in the \(\mathbf{Y}=\) editor．

2．Press \(Y=\) ．Turn off all functions and stat plots．Enter the left side of the inequality as \(\mathrm{Y}_{4}\) and the right side as \(\mathrm{Y}_{5}\) ．
```

Y4日-4,
Y5日. 2人+4■
Y6=
\becauseY=

```

3．Enter the statement of the inequality as Y6．This function evaluates to 1 if true or \(\mathbf{0}\) if false．
```

Y4日-4<3-3人+5
Y5日. 2र+4

```

```

Y7=

```
4. Press ZOOM 6 to graph the inequality in the standard window.
5. Press TRACE \(\square\) to move to \(\mathbf{Y} 6\). Then press \(\square\) and \(\square\) to trace the inequality, observing the value of \(\mathbf{Y}\).

6. Press \(Y=\). Turn off \(\mathbf{Y}_{4}, \mathbf{Y}_{5}\), and \(\mathbf{Y}\). Enter equations to graph only the inequality.

7. Press TRACE. Notice that the values of \(\mathrm{Y}_{7}\) and Y 8 are zero where the inequality is false.

\section*{Solving a System of Nonlinear Equations}

\section*{Problem}

Using a graph, solve the equation \(X^{3}-2 X=2 \cos (X)\). Stated another way, solve the system of two equations and two unknowns: \(Y=X^{3}-2 X\) and \(\mathrm{Y}=2 \cos (\mathrm{X})\). Use zoom factors to control the decimal places displayed on the graph.

\section*{Procedure}
1. Press MODE. Select the default mode settings. Press Y=. Turn off all functions and stat plots. Enter the functions.

2. Press ZOOM 4 to select 4:ZDecimal. The display shows that two solutions may exist (points where the two functions appear to intersect).

3. Press ZOOM 4 to select 4:SetFactors from the zOOM MEMORY menu. Set XFact=10 and YFact=10.
4. Press ZOOM 2 to select \(\mathbf{2 : Z o o m}\) In. Use \(\square, \square, \square\), and \(\square\) to move the free-moving cursor onto the apparent intersection of the functions on the right side of the display. As you move the cursor, notice that the \(\mathbf{X}\) and \(\mathbf{Y}\) values have one decimal place.
5. Press ENTER to zoom in. Move the cursor over the intersection. As you move the cursor, notice that now the \(\mathbf{X}\) and \(\mathbf{Y}\) values have two decimal places.
6. Press ENTER to zoom in again. Move the free-moving cursor onto a point exactly on the intersection. Notice the number of decimal places.
7. Press 2nd [CALC] 5 to select 5 :intersect. Press ENTER to select the first curve and ENTER to select the second curve. To guess, move the trace cursor near the intersection. Press ENTER. What are the coordinates of the intersection point?
8. Press ZOOM 4 to select 4:ZDecimal to redisplay the original graph.
9. Press ZOOM. Select 2:Zoom In and repeat steps 4 through 8 to explore the apparent function intersection on the left side of the display.

\section*{Using a Program to Create the Sierpinski Triangle}

\section*{Setting up the Program}

This program creates a drawing of a famous fractal, the Sierpinski Triangle, and stores the drawing to a picture. To begin, press PRGM \(\square \square\) 1. Name the program SIERPINS, and then press ENTER. The program editor is displayed.

\section*{Program}

PROGRAM:SIERPINS
:FnOff :ClrDraw
:PlotsOff
: Axes0ff
\(: 0 \rightarrow\) Xmin: \(1 \rightarrow\) Xmax
\(: 0 \rightarrow\) Ymin: \(1 \rightarrow\) Ymax
〕- Set viewing window.
\(: r\) and \(\rightarrow X: r a n d \rightarrow Y\)
: For (K,1,3000)
: rand \(\rightarrow\) N
: If \(\mathrm{N} \leq 1 / 3\)
:Then
\(: .5 X \rightarrow X\)
\(: .5 Y \rightarrow Y\)
J- Beginning of For group.
- If/Then group
: End
:If \(1 / 3<N\) and \(N \leq 2 / 3\)
:Then
\(: .5(.5+X) \rightarrow X\)
: . \(5(1+Y) \rightarrow Y\)
: End
: If \(2 / 3<N\)
:Then
\(: .5(1+X) \rightarrow X\)
: . \(5 \mathrm{Y} \rightarrow \mathrm{Y}\)
: End
: Pt-On (X,Y)
: End
:StorePic 6

If/Then group.

If/Then group.

Draw point. End of For group. Store picture.

After you execute the program above, you can recall and display the picture with the instruction RecallPic 6.

\section*{Graphing Cobweb Attractors}

\section*{Problem}

Using Web format, you can identify points with attracting and repelling behavior in sequence graphing.

\section*{Procedure}
1. Press MODED. Select Seq and the default mode settings. Press \(2 n d\) [FORMAT]. Select Web format and the default format settings.
2. Press \(Y=\). Clear all functions and turn off all stat plots. Enter the sequence that corresponds to the expression \(Y=K X(1-X)\).
\(\mathrm{u}(\mathrm{n})=\mathrm{Ku}(\boldsymbol{n}-1)(1-\mathrm{u}(\boldsymbol{n}-1))\)
\(\mathrm{u}(n \mathrm{Min})=.01\)
3. Press [2nd [QuIT] to return to the home screen, and then store 2.9 to \(\mathbf{K}\).
4. Press WINDOW. Set the window variables.
\begin{tabular}{lll}
\(n\) Min=0 & Xmin=0 & Ymin=-.26 \\
\(n M a x=10\) & Xmax=1 & Ymax \(=1.1\) \\
PlotStart=1 & Xscl=1 & Yscl=1
\end{tabular}

PlotStep=1
5. Press TRACE to display the graph, and then press to trace the cobweb. This is a cobweb with one attractor.

6. Change \(K\) to 3.44 and trace the graph to show a cobweb with two attractors.
7. Change \(\mathbf{K}\) to 3.54 and trace the graph to show a cobweb with four attractors.

\section*{Using a Program to Guess the Coefficients}

\section*{Setting Up the Program}

This program graphs the function \(A \sin (B X)\) with random integer coefficients between 1 and 10. Try to guess the coefficients and graph your guess as \(C \sin (D X)\). The program continues until your guess is correct.

\section*{Program}

PROGRAM:GUESS
:PlotsOff :Func
:FnOff :Radian
:ClrHome
: "Asin(BX)" \(\rightarrow\) Y1
:"Csin(DX)" \(\rightarrow\) Y2
:GraphStyle(1,1)
: GraphStyle(2,5)
:FnOff 2
\(:\) randInt \((1,10) \rightarrow A\)
\(:\) randInt(1,10) \(\rightarrow\) B
\(: 0 \rightarrow C: 0 \rightarrow D\)
\(:-2 \pi \rightarrow\) Xmin
\(: 2 \pi \rightarrow \mathrm{Xmax}\)
\(: \pi / 2 \rightarrow\) Xscl
\(:-10 \rightarrow\) Ymin
\(: 10 \rightarrow\) Ymax
]- Define equations.
J- Set line and path graph styles.

J Initialize coefficients.
- Set viewing window.
: Pause
:FnOn 2
:Lbl Z
:Prompt C,D
:DispGraph
: Pause
: If C=A
:Text(1,1,"C IS OK")
: If \(\mathrm{C} \neq \mathrm{A}\)
:Text(1,1,"C IS WRONG")
: If D=B
:Text(1,50,"D IS OK")
: If \(\mathrm{D} \neq \mathrm{B}\)
:Text(1,50,"D IS WRONG")
: DispGraph
: Pause
: If \(C=A\) and \(D=B\)
:Stop
: Goto Z

J Display graph.

Prompt for guess.
- Display graph.
- Display results.
] Display graph.
] Quit if guesses are correct.

\section*{Graphing the Unit Circle and Trigonometric Curves}

\section*{Problem}

Using parametric graphing mode, graph the unit circle and the sine curve to show the relationship between them.

Any function that can be plotted in Func mode can be plotted in Par mode by defining the \(\mathbf{X}\) component as \(\mathbf{T}\) and the \(\mathbf{Y}\) component as \(\mathbf{F}(\mathbf{T})\).

\section*{Procedure}
1. Press MODE. Select Par, Simul, and the default settings.
2. Press WINDOW. Set the viewing window.
\begin{tabular}{lll}
Tmin \(=0\) & Xmin \(=-2\) & Ymin \(=-3\) \\
Tmax \(=2 \pi\) & Xmax \(=7.4\) & Ymax \(=3\) \\
Tstep \(=.1\) & Xscl= \(=\pi / 2\) & Yscl=1
\end{tabular}
3. Press Y=. Turn off all functions and stat plots. Enter the expressions to define the unit circle centered on \((0,0)\).
```

F10t1 F10tz F10tz

```


```

\&zт日T
\#zr白唯(T)

```

4．Enter the expressions to define the sine curve．
```

F10t1 F1ote F10ts
*1т日00SCT
Y14自吵化与
*Eт日T
Yzt日三in(T)

```

5．Press TRACE．As the graph is plotting，you may press ENTER to pause and ENTER again to resume graphing as you watch the sine function ＂unwrap＂from the unit circle．

Note：You can generalize the unwrapping．Replace \(\boldsymbol{\operatorname { s i n } (\mathbf { T }) \text { in Y2T with any other }}\) trig function to unwrap that function．

\section*{Finding the Area between Curves}

\section*{Problem}

Find the area of the region bounded by
\[
\begin{aligned}
& f(x)=300 x /\left(x^{2}+625\right) \\
& g(x)=3 \cos (.1 x) \\
& x=75
\end{aligned}
\]

\section*{Procedure}
1. Press MODE. Select the default mode settings.
2. Press WINDOW. Set the viewing window.
\begin{tabular}{ll}
\(X \min =0\) & \(Y \min =-5\) \\
\(X \max =100\) & \(Y \max =10\) \\
Xscl=10 & Yscl=1 \\
& Xres=1
\end{tabular}
3. Press \(Y=\). Turn off all functions and stat plots. Enter the upper and lower functions.
\(\mathrm{Y}_{1}=300 \mathrm{X} /\left(\mathrm{X}^{2}+625\right)\)
\(\mathrm{Y} 2=3 \cos (.1 \mathrm{X})\)
4. Press [2nd [CALC] 5 to select 5 :Intersect. The graph is displayed. Select a first curve, second curve, and guess for the intersection toward the left side of the display. The solution is displayed, and the value of \(\mathbf{X}\) at the intersection, which is the lower limit of the integral, is stored in Ans and \(\mathbf{X}\).
5. Press 2nd [QUIT] to go to the home screen. Press 2nd [DRAW] 7 and use Shade(to see the area graphically.

Shade(Y2,Y1,Ans,75)

6. Press 2nd [QuIT] to return to the home screen. Enter the expression to evaluate the integral for the shaded region.
fnlnt(Y1-Y2,X,Ans,75)
The area is \(\mathbf{3 2 5 . 8 3 9 9 6 2}\).

\section*{Using Parametric Equations: Ferris Wheel Problem}

\section*{Problem}

Using two pairs of parametric equations, determine when two objects in motion are closest to each other in the same plane.

A ferris wheel has a diameter (d) of 20 meters and is rotating counterclockwise at a rate (s) of one revolution every 12 seconds. The parametric equations below describe the location of a ferris wheel passenger at time T , where \(\alpha\) is the angle of rotation, \((0,0)\) is the bottom center of the ferris wheel, and \((10,10)\) is the passenger's location at the rightmost point, when \(\mathrm{T}=0\).
\(X(T)=r \cos \alpha\)
\(Y(T)=r+r \sin \alpha\)
A person standing on the ground throws a ball to the ferris wheel passenger. The thrower's arm is at the same height as the bottom of the ferris wheel, but 25 meters (b) to the right of the ferris wheel's lowest point \((25,0)\). The person throws the ball with velocity (\(\mathrm{v}_{0}\)) of 22 meters per second at an angle \((\theta)\) of \(66^{\circ}\) from the horizontal. The parametric equations below describe the location of the ball at time T .
\(X(T)=b-\mathrm{Tv}_{0} \cos \theta\)
\(Y(T)=T v_{0} \sin \theta-(g / 2) T^{2} \quad\) where \(g=9.8 \mathrm{~m} / \mathrm{sec}^{2}\)

\section*{Procedure}

1．Press MODE．Select Par，Simul，and the default settings．Simul （simultaneous）mode simulates the two objects in motion over time．

2．Press WINDOW．Set the viewing window．
\begin{tabular}{lll}
Tmin＝0 & Xmin \(=-13\) & Ymin＝0 \\
Tmax \(=12\) & Xmax \(=34\) & Ymax \(=31\) \\
Tstep \(=.1\) & Xscl＝10 & Yscl＝10
\end{tabular}

3．Press \(Y=\) ．Turn off all functions and stat plots．Enter the expressions to define the path of the ferris wheel and the path of the ball．Set the graph style for X2T to 4 （path）．
```

F10t1 F10tz F1otz
X1т日10cos(\piT/6)
Y1T日10+10sin<\piT
*2t日25-22Tcosc6
6%
Yzт日22Tsin(660)

```
\(-(9.8 / 2) \mathrm{T}^{2}\)
Tip：Try setting the graph styles to 4 X 1 T and \(\mathbf{~ X 2 T}\) ，which simulates a chair on the ferris wheel and the ball flying through the air when you press GRAPH．
4. Press GRAPH to graph the equations. Watch closely as they are plotted. Notice that the ball and the ferris wheel passenger appear to be closest where the paths cross in the top-right quadrant of the ferris wheel.

5. Press WINDOW. Change the viewing window to concentrate on this portion of the graph.
\begin{tabular}{lll}
Tmin=1 & Xmin=0 & Ymin=10 \\
Tmax=3 & Xmax=23.5 & Ymax=25.5 \\
Tstep=.03 & Xscl=10 & Yscl=10
\end{tabular}
6. Press TRACE. After the graph is plotted, press \(\square\) to move near the point on the ferris wheel where the paths cross. Notice the values of \(\mathbf{X}, \mathbf{Y}\), and \(\mathbf{T}\).

7. Press \(\square\) to move to the path of the ball. Notice the values of \(\mathbf{X}\) and \(\mathbf{Y}\) (\(\mathbf{T}\) is unchanged). Notice where the cursor is located. This is the position of the ball when the ferris wheel passenger passes the intersection. Did the ball or the passenger reach the intersection first?

You can use TRACE to, in effect, take snapshots in time and explore the relative behavior of two objects in motion.

\section*{Demonstrating the Fundamental Theorem of Calculus}

\section*{Problem 1}

Using the functions fnint(and nDeriv(from the MATH menu to graph functions defined by integrals and derivatives demonstrates graphically that:
\(F(x)=\int_{1}^{x} d t=\ln (x), x>0 \quad\) and that
\(D x\left[\int_{1}^{x} \frac{1}{t} d t\right]=\frac{1}{x}\)

\section*{Procedure 1}
1. Press MODE]. Select the default settings.
2. Press WINDOW. Set the viewing window.
\begin{tabular}{lll}
Xmin \(=01\) & Ymin \(=-1.5\) & Xres=3 \\
Xmax \(=10\) & Ymax \(=2.5\) & \\
Xscl=1 & Yscl=1 &
\end{tabular}

3．Press \(Y\) ．Turn off all functions and stat plots．Enter the numerical integral of \(1 / T\) from 1 to \(X\) and the function \(\ln (X)\) ．Set the graph style for Y 1 to＂（line）and Y 2 to 4 （path）．
```

F10t1 Flote F10ts
v1日frint<1,T,T,
1,8)
OWz日lr(%)

```

4．Press TRACE．Press \(\square, \square, \square\) ，and \(\square\) to compare the values of \(\mathrm{Y}_{1}\) and \(\mathbf{Y}\) ．

5．Press \(Y=\) ．Turn off \(\mathbf{Y}_{1}\) and \(\mathbf{Y}\) 2，and then enter the numerical derivative of the integral of \(1 / X\) and the function \(1 / X\) ．Set the graph style for \(Y_{3}\) to ：（line）and \(\mathrm{Y}_{4}\) to \(\mathrm{m}_{1}\)（thick）．
```

Floti Flote Flots
Y(=frInt<1/T,T,
1,8%
-4
YSGraleriv(Y1,X,
x
*Y4日1,4

```

6．Press TRACE．Again，use the cursor keys to compare the values of the two graphed functions，Y3 and Y4．

\section*{Problem 2}

Explore the functions defined by
\(y=\int_{2}^{x} t^{2} d t, \int_{0}^{x} t^{2} d t\), and \(\int_{2}^{x} t^{2} d t\),

\section*{Procedure 2}
1. Press Y=. Turn off all functions and stat plots. Use a list to define these three functions simultaneously. Store the function in \(\mathrm{Y}_{5}\).
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
2. Press ZOOM 6 to select \(\mathbf{6}\) :ZStandard.
3. Press TRACE. Notice that the functions appear identical, only shifted vertically by a constant.
4. Press \(Y\). Enter the numerical derivative of \(\mathrm{Y}_{5} \mathrm{in} \mathrm{Y}_{6}\).
```

F1ot1 Flote Fots
Vz=r[leriv(Y1,%,

*     * 

M5日f+Int<T2,T,G
-2,0,25,8)

```

```

X)

```
5. Press TRACE. Notice that although the three graphs defined by \(\mathbf{Y} 5\) are different, they share the same derivative.

\section*{Computing Areas of Regular N-Sided Polygons}

\section*{Problem}

Use the equation solver to store a formula for the area of a regular N -sided polygon, and then solve for each variable, given the other variables. Explore the fact that the limiting case is the area of a circle, \(\pi r^{2}\).

Consider the formula \(\mathrm{A}=\mathrm{NB}^{2} \sin (\pi / \mathrm{N}) \cos (\pi / \mathrm{N})\) for the area of a regular polygon with \(N\) sides of equal length and \(B\) distance from the center to a vertex.

\(N=4\) sides

\(\mathrm{N}=8\) sides

\(\mathrm{N}=12\) sides

\section*{Procedure}
1. Press MATH 0 to select 0 :Solver from the MATH menu. Either the equation editor or the interactive solver editor is displayed. If the
interactive solver editor is displayed, press \(\Delta\) to display the equation editor.
2. Enter the formula as \(\mathbf{0}=\mathbf{A}-\mathbf{N B}^{2} \boldsymbol{\operatorname { s i n }}(\pi / \mathbf{N}) \boldsymbol{\operatorname { c o s }}(\pi / \mathbf{N})\), and then press ENTER. The interactive solver editor is displayed.

3. Enter \(\mathbf{N}=\mathbf{4}\) and \(\mathbf{B}=6\) to find the area (\(\mathbf{A}\)) of a square with a distance (\(\mathbf{B}\)) from center to vertex of 6 centimeters.
4. Press \(\Delta\) to move the cursor onto \(\mathbf{A}\), and then press ALPHA [SOLVE]. The solution for \(\mathbf{A}\) is displayed on the interactive solver editor.
\(\mathrm{A}-\mathrm{NE}^{2} \sin (\pi / \mathrm{H})=0\)

5. Now solve for \(\mathbf{B}\) for a given area with various number of sides. Enter \(\mathbf{A}=200\) and \(\mathbf{N}=6\). To find the distance \(\mathbf{B}\), move the cursor onto \(\mathbf{B}\), and then press ALPHA [SOLVE].
6. Enter \(\mathbf{N}=\mathbf{8}\). To find the distance \(\mathbf{B}\), move the cursor onto \(\mathbf{B}\), and then press ALPHA [SOLVE]. Find \(\mathbf{B}\) for \(\mathbf{N}=\mathbf{9}\), and then for \(\mathbf{N}=\mathbf{1 0}\).

Find the area given \(\mathrm{B}=\mathbf{6}\), and \(\mathrm{N}=\mathbf{1 0}, \mathbf{1 0 0}, \mathbf{1 5 0}, \mathbf{1 0 0 0}\), and 10000. Compare your results with \(\pi 6^{2}\) (the area of a circle with radius 6), which is approximately 113.097 .
7. Enter \(\mathbf{B}=6\). To find the area \(\mathbf{A}\), move the cursor onto \(\mathbf{A}\), and then press ALPHA [SOLVE]. Find \(A\) for \(N=10\), then \(N=100\), then \(N=150\), then \(N=1000\), and finally \(\mathbf{N}=\mathbf{1 0 0 0 0}\). Notice that as \(\mathbf{N}\) gets large, the area \(\mathbf{A}\) approaches \(\pi \mathbf{B}^{2}\).

Now graph the equation to see visually how the area changes as the number of sides gets large.
8. Press MODE. Select the default mode settings.
9. Press WINDOW. Set the viewing window.
\begin{tabular}{lll}
Xmin=0 & Ymin=0 & Xres=1 \\
Xmax=200 & Ymax \(=150\) & \\
Xscl=10 & Yscl=10 &
\end{tabular}
10. Press \(Y\). Turn off all functions and stat plots. Enter the equation for the area. Use \(\mathbf{X}\) in place of \(\mathbf{N}\). Set the graph styles as shown.
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

11．Press TRACE．After the graph is plotted，press 100 ENTER to trace to \(\mathrm{X}=100\) ．Press 150 ENTER．Press 188 ENTER．Notice that as X increases， the value of \(Y\) converges to \(\pi 6^{2}\) ，which is approximately 113．097． \(\mathbf{Y}_{2}=\pi \mathbf{B}^{2}\)（the area of the circle）is a horizontal asymptote to \(\mathbf{Y}_{1}\) ．The area of an N －sided regular polygon，with r as the distance from the center to a vertex，approaches the area of a circle with radius \(r\left(\pi r^{2}\right)\) as N gets large．

\section*{Computing and Graphing Mortgage Payments}

\section*{Problem}

You are a loan officer at a mortgage company, and you recently closed on a 30-year home mortgage at 8 percent interest with monthly payments of 800 . The new home owners want to know how much will be applied to the interest and how much will be applied to the principal when they make the 240th payment 20 years from now.

\section*{Procedure}
1. Press MODE and set the fixed-decimal mode to 2 decimal places. Set the other mode settings to the defaults.
2. Press APPS ENTER ENTER to display the tVM Solver. Enter these values.

```

$I=8-6$

```


```

$\mathrm{Fv}=\mathrm{G}, \mathrm{G}$
$\mathrm{F}, \mathrm{Y}=12$. E
$\mathrm{C}, \mathrm{Y}=12 . \mathrm{G}$
FHT:ERC BEGIH

```

Note: Enter a positive number (800) to show PMT as a cash inflow. Payment values will be displayed as positive numbers on the graph. Enter \(\mathbf{0}\) for \(\mathbf{F V}\),
since the future value of a loan is 0 once it is paid in full．Enter PMT：END， since payment is due at the end of a period．

3．Move the cursor onto the PV＝prompt，and then press ALPHA［SOLVE］． The present value，or mortgage amount，of the house is displayed at the \(\mathbf{P V}=\) prompt．
```

N=366, 600
I%=6,00
PV=-169626.80
FMT=80G.06
Fv=Q
P
C
FMT:ERLC BEGIN

```

Now compare the graph of the amount of interest with the graph of the amount of principal for each payment．

4．Press MODE．Set Par and Simul．
5．Press \(Y\) ．Turn off all functions and stat plots．Enter these equations and set the graph styles as shown．
```

F1ot1 F1otz F1otz
Q1T 偣
1т (EPrn(T,T)
zт白
Yzr首Int(T,T)
*st星
Yミт目1т+Yz%

```

Note：\(\Sigma \operatorname{Prn}(\) and \(\Sigma \operatorname{lnt}(\) are located on the FINANCE menu（APPS 1：FINANCE）．
6. Press WINDOW. Set these window variables.
\begin{tabular}{lll}
Tmin=1 & Xmin=0 & Ymin=0 \\
Tmax=360 & Xmax=360 & Ymax=1000 \\
Tstep=12 & Xscl=10 & Yscl=100
\end{tabular}

Tip: To increase the graph speed, change Tstep to 24.
7. Press TRACE. After the graph is drawn, press 240 ENTER to move the trace cursor to \(\mathrm{T}=\mathbf{2 4 0}\), which is equivalent to 20 years of payments.

The graph shows that for the 240th payment (\(\mathbf{X}=\mathbf{2 4 0}\)), 358.03 of the 800 payment is applied to principal (\(\mathrm{Y}=358.03\)).
Note: The sum of the payments (\(\mathbf{Y} 3 \mathbf{T}=\mathbf{Y} 1 \mathbf{T}+\mathbf{Y} \mathbf{2 T}\)) is always 800.
8. Press to move the cursor onto the function for interest defined by Х2т and Y2t. Enter 240.

The graph shows that for the 240th payment (\(\mathbf{X}=\mathbf{2 4 0}\)), 441.97 of the 800 payment is interest (\(\mathrm{Y}=441.97\)).
9. Press 2nd [QuIt] APPS ENTER 9 to paste 9:bal(to the home screen. Check the figures from the graph.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

At which monthly payment will the principal allocation surpass the interest allocation?

\section*{Chapter 18: Memory and Variable Management}

\section*{Checking Available Memory}

\section*{MEMORY Menu}

At any time you can check available memory or manage existing memory by selecting items from the memory menu. To access this menu, press 2nd [MEM].
\begin{tabular}{ll}
\hline MEMORY & \\
\(1:\) About... & Displays information about the calculator. \\
\(2:\) Mem Mgmt/De1... & Reports memory availability and variable usage. \\
3:Clear Entries & Clears ENTRY (last-entry storage). \\
4:ClrAllLists & Clears all lists in memory. \\
5: Archive... & Archives a selected variable. \\
\(6:\) UnArchive... & UnArchives a selected variable. \\
\(7:\) Reset... & Displays the RAM, ARCHIVE, and ALL menus \\
\(8:\) Group... & Displays GROUP and UNGROUP menus. \\
\hline
\end{tabular}

To check memory usage, first press [2nd [MEM] and then press 2:Mem Mgmt/Del.

\section*{Displaying the MEMORY MANAGEMENT/DELETE Menu}

Mem Mgmt/Del displays the memory management/Delete menu. The two lines at the top report the total amount of available ram and archive memory. By selecting menu items on this screen, you can see the amount of memory each variable type is using. This information can help you determine if some variables need to be deleted from memory to make room for new data, such as programs or applications.

To check memory usage, follow these steps.
1. Press 2nd [mem] to display the memory menu.

Note: The \(\uparrow\) and \(\downarrow\) in the top or bottom of the left column indicate that you can scroll up or down to view more variable types.
2. Select 2:Mem Mgmt/Del to display the MEMORY MANAGEMENT/DELETE menu. The TI-83 Plus expresses memory quantities in bytes.

3. Select variable types from the list to display memory usage.

Note: Real, List, Y-Vars, and Prgm variable types never reset to zero, even after memory is cleared.
Apps are independent applications which are stored in Flash ROM. AppVars is a variable holder used to store variables created by independent applications. You cannot edit or change variables in AppVars unless you do so through the application which created them.

To leave the MEMORY MANAGEMENT/DELETE menu, press either 2nd [QUIT] or [CLEAR. Both options display the home screen.

\section*{Deleting Items from Memory}

\section*{Deleting an Item}

To increase available memory by deleting the contents of any variable (real or complex number, list, matrix, \(\mathbf{Y}=\) variable, program, Apps, AppVars, picture, graph database, or string), follow these steps.
1. Press [2nd [mem] to display the memory menu.
2. Select 2:Mem Mgmt/Del to display the memory management/Delete menu.
3. Select the type of data you want to delete, or select 1:All for a list of all variables of all types. A screen is displayed listing each variable of the type you selected and the number of bytes each variable is using.

For example, if you select 4:List, the LIst editor screen is displayed.

4. Press \(\triangle\) and \(\square\) to move the selection cursor (\(\triangleright\)) next to the item you want to delete, and then press DEL. The variable is deleted from memory. You can delete individual variables one by one from this screen.

Note: If you are deleting programs or Apps, you will receive a message asking you to confirm this delete action. Select 2:Yes to continue.

To leave any variable screen without deleting anything, press 2nd [QUIT], which displays the home screen.
Note: You cannot delete some system variables, such as the last-answer variable Ans and the statistical variable RegEQ.

\section*{Clearing Entries and List Elements}

\section*{Clear Entries}

Clear Entries clears the contents of the Entry (last entry) storage area (Chapter 1). To clear the ENTRY storage area, follow these steps.
1. Press 2nd [mem] to display the memory menu.
2. Select 3:Clear Entries to paste the instruction to the home screen.
3. Press ENTER to clear the ENTRY storage area.
Clear Entries

To cancel Clear Entries, press CLEAR.
Note: If you select 3:Clear Entries from within a program, the Clear Entries instruction is pasted to the program editor, and the Entry (last entry) is cleared when the program is executed.

\section*{ClrAIILists}

CIrAllLists sets the dimension of each list in RAM only to \(\mathbf{0}\).
To clear all elements from all lists, follow these steps.
1. Press 2nd [mem] to display the memory menu.
2. Select 4:CIrAIILists to paste the instruction to the home screen.
3. Press ENTER to set to 0 the dimension of each list in memory. Clr.RllLists Done

To cancel CIrAllLists, press CLEAR.
ClrAllLists does not delete list names from memory, from the list names menu, or from the stat list editor.
Note: If you select 4:CIrAlllists from within a program, the ClrAllLists instruction is pasted to the program editor. The lists are cleared when the program is executed.

\section*{Resetting the TI-83 Plus}

\section*{RAM ARCHIVE ALL Menu}

The RAM ARCHIVE ALL menu gives you the option of resetting all memory (including default settings) or resetting selected portions of memory while preserving other data stored in memory, such as programs and \(\mathbf{Y}=\) functions. For instance, you can choose to reset all of RAM or just restore the default settings. Be aware that if you choose to reset RAM, all data and programs in RAM will be erased. For archive memory, you can reset variables (Vars), applications (Apps), or both of these. Be aware that if you choose to reset Vars, all data and programs in archive memory will be erased. If you choose to reset Apps, all applications in archive memory will be erased.

When you reset defaults on the TI-83 Plus, all defaults in RAM are restored to the factory settings. Stored data and programs are not changed.

These are some examples of Tl-83 Plus defaults that are restored by resetting the defaults.
- Mode settings such as Normal (notation); Func (graphing); Real (numbers); and Full (screen)
- \(Y=\) functions off
 and Xres=1
- Stat plots off
- Format settings such as CoordOn (graphing coordinates on); AxesOn; and ExprOn (expression on)
- rand seed value to 0

\section*{Displaying the RAM ARCHIVE ALL Menu}

To display the ram archive all menu on the TI-83 Plus, follow these steps.
1. Press 2nd [mem] to display the memory menu.
2. Select 7:Reset to display the ram archive all menu.

\section*{Resetting RAM Memory}

Resetting RAM restores RAM system variables to factory settings and deletes all nonsystem variables and all programs. Resetting defaults restores all system variables to default settings without deleting variables
and programs in RAM. Resetting RAM or resetting defaults does not affect variables and applications in user data archive.
Tip: Before you reset all RAM memory, consider restoring sufficient available memory by deleting only selected data.

To reset all ram memory or ram defaults on the Tl-83 Plus, follow these steps.
1. From the ram archive all menu, select 1:ALL RAM to display the reset ram menu or 2:Defaults to display the reset defaults menu.
```

SGS|O
18%
2!Reset
Resetting RAM
ergses all data

```

```

from RHM.

```

2. If you are resetting RAM, read the message below the RESET RAM menu.
- To cancel the reset and return to the home screen, press ENTER.
- To erase RAM memory or reset defaults, select 2:Reset. Depending on your choice, the message RAM cleared or Defaults set is displayed on the home screen.

\section*{Resetting Archive Memory}

When resetting archive memory on the TI-83 Plus, you can choose to delete from user data archive all variables, all applications, or both variables and applications.

To reset all or part of user data archive memory, follow these steps.
1. From the ram archive all menu, press \(\square\) to display the archive menu.

2. Select one of the following:

1:Vars to display the reset arc var menu
```

GESET FEC WFIES
10%O
2:reset
Resetting Wars
ergees ヨll d.at.a
Grod Frograme
from Arohive.

```

2:Apps to display the RESET ARC APPS menu.
\begin{tabular}{|c|}
\hline \\
\hline ett.ing \(A\) Ees all m Archiv \\
\hline
\end{tabular}

3:Both to display the RESET ARC bOTH menu.
\begin{tabular}{|c|}
\hline \\
\hline Resetting Both erases all dat. Frograms \& AFFs from Arohive. \\
\hline
\end{tabular}
3. Read the message below the menu.
- To cancel the reset and return to the home screen, press ENTER.
- To continue with the reset, select 2:Reset. A message indicating the type of archive memory cleared will be displayed on the home screen.

\section*{Resetting All Memory}

When resetting all memory on the TI-83 Plus, RAM and user data archive memory is restored to factory settings. All nonsystem variables, applications, and programs are deleted. All system variables are reset to default settings.
Tip: Before you reset all memory, consider restoring sufficient available memory by deleting only selected data.

To reset all memory on the TI-83 Plus, follow these steps.
1. From the ram archive all menu, press \(\square \square\) to display the all menu.
```

RHM GRCHIVE [ELLI

``` LBAl1 Memores...
2. Select 1:All Memory to display the reset memory menu.
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{} \\
\hline \end{tabular}
3. Read the message below the reset memory menu.
- To cancel the reset and return to the home screen, press ENTER.
- To continue with the reset, select 2:Reset. The message MEM cleared is displayed on the home screen.
Note: When you clear memory, the contrast sometimes changes. If the screen is faded or blank, adjust the contrast by pressing 2nd \(\Delta\) or \(\square\).

\section*{Archiving and UnArchiving Variables}

\section*{Archiving and UnArchiving Variables}

Archiving allows you to store data, programs, or other variables to the user data archive where they cannot be edited or deleted inadvertently. Archiving also allows you to free up RAM for variables that may require additional memory.

Archived variables cannot be edited or executed. They can only be seen and unarchived. For example, if you archive list L1, you will see that L1 exists in memory but if you select it and paste the name L1 to the home screen, you won't be able to see its contents or edit it.

Note: Not all variables may be archived. Not all archived variables may be unarchived. For example, system variables including \(r, t, x, y\), and \(\theta\) cannot be archived. Apps and Groups always exist in Flash ROM so there is no need to archive them. Groups cannot be unarchived. However, you can ungroup or delete them.
\begin{tabular}{|c|c|c|c|}
\hline Variable Type & Names & Archive? (yes/no) & UnArchive? (yes/no) \\
\hline Real numbers & A, B, .., \(\mathbf{Z}\) & yes & yes \\
\hline Complex numbers & A, B, .., \(\mathbf{Z}\) & yes & yes \\
\hline Matrices & [A], [B], [C], ... , [J] & yes & yes \\
\hline Lists & L1, L2, L3, L4, L5, L6, and user-defined names & yes & yes \\
\hline Programs & & yes & yes \\
\hline Functions & Y1, Y2, ... Y9, Y0 & no & not applicable \\
\hline Parametric equations & \(\mathbf{X 1 T}_{1 T}\) and \(\mathbf{Y}_{1 T}, \ldots, \mathbf{X}_{6 T}\) and Y 6 T & no & not applicable \\
\hline Polar functions & r1, r2, r3, r4, r5, r6 & no & not applicable \\
\hline Sequence functions & \(\mathbf{u}, \mathbf{v}, \mathbf{w}\) & no & not applicable \\
\hline Stat plots & Plot1, Plot2, Plot3 & no & not applicable \\
\hline Graph databases & GDB1, GDB2,... & yes & yes \\
\hline Graph pictures & \[
\begin{aligned}
& \text { Pic1, Pic2, ... , Pic9, } \\
& \text { Pic0 }
\end{aligned}
\] & yes & yes \\
\hline Strings & Str1, Str2, . . Str9, Stro & yes & yes \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Variable Type & Names & \begin{tabular}{l}
Archive? \\
(yes/no)
\end{tabular} & \begin{tabular}{l}
UnArchive? \\
(yes/no)
\end{tabular} \\
\hline Tables & \begin{tabular}{l}
TbIStart, Tb1, \\
Tbllnput
\end{tabular} & no & \begin{tabular}{l}
not \\
applicable
\end{tabular} \\
\hline Apps & Applications & \begin{tabular}{l}
see Note \\
above
\end{tabular} & no \\
\hline AppVars & Application variables & yes & yes \\
\hline Groups & \begin{tabular}{l}
see Note \\
above
\end{tabular} & no \\
\hline \begin{tabular}{lll}
Variables with reserved \\
names
\end{tabular} & \begin{tabular}{l}
minX, maxX, RegEQ, \\
and others
\end{tabular} & no & \begin{tabular}{l}
not \\
applicable
\end{tabular} \\
\hline System variables & \begin{tabular}{l}
Xmin, Xmax, and \\
others
\end{tabular} & no & \begin{tabular}{l}
not \\
applicable
\end{tabular} \\
\hline
\end{tabular}

Archiving and unarchiving can be done in two ways:
- Use the 5:Archive or 6:UnArchive commands from the MEMORy menu or CATALOG.
- Use a Memory Management editor screen.

Before archiving or unarchiving variables, particularly those with a large byte size (such as large programs) use the memory menu to:
- Find the size of the variable.
- See if there is enough free space.
\begin{tabular}{ll}
\hline For: & Sizes must be such that: \\
\hline Archive & Archive free size \(>\) variable size \\
\hline UnArchive & RAM free size \(>\) variable size \\
\hline
\end{tabular}

Note: If there is not enough space, unarchive or delete variables as necessary. Be aware that when you unarchive a variable, not all the memory associated with that variable in user data archive will be released since the system keeps track of where the variable has been and where it is now in RAM.

Even if there appears to be enough free space, you may see a Garbage Collection message when you attempt to archive a variable. Depending on the usability of empty blocks in the user data archive, you may need to unarchive existing variables to create more free space.

To archive or unarchive a list variable (L1) using the Archive/UnArchive options from the MEMORY menu:
1. Press [2nd [MEM] to display the Memory menu.

2. Select 5:Archive or 6:UnArchive to place the command in the edit screen.
3. Press [2nd [L1] to place the \(\mathbf{L 1}\) variable in the edit screen.

Frchive Li】
4. Press ENTER to complete the archive process.
Frohive Li \(\quad\) Done

Note: An asterisk will be displayed to the left of the Archived variable name to indicate it is archived.

To archive or unarchive a list variable (L1) using a Memory Management editor:
1. Press 2nd [mem] to display the memory menu.

2. Select 2:Mem Mgmt/Del... to display the memory management/Delete menu.

3. Select 4:List... to display the LISt menu.

4. Press ENTER to archive L1. An asterisk will appear to the left of L1 to indicate it is an archived variable. To unarchive a variable in this screen, put the cursor next to the archived variable and press ENTER. The asterisk will disappear.

5. Press 2nd [Quit] to leave the LISt menu.

Note: You can access an archived variable for the purpose of linking, deleting, or unarchiving it, but you cannot edit it.

\section*{Grouping and Ungrouping Variables}

\section*{Grouping Variables}

Grouping allows you to make a copy of two or more variables residing in RAM and then store them as a group in user data archive. The variables in RAM are not erased. The variables must exist in RAM before they can be grouped. In other words, archived data cannot be included in a group.

To create a group of variables:
1. Press 2nd [mem] to display the memory menu.
\begin{tabular}{|c|}
\hline \multirow[t]{9}{*}{} \\
\hline \end{tabular}
2. Select 8:Group... to display GROUP UNGROUP menu.

GEDDF DINGROUP
HCreste dew
3. Press ENTER to display the GROUP menu.

GROUF

4. Enter a name for the new group and press ENTER.

Note: A group name can be one to eight characters long. The first character must be a letter from \(A\) to \(Z\) or \(\theta\). The second through eighth characters can be letters, numbers, or \(\theta\).

GROUP
Hame=GROUPA
5. Select the type of data you want to group. You can select 1:All+ which shows all variables of all types available and selected. You can also select 1:All- which shows all variables of all types available but not selected. A screen is displayed listing each variable of the type you selected.

For example, suppose some variables have been created in RAM, and selecting 1:All- displays the following screen.

6. Press \(\Delta\) and \(\square\) to move the selection cursor (\(\stackrel{\rightharpoonup}{ }\) next to the first item you want to copy into a group, and then press ENTER. A small square will remain to the left of all variables selected for grouping.

Repeat the selection process until all variables for the new group are selected and then press \(\square\) to display the done menu.

\section*{SELECT LTITIE iborle}
7. Press ENTER to complete the grouping process.
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \text { Gop uing } \\
& \text { 6ariables to } \\
& \text { Groupi }
\end{aligned}
\] \\
\hline Done \\
\hline
\end{tabular}

Note: You can only group variables in RAM. You cannot group some system variables, such as the last-answer variable Ans and the statistical variable RegEQ.

\section*{Ungrouping Variables}

Ungrouping allows you to make a copy of variables in a group stored in user data archive and place them ungrouped in RAM.

\section*{DuplicateName Menu}

During the ungrouping action, if a duplicate variable name is detected in ram, the duplicate name menu is displayed.
DuplicateName
\begin{tabular}{ll}
1:Rename & Prompts to rename receiving variable. \\
2:0verwrite & Overwrites data in receiving duplicate variable. \\
3:0verwrite Al1 & Overwrites data in all receiving duplicate variables. \\
4:0mit & Skips transmission of sending variable. \\
5:Quit & Stops transmission at duplicate variable. \\
\hline
\end{tabular}

Notes about Menu Items:
- When you select 1 :Rename, the Name= prompt is displayed, and alpha-lock is on. Enter a new variable name, and then press ENTER. Ungrouping resumes.
- When you select 2:Overwrite, the unit overwrites the data of the duplicate variable name found in RAM. Ungrouping resumes.
- When you select 3: Overwrite All, the unit overwrites the data of all duplicate variable names found in RAM. Ungrouping resumes.
- When you select 4:Omit, the unit does not ungroup the variable in conflict with the duplicated variable name found in RAM. Ungrouping resumes with the next item.
- When you select 5:Quit, ungrouping stops, and no further changes are made.

To ungroup a group of variables:
1. Press 2nd [MEM] to display the memory menu.
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
2. Select 8:Group... to display the GROUP UNGROUP menu.
3. Press \(\square\) to display the UNGROUP menu.
4. Press \(\triangle\) and \(\square\) to move the selection cursor (\(\triangleright\)) next to the group variable you want to ungroup, and then press ENTER.
\begin{tabular}{|cc|}
\hline Drarouring: & \\
Lorne
\end{tabular}

The ungroup action is completed.
Note: Ungrouping does not remove the group from user data archive. You must delete the group in user data archive to remove it.

\section*{Garbage Collection}

\section*{Garbage Collection Message}

If you use the user data archive extensively, you may see a Garbage Collect? message. This occurs if you try to archive a variable when there is not enough free contiguous archive memory. The TI-83 Plus will attempt to rearrange the archived variables to make additional room.

\section*{Responding to the Garbage Collection Message}
- To cancel, select 1:No.
- If you choose 1:No, the message ERR:ARCHIVE FULL will be displayed.
- To continue archiving, select 2:Yes.

If you select 2:Yes, the process message Garbage Collecting... or Defragmenting... will be displayed.

Note: The process message Defragmenting... is displayed whenever an application marked for deletion is encountered.

Garbage collection may take up to 20 minutes, depending on how much of archive memory has been used to store variables.

After garbage collection, depending on how much additional space is freed, the variable may or may not be archived. If not, you can unarchive some variables and try again.

\section*{Why Not Perform Garbage Collection Automatically Without a Message?}

\section*{The message:}
- Lets you know an archive will take longer than usual. It also alerts you that the archive will fail if there is not enough memory.
- Can alert you when a program is caught in a loop that repetitively fills the user data archive. Cancel the archive and determine the reason.

\section*{Why Is Garbage Collection Necessary?}

The user data archive is divided into sectors. When you first begin archiving, variables are stored consecutively in sector 1 . This continues to the end of the sector.

An archived variable is stored in a continuous block within a single sector. Unlike an application stored in user data archive, an archived variable cannot cross a sector boundary. If there is not enough space left in the sector, the next variable is stored at the beginning of the next sector. Typically, this leaves an empty block at the end of the previous sector.

Each variable that you archive is stored in the first empty block large enough to hold it.

This process continues to the end of the last sector. Depending on the size of individual variables, the empty blocks may account for a significant amount of space. Garbage collection occurs when the variable you are archiving is larger than any empty block.

\section*{How Unarchiving a Variable Affects the Process}

When you unarchive a variable, it is copied to RAM but it is not actually deleted from user data archive memory.

Unarchived variables are "marked for deletion," meaning they will be deleted during the next garbage collection.

\section*{If the MEMORY Screen Shows Enough Free Space}

Even if the MEMORY screen shows enough free space to archive a variable or store an application, you may still get a Garbage Collect? message or an ERR: ARCHIVE FULL message.

When you unarchive a variable, the Archive free amount increases immediately, but the space is not actually available until after the next garbage collection.

If the Archive free amount shows enough available space for your variable, there probably will be enough space to archive it after garbage collection (depending on the usability of any empty blocks).

\section*{The Garbage Collection Process}

The garbage collection process:
- Deletes unarchived variables from the user data archive.
- Rearranges the remaining variables into consecutive blocks.

Note: Power loss during garbage collection may cause all memory (RAM and Archive) to be deleted.

\section*{Using the GarbageCollect Command}

You can reduce the number of automatic garbage collections by periodically optimizing memory. This is done by using the GarbageCollect command.

To use the GarbageCollect command, follow these steps.
1. Press 2nd [catalog] to display the catalog.

2. Press or to scroll the catalog until the selection cursor points to the GarbageCollect command.
3. Press ENTER to paste the command to the current screen.
4. Press ENTER to display the Garbage Collect? message.
5. Select 2:Yes to begin garbage collection.

\section*{ERR:ARCHIVE FULL Message}

Even if the MEMORY screen shows enough free space to archive a variable or store an application, you may still get an ERR: ARCHIVE FULL message.
\begin{tabular}{|c|}
\hline ERR: ARCHIVE FULL
IHEAit \\
\hline Largest sir \\
\hline UFFriable= \({ }_{\text {U }}=9662\) \\
\hline
\end{tabular}

An ERR:ARCHIVE FULL message may be displayed:
- When there is insufficient space to archive a variable within a continuous block and within a single sector.
- When there is insufficient space to store an application within a continuous block of memory.

When the message is displayed, it will indicate the largest single space of memory available for storing a variable and an application.

To resolve the problem, use the GarbageCollect command to optimize memory. If memory is still insufficient, you must delete variables or applications to increase space.

\section*{Chapter 19: Communication Link}

\section*{Getting Started: Sending Variables}

Getting Started is a fast-paced introduction. Read the chapter for details.
Create and store a variable and a matrix, and then transfer them to another TI-83 Plus.
1. On the home screen of the sending unit, press 55 STO ALPHA Q. Press ENTER to store 5.5 to \(\mathbf{Q}\).
2. Press 2nd [c] 2nd [[] 1 ■ 2 2nd []] 2nd [[] \(3 \square 4\) 2nd [1] [2nd [1] STO 2nd [MATRIX] 1. Press ENTER to store the matrix to [A].
3. On the sending unit, press [2nd [MEM] to display the memory menu.
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

4. On the sending unit, press 2 to select 2:Mem Mgmt/Del. The memory management menu is displayed.

5. On the sending unit, press 5 to select 5:Matrix. The matrix editor screen is displayed.
6. On the sending unit, press ENTER to archive [A]. An asterisk (*) will appear, signifying that \([A]\) is now archived.
7. Connect the calculators with the link cable. Push both ends in firmly.
8. On the receiving unit, press \(2 \mathrm{Znd}[\mathrm{LINK}] \square\) to display the receive menu. Press 1 to select 1:Receive. The message Waiting... is displayed and the busy indicator is on.
9. On the sending unit, press [2nd [LINK] to display the send menu.
10. Press \(\mathbf{2}\) to select 2:All-. The All- select screen is displayed.

GEND ETCLEINO TGRESEIVE

11. Press until the selection cursor (\(\bullet\)) is next to [A] MATRX. Press ENTER.
12. Press \(\square\) until the selection cursor is next to Q REAL. Press ENTER]. A square dot next to [A] and \(\mathbf{Q}\) indicates that each is selected to send.
13. On the sending unit, press \(\square\) to display the TRANSMIT menu.
14. On the sending unit, press 1 to select 1:Transmit and begin transmission. The receiving unit displays the message Receiving....When the items are transmitted, both units display the name and type of each transmitted variable.

FELEC:TMETNETM|

\section*{TI-83 Plus Silver Edition LINK}

This chapter describes how to communicate with compatible TI units. A unit-to-unit link cable is included with the TI-83 Plus Silver Edition for this purpose.

The TI-83 Plus Silver Edition has a port to connect and communicate with:
- Another TI-83 Plus Silver Edition
- A TI-83 Plus
- A TI-83
- A TI-82
- A TI-73
- A CBL \(2 / \mathrm{CBL}\), or a CBR

With the TITM \(^{\text {TM }}\) Connect or TI-GRAPH LINKTM software and a TI-GRAPH LINK cable, you can link the TI-83 Plus Silver Edition to a personal computer.

\section*{Connecting Two Calculators with a Unit-to-Unit Cable}

The TI-83 Plus link port is located at the center of the bottom edge of the calculator.
1. Firmly insert either end of the unit-to-unit cable into the port.
2. Insert the other end of the cable into the other calculator's port.

\section*{Linking to the CBL/CBR System}

The CBL 2/CBL and the CBR are optional accessories that also connect to a TI-83 Plus with the unit-to-unit link cable. With a CBL 2/CBL or CBR and a TI-83 Plus, you can collect and analyze real-world data. The software that enables this communication is built into the TI-83 Plus. (Chapter 14).

\section*{Linking to a Computer}

TI-GRAPH LINK \({ }^{\text {TM }}\) is an accessory that links a TI-83 Plus to enable communication with a computer. A Macintosh \({ }^{\circledR}\)-compatible TI-GRAPH LINK is available separately.

You can access ti-graph link guidebooks through education.ti.com/guides.

\section*{Selecting Items to Send}

\section*{LINK SEND Menu}

To display the LINK SEND menu, press 2nd [LINK].
\begin{tabular}{|c|c|}
\hline SEND RECEIVE & \\
\hline 1:A11+... & Displays all items as selected, including RAM and Flash applications. \\
\hline 2:A11-... & Displays all items as deselected. \\
\hline 3:Prgm... & Displays all program names. \\
\hline 4:List... & Displays all list names. \\
\hline 5:Lists to TI82... & Displays list names L1 through L6. \\
\hline 6:GDB... & Displays all graph databases. \\
\hline 7:Pic... & Displays all picture data types. \\
\hline 8:Matrix... & Displays all matrix data types. \\
\hline 9:Real... & Displays all real variables. \\
\hline 0:Complex... & Displays all complex variables. \\
\hline A:Y-Vars... & Displays all \(\mathrm{Y}=\) variables. \\
\hline B:String... & Displays all string variables. \\
\hline C:Apps... & Displays all software applications. \\
\hline D:AppVars... & Displays all software application variables. \\
\hline E:Group... & Displays all grouped variables. \\
\hline F:SendId & Sends the Calculator ID number immediately. (You do not need to select SEND.) \\
\hline
\end{tabular}
SEND RECEIVE
\begin{tabular}{ll}
G:SendOS & \begin{tabular}{l}
Sends operating system updates to another \\
TI-83 Plus Silver Edition or TI-83 Plus.
\end{tabular} \\
H: Back Up... & \begin{tabular}{l}
Selects all RAM and mode settings (no Flash applications \\
or archived items) for backup to another
\end{tabular} \\
& TI-83 Plus Silver Edition or to a TI-83 Plus.
\end{tabular}

When you select an item on the LINK SEND menu, the corresponding select screen is displayed.
Note: Each seLect screen, except All+..., is initially displayed with nothing preselected. All+... is displayed with everything pre-selected.

To select items to send:
1. Press [2nd [LINK] on the sending unit to display the LINK SEND menu.
2. Select the menu item that describes the data type to send. The corresponding sELECT screen is displayed.
3. Press \(\Delta\) and \(\square\) to move the selection cursor (\(\bullet\)) to an item you want to select or deselect.
4. Press ENTER to select or deselect the item. Selected names are marked with a \(\cdot\).

Note: An asterisk (*) to the left of an item indicates the item is archived (Chapter 18).
5. Repeat steps 3 and 4 to select or deselect additional items.

\section*{Sending the Selected Items}

After you have selected items to send on the sending unit and set the receiving unit to receive, follow these steps to transmit the items. To set the receiving unit, see Receiving Items.
1. Press \(\square\) on the sending unit to display the transmit menu.

\section*{SELECT IEEFINETIIt \\ fifranimit}
2. Confirm that Waiting... is displayed on the receiving unit, which indicates it is set to receive.
3. Press ENTER to select \(\mathbf{1 : T r a n s m i t . ~ T h e ~ n a m e ~ a n d ~ t y p e ~ o f ~ e a c h ~ i t e m ~ a r e ~}\) displayed line-by-line on the sending unit as the item is queued for transmission, and then on the receiving unit as each item is accepted.

Note: Items sent from the RAM of the sending unit are transmitted to the RAM of the receiving unit. Items sent from user data archive of the sending unit are transmitted to user data archive of the receiving unit.

After all selected items have been transmitted, the message Done is displayed on both calculators. Press \(\Delta\) and \(\square\) to scroll through the names.

\section*{Stopping a Transmission}

To stop a link transmission, press 0 N . The Error in Xmit menu is displayed on both units. To leave the error menu, select 1:Quit.

\section*{Sending to a TI-83 Plus Silver Edition or TI-83 Plus}

You can transfer variables (all types), programs, and Flash applications to another TI-83 Plus Silver Edition or TI-83 Plus. You can also backup the RAM memory of one unit to another.
Note: Keep in mind that the TI-83 Plus has less Flash memory than the TI-83 Plus Silver Edition.
- Variables stored in RAM on the sending TI-83 Plus Silver Edition will be sent to the RAM of the receiving TI-83 Plus Silver Edition or TI-83 Plus.
- Variables and applications stored in the user data archive of the sending TI-83 Plus Silver Edition will be sent to the user data archive of the receiving TI-83 Plus Silver Edition or TI-83 Plus.

After sending or receiving data, you can repeat the same transmission to additional TI-83 Plus Silver Edition or TI-83 Plus units-from either the sending unit or the receiving unit-without having to reselect data to send. The current items remain selected. However, you cannot repeat transmission if you selected All+ or All-.

To send data to an additional TI-83 Plus Silver Edition or a TI-83 Plus:
1. Use a unit-to-unit cable to link two units together.
2. On the sending unit press 2nd [LINK] and select a data type and items to SEND.
3. Press \(\square\) on the sending unit to display the transmit menu.
4. On the other unit, press [2nd [LINK] \(\square\) to display the receive menu.
5. Press ENTER on the receiving unit.
6. Press ENTER on the sending unit. A copy of the selected item(s) is sent to the receiving unit.
7. Disconnect the link cable only from the receiving unit and connect it to another unit.
8. Press [2nd [LINK] on the sending unit.
9. Select only the data type. For example, if the unit just sent a list, select 4:LIST.

Note: The item(s) you want to send are pre-selected from the last transmission. Do not select or deselect any items. If you select or deselect
an item, all selections or deselections from the last transmission are cleared.
10. Press \(\square\) on the sending unit to display the transmit menu.
11. On the new receiving unit, press [2nd [LINK] \(\square\) to display the receive menu.
12. Press ENTER on the receiving unit.
13. Press ENTER on the sending unit. A copy of the selected item(s) is sent to the receiving unit.
14. Repeat steps 7 through 13 until the items are sent to all additional units.

\section*{Sending to a Tl-83}

You can send all variables from a TI-83 Plus to a TI-83 except Flash applications, application variables, grouped variables, new variable types, or programs with new features in them (such as Archive, UnArchive, Asm(, AsmComp, and AsmPrgm).

If archived variables on the TI-83 Plus are variable types recognized and used on the TI-83, you can send these variables to the TI-83. They will be automatically sent to the RAM of the TI-83 during the transfer process.

Note: You cannot perform a RAM memory backup from a TI-83 Plus to a TI-83 or from a TI-83 to a TI-83 Plus.

To send data to a TI-83:
1. Use a unit-to-unit cable to link the two units together.
2. Set the \(\mathrm{TI}-83\) to receive.
3. Press 2nd [LINK] on the sending Tl-83 Plus to display the LINK SEND menu.
4. Select the menu of the items you want to transmit.
5. Press \(\square\) on the sending TI-83 Plus to display the Link transmit menu.
6. Confirm that the receiving unit is set to receive.
7. Press ENTER on the sending TI-83 Plus to select 1:Transmit and begin transmitting.

\section*{Sending Lists to a TI-82}

The only data type you can transmit from a TI-83 Plus to a TI-82 is real list data stored in L1 through L6 (with up to 99 elements for each list). If dimension is greater than 99 for a TI-83 Plus list that is selected to be sent, the receiving \(\mathrm{TI}-82\) will truncate the list at the ninety-ninth element during transmission.

Note: You cannot perform a memory backup from a TI-83 Plus to a TI-82 or from a TI-82 to a TI-83 Plus.

To send lists to a TI-82:
1. Use a unit-to-unit cable to link the two units together.
2. Set the TI-82 to receive.
3. Press 2nd [LINK] 5 on the sending TI-83 Plus to select 5:Lists to TI82. The select screen is displayed.
4. Select each list to transmit.
5. Press \(\square\) to display the link transmit menu.
6. Confirm that the receiving unit is set to receive.
7. Press ENTER to select 1:Transmit and begin transmitting.

\section*{Sending to a Tl-73}

You can send real numbers, pics, real lists L1 through L6, and named lists from a TI-73 to a TI-83 Plus or from a TI-83 Plus to a TI-73.

Since the Theta symbol (\(\theta\)) is not recognized by the TI-73, you cannot include this symbol in any list names sent to the TI-73.

Note: You cannot perform a RAM memory backup from a TI-83 Plus to a TI-73 or from a to a TI-73 to a TI-83 Plus.

To transmit data to a TI-73:
1. Use a unit-to-unit cable to link two units together.
2. Set the TI-73 to receive.
3. Press [2nd [LINK] 2 on the sending TI-83 Plus to select 2:All-.... The select screen is displayed.
4. Select items you want to send.
5. Press \(\square\) on the sending Tl-83 Plus to display the link transmit menu.
6. Confirm that the receiving unit is set to receive.
7. Press ENTER on the sending TI-83 Plus to select 1:Transmit and begin transmitting.

\section*{Receiving Items}

\section*{LINK RECEIVE Menu}

To display the link receive menu, press [2nd [Link] \(\square\).

\section*{SEND RECEIVE}

1:Receive Sets unit to receive data transmission.

\section*{Receiving Unit}

When you select 1:Receive from the link receive menu on the receiving unit, the message Waiting... and the busy indicator are displayed. The receiving unit is ready to receive transmitted items. To exit the receive mode without receiving items, press ON, and then select 1:Quit from the Error in Xmit menu.

When transmission is complete, the unit exits the receive mode. You can select 1:Receive again to receive more items. The receiving unit then displays a list of items received. Press [2nd [QUIT] to exit the receive mode.

\section*{DuplicateName Menu}

During transmission, if a variable name is duplicated, the DuplicateName menu is displayed on the receiving unit.
\begin{tabular}{ll}
1:Rename & Prompts to rename receiving variable. \\
2:0verwrite & Overwrites data in receiving variable. \\
3:0mit & Skips transmission of sending variable. \\
4:0uit & Stops transmission at duplicate variable.
\end{tabular}

When you select \(\mathbf{1}\) :Rename, the Name= prompt is displayed, and alphalock is on. Enter a new variable name, and then press ENTER. Transmission resumes.

When you select 2:Overwrite, the sending unit's data overwrites the existing data stored on the receiving unit. Transmission resumes.

When you select 3:Omit, the sending unit does not send the data in the duplicated variable name. Transmission resumes with the next item.

When you select 4:Quit, transmission stops, and the receiving unit exits receive mode.

\section*{Receiving from a TI-83 Plus Silver Edition or Tl-83 Plus}

The TI-83 Plus Silver Edition and the TI-83 Plus are totally compatible. Keep in mind, however, that the Tl-83 Plus has less Flash memory than a TI-83 Plus Silver Edition.

\section*{Receiving from a TI-83}

You can transfer all variables and programs from a TI-83 to a TI-83 Plus if they fit in the RAM of the TI-83 Plus. The RAM of the TI-83 Plus is slightly less than the RAM of the TI-83.

\section*{Receiving from a TI-82 - Resolved Differences}

Generally, you can transmit items to a TI-83 Plus from a TI-82, but differences between the two products may affect some transmitted data. This table shows differences for which the software built into the TI-83 Plus automatically adjusts when a TI-83 Plus receives TI-82 data.
\begin{tabular}{ll}
\hline Tl-82 & Tl-83 Plus \\
\hline\(n\) Min & PlotStart \\
\hline\(n\) Start & \(n\) Min \\
\hline Un & u \\
\hline Vn & v \\
\hline UnStart & \(\mathrm{u}(n M i n)\) \\
\hline VnStart & \(\mathrm{v}(\boldsymbol{n M i n})\) \\
\hline TbIMin & TbIStart \\
\hline
\end{tabular}

For example, if you transmit a program that contains nStart on a command line from a TI-82 to a TI-83 Plus, you will see that nMin has automatically replaced \(n\) Start on the command line of the TI-83 Plus.

Note: You can transfer all real variables, pics, and programs from a TI-82 to a TI-83 Plus if they fit in the RAM of the TI-83 Plus. The RAM of the TI-83 Plus is slightly less than the RAM of the TI-82.

\section*{Receiving from a TI-82 - Unresolved Differences}

The software built into the TI-83 Plus cannot resolve some differences between the \(\mathrm{TI}-82\) and \(\mathrm{TI}-83\) Plus. These differences are described below.

You must edit the transmitted data on the receiving TI-83 Plus to account for these differences. If you do not edit these differences, the TI-83 Plus will misinterpret the data.
- The TI-83 Plus reinterprets TI-82 prefix functions to include open parentheses, which may add extraneous parentheses to transmitted expressions.

For example, if you transmit sin \(\mathbf{X + 5}\) from a TI-82 to a TI-83 Plus, the Tl-83 Plus reinterprets it as \(\boldsymbol{\operatorname { s i n }}(\mathbf{X}+\mathbf{5}\). Without a closing parenthesis after \(\mathbf{X}\), the TI-83 Plus interprets this as \(\boldsymbol{\operatorname { s i n }}(\mathbf{X}+\mathbf{5})\), not the sum of \(\mathbf{5}\) and \(\boldsymbol{\operatorname { s i n }}(\mathrm{X})\).
- If a TI-82 transmits an instruction that the TI-83 Plus cannot translate, the err:Invalid menu displays when the Tl-83 Plus attempts to execute the instruction.

For example, on the TI-82, the character group Un-1 is pasted to the cursor location when you press 2nd [Un-1]. The TI-83 Plus cannot directly translate Un-1 to the TI-83 Plus syntax u(n-1), so the ERR:INVALID menu is displayed.
Note: TI-83 Plus implied multiplication rules differ from those of the TI-82.
 evaluates \(\mathbf{1 / 2 X}\) as \(\mathbf{1 / (2 * X)}\) (Chapter 2).

\section*{Receiving from a TI-73}

The TI-83 Plus can receive real numbers, pics, real lists L1 through L6, and named lists from a TI-73.

Categorical lists (lists containing alpha characters as list elements) cannot be sent from a \(\mathrm{Tl}-73\) to a Tl-83 Plus.

To transmit data to a TI-83 Plus from a TI-73:
1. Set the TI-83 Plus to receive.
2. Press APPS on the sending TI-73 to display the APPLICATIONs menu.
3. Press ENTER on the sending TI-73 to select 1:Link and display the LINK SEND menu.
4. Choose 0:Vars to TI83. and then select the items you want to send.
5. Press on the sending TI-73 to display the link transmit menu.
6. Confirm that the receiving unit is set to receive.
7. Press ENTER on the sending TI-73 to select 1:Transmit and begin transmitting.

\section*{Backing Up RAM Memory}

Warning: H:Back Up overwrites the RAM memory and mode settings in the receiving unit. All information in the RAM memory of the receiving unit is lost.

Note: Archived items on the receiving unit are not overwritten.
You can backup the contents of RAM memory and mode settings (no Flash applications or archived items) to another TI-83 Plus Silver Edition. You can also backup RAM memory and mode settings to a TI-83 Plus.

To perform a RAM memory backup:
1. Use a unit-to-unit cable to link two TI-83 Plus Silver Edition units, or a TI-83 Plus Silver Edition and a TI-83 Plus together.
2. On the sending unit press [2nd [LINK] and select H:Back Up. The MEMORYBACKUP screen displays.

```

inTran=sit

```
3. On the receiving unit, press 2nd [LINK] \(\square\) to display the RECEIVE menu.
4. Press ENTER on the receiving unit.
5. Press ENTER on the sending unit. A WARNING - Backup message displays on the receiving unit.
6. Press ENTER on the receiving unit to continue the backup.
- or -

Press 2:Quit on the receiving unit to cancel the backup and return to the LINK SEND menu
Note: If a transmission error is returned during a backup, the receiving unit is reset.

\section*{Memory Backup Complete}

When the backup is complete, both the sending calculator and receiving calculator display a confirmation screen.

MEMORY EACKUF Done

\section*{Error Conditions}

A transmission error occurs after one or two seconds if:
- A cable is not attached to the sending unit.
- A cable is not attached to the receiving unit.

Note: If the cable is attached, push it in firmly and try again.
- The receiving unit is not set to receive transmission.
- You attempt a backup between a TI-73, a TI-82, or a TI-83 and a TI-83 Plus.
- You attempt a data transfer from a TI-83 Plus to a TI-83, TI-82, or TI-73 with variables or features not recognized by the TI-83, \(\mathrm{TI}-82\), or TI-73.
- New variable types and features not recognized by the TI-83, TI-82, or TI-73 include applications, application variables, grouped variables, new variable types, or programs with new features in them such as Archive, UnArchive, SendID, SendOS, Asm(, AsmComp(, and AsmPrgm.
- You attempt a data transfer from a TI-83 Plus to a TI-82 with data other than real lists L1 through L6 or without using menu item 5:Lists to TI82.
- You attempt a data transfer from a TI-83 Plus to a TI-73 with data other than real numbers, pics, real lists L1 through L6 or named lists with \(\theta\) as part of the name.
Although a transmission error does not occur, these two conditions may prevent successful transmission.
- You try to use Get(with a calculator instead of a CBL 2/CBL or CBR.
- You try to use GetCalc(with a TI-83 instead of a TI-83 Plus Silver Edition or TI-83 Plus.

\section*{Insufficient Memory in Receiving Unit}

During transmission, if the receiving unit does not have sufficient memory to receive an item, the Memory Full menu is displayed on the receiving unit.
- To skip this item for the current transmission, select 1:Omit. Transmission resumes with the next item.
- To cancel the transmission and exit receive mode, select 2:Quit.

\section*{Appendix A: Tables and Reference Information}

\section*{Table of Functions and Instructions}

Functions return a value, list, or matrix. You can use functions in an expression. Instructions initiate an action. Some functions and instructions have arguments. Optional arguments and accompanying commas are enclosed in brackets ([]). For details about an item, including argument descriptions and restrictions, turn to the page listed on the right side of the table.

From the catalog, you can paste any function or instruction to the home screen or to a command line in the program editor. However, some functions and instructions are not valid on the home screen. The items in this table appear in the same order as they appear in the catalog.
\(\dagger\) indicates either keystrokes that are valid in the program editor only or ones that paste certain instructions when you are in the program editor. Some keystrokes display menus that are available only in the program editor. Others paste mode, format, or table-set instructions only when you are in the program editor.
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline abs(value) & Returns the absolute value of a real number, expression, list, or matrix. & \begin{tabular}{l}
MATH \\
NUM \\
1:abs(
\end{tabular} \\
\hline abs(complex value) & Returns the magnitude of a complex number or list. & \begin{tabular}{l}
MATH \\
CPX \\
5:abs(
\end{tabular} \\
\hline value \(A\) and value B & Returns 1 if both valueA and valueB are \(\neq 0\). value \(A\) and value \(B\) can be real numbers, expressions, or lists. & \begin{tabular}{l}
2nd [TEST] \\
LOGIC \\
1:and
\end{tabular} \\
\hline angle(value) & Returns the polar angle of a complex number or list of complex numbers. & MATH CPX 4:angle(\\
\hline \begin{tabular}{l}
ANOVA(list1,list2 \\
[,list3,...,list20])
\end{tabular} & Performs a one-way analysis of variance for comparing the means of two to 20 populations. & \[
\begin{aligned}
& \text { STAT } \\
& \text { TESTS } \\
& \text { F:ANOVA(}
\end{aligned}
\] \\
\hline Ans & Returns the last answer. & 2nd [ANS] \\
\hline Archive & Moves the specified variables from RAM to the user data archive memory. & 2nd [MEM] 5:Archive \\
\hline Asm(assemblyprgmname) & Executes an assembly language program. & 2nd [CATALOG] Asm(\\
\hline AsmComp(prgmASM1, prgmASM2) & Compiles an assembly language program written in ASCII and stores the hex version. & 2nd [CATALOG] AsmComp(\\
\hline AsmPrgm & Must be used as the first line of an assembly language program. & 2nd [CATALOG] AsmPrgm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline \[
\begin{aligned}
& \text { augment }(\text { matrix } A, \\
& \text { matrix } B \text {) }
\end{aligned}
\] & Returns a matrix, which is matrix \(B\) appended to matrixA as new columns. & 2nd [MATRIX] MATH 7:augment(\\
\hline augment(listA,listB) & Returns a list, which is listB concatenated to the end of listA. & 2nd [LIST] OPS 9:augment(\\
\hline AxesOff & Turns off the graph axes. & \(\dagger\) 2nd [FORMAT]
AxesOff \\
\hline AxesOn & Turns on the graph axes. & \[
\begin{aligned}
& \dagger \text { [2nd [FORMAT] } \\
& \text { AxesOn }
\end{aligned}
\] \\
\hline a+bi & Sets the mode to rectangular complex number mode (a+bi). & \[
\begin{array}{r}
\dagger \text { MODE } \\
\mathbf{a + b i}
\end{array}
\] \\
\hline bal(npmt[,roundvalue]) & Computes the balance at \(n p m t\) for an amortization schedule using stored values for PV, I\%, and PMT and rounds the computation to roundvalue. & \begin{tabular}{l}
APPS 1:Finance \\
CALC \\
9:bal(
\end{tabular} \\
\hline binomcdf((umtria) & Computes a cumulative probability at \(x\) for the discrete binomial distribution with the specified numtrials and probability \(p\) of success on each trial. & \begin{tabular}{l}
2nd [DISTR] \\
DISTR \\
A:binomcdf(
\end{tabular} \\
\hline binompdf(numtrials,p[,x]) & Computes a probability at \(x\) for the discrete binomial distribution with the specified numtrials and probability \(p\) of success on each trial. & \begin{tabular}{l}
2nd [DISTR] \\
DISTR \\
0:binompdf(
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline \(\chi^{2} \mathbf{c d f}(\) lowerbound, upperbound,df) & Computes the \(\chi^{2}\) distribution probability between lowerbound and upperbound for the specified degrees of freedom \(d f\). & \[
\begin{aligned}
& \text { 2nd [DISTR] } \\
& \text { DISTR } \\
& 7: \chi^{2} \mathbf{c d f}
\end{aligned}
\] \\
\hline \(\chi^{2} \mathbf{p d f}(x, d f)\) & Computes the probability density function (pdf) for the \(\chi^{2}\) distribution at a specified \(x\) value for the specified degrees of freedom \(d f\). & \[
\begin{aligned}
& \text { 2nd [DISTR] } \\
& \text { DISTR } \\
& 6: \chi^{2} \text { pdf(}
\end{aligned}
\] \\
\hline \(\chi^{2-T e s t}\) (observedmatrix, expectedmatrix [,drawflag]) & Performs a chi-square test. drawflag=1 draws results; drawflag \(=\mathbf{0}\) calculates results. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { C: } \chi^{2-T e s t(~}
\end{aligned}
\] \\
\hline Circle(X,Y,radius) & Draws a circle with center (\(X, Y\)) and radius. & 2nd [DRAW] DRAW 9:Circle(\\
\hline Clear Entries & Clears the contents of the Last Entry storage area. & \begin{tabular}{l}
2nd [MEM] \\
MEMORY \\
3:Clear Entries
\end{tabular} \\
\hline ClrAllLists & Sets to \(\mathbf{0}\) the dimension of all lists in memory. & 2nd [MEM] MEMORY 4:CIrAIILists \\
\hline ClrDraw & Clears all drawn elements from a graph or drawing. & \begin{tabular}{l}
2nd [DRAW] \\
DRAW \\
1:ClrDraw
\end{tabular} \\
\hline CIrHome & Clears the home screen. & \(\dagger\) PRGM
I/O
8:CIrHome \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline CIrList listnamel [,listname2, ..., listname n] & Sets to \(\mathbf{0}\) the dimension of one or more listnames. & \begin{tabular}{l}
STAT \\
EDIT \\
4:CIrList
\end{tabular} \\
\hline CIrTable & Clears all values from the table. & \(\dagger\) PRGM
9:CIrTable \\
\hline conj(value) & Returns the complex conjugate of a complex number or list of complex numbers. & \[
\begin{aligned}
& \text { MATH } \\
& \text { CPX } \\
& \text { 1:conj(}
\end{aligned}
\] \\
\hline Connected & Sets connected plotting mode; resets all \(\mathbf{Y}=\) editor graph-style settings to * & \begin{tabular}{l}
\(\dagger\) \\
† MODE Connected
\end{tabular} \\
\hline CoordOff & Turns off cursor coordinate value display. & \begin{tabular}{l}
† 2nd [FORMAT] \\
\(\dagger\) CoordOff
\end{tabular} \\
\hline CoordOn & Turns on cursor coordinate value display. & \begin{tabular}{l}
\(\dagger\) \\
† 2nd [FORMAT] CoordOn
\end{tabular} \\
\hline \(\cos\) (value) & Returns cosine of a real number, expression, or list. & COS \\
\hline \(\cos ^{-1}\) (value) & Returns arccosine of a real number, expression, or list. & 2nd [\(\mathrm{cos}^{-1}\)] \\
\hline \(\cosh (\) value) & Returns hyperbolic cosine of a real number, expression, or list. & 2nd [CATALOG] cosh(\\
\hline \(\cosh ^{-1}\) (value) & Returns hyperbolic arccosine of a real number, expression, or list. & 2nd [CATALOG] \(\cosh ^{-1}\) (\\
\hline CubicReg [Xlistname, Ylistname,freqlist, regequ] & Fits a cubic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \begin{tabular}{l}
STAT \\
CALC \\
6:CubicReg
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline cumSum(list) & Returns a list of the cumulative sums of the elements in list, starting with the first element. & 2nd [LIST] OPS 6:cumSum(\\
\hline cumSum(matrix) & Returns a matrix of the cumulative sums of matrix elements. Each element in the returned matrix is a cumulative sum of a matrix column from top to bottom. & 2nd [MATRIX] MATH 0:cumSum(\\
\hline dbd(date1,date2) & Calculates the number of days between date 1 and date 2 using the actual-day-count method. & \begin{tabular}{l}
APPS 1:Finance CALC \\
D:dbd(
\end{tabular} \\
\hline value Dec & Displays a real or complex number, expression, list, or matrix in decimal format. & \[
\begin{aligned}
& \text { MATH } \\
& \text { MATH } \\
& \text { 2:>Dec }
\end{aligned}
\] \\
\hline Degree & Sets degree angle mode. & \[
\dagger \frac{\text { MODEE }}{\text { Degree }}
\] \\
\hline DelVar variable & Deletes from memory the contents of variable. & \begin{tabular}{l}
\(\dagger\) \\
PRGM CTL G:DeIVar
\end{tabular} \\
\hline DependAsk & Sets table to ask for dependentvariable values. & \[
\begin{aligned}
& \dagger \text { [2nd [TBLSET] } \\
& \text { Depend: Ask }
\end{aligned}
\] \\
\hline DependAuto & Sets table to generate dependentvariable values automatically. & \(\dagger\) 2nd [TBLSET] Depend: Auto \\
\hline \(\overline{\operatorname{det}}\) (matrix) & Returns determinant of matrix. & \begin{tabular}{l}
2nd [MATRIX] \\
MATH \\
1:det(
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline DiagnosticOff & Sets diagnostics-off mode; \(\mathbf{r}, \mathbf{r}^{\mathbf{2}}\), and \(\mathbf{R}^{\mathbf{2}}\) are not displayed as regression model results. & \begin{tabular}{l}
[2nd [CATALOG] \\
DiagnosticOff
\end{tabular} \\
\hline DiagnosticOn & Sets diagnostics-on mode; \(\mathbf{r}, \mathbf{r}^{\mathbf{2}}\), and \(\mathbf{R}^{\mathbf{2}}\) are displayed as regression model results. & [2nd [catalog] DiagnosticOn \\
\hline dim(listname) & Returns the dimension of listname. & \begin{tabular}{l}
[2nd [LIST] \\
OPS \\
3:dim(
\end{tabular} \\
\hline dim(matrixname) & Returns the dimension of matrixname as a list. & \begin{tabular}{l}
[2nd [MATRIX] \\
MATH \\
3:dim(
\end{tabular} \\
\hline length \(\boldsymbol{\operatorname { d i m }}\) (listname) & Assigns a new dimension (length) to a new or existing listname. & [2nd [LIST]
OPS 3:dim(\\
\hline \(\{\) rows,columns \(\}\) \(\operatorname{dim}(\) matrixname \()\) & Assigns new dimensions to a new or existing matrixname. & \begin{tabular}{l}
[2nd [MATRIX] \\
MATH \\
3:dim(
\end{tabular} \\
\hline Disp & Displays the home screen. & \[
\begin{aligned}
& \dagger \frac{\text { PRGMM }}{1 / 0} \\
& \text { 3:Disp }
\end{aligned}
\] \\
\hline Disp [valueA, valueB, value \(C, \ldots\), ,value \(n\)] & Displays each value. & \[
\begin{aligned}
& \dagger \frac{\text { PRGMM }}{1 / 0} \\
& \text { 3:Disp }
\end{aligned}
\] \\
\hline DispGraph & Displays the graph. & \[
\begin{aligned}
& + \text { PRGM } \\
& \text { 1/O } \\
& \text { 4:DispGraph }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline DispTable & Displays the table. & \(\dagger\) PRGM
I/O
5:DispTable \\
\hline value>DMS & Displays value in DMS format. & 2nd [ANGLE] ANGLE 4:>DMS \\
\hline Dot & Sets dot plotting mode; resets all \(\mathbf{Y}=\) editor graph-style settings to \(\because\). . & \[
\begin{gathered}
\dagger \text { MODE } \\
\text { Dot }
\end{gathered}
\] \\
\hline DrawF expression & Draws expression (in terms of \(\mathbf{X}\)) on the graph. & \begin{tabular}{l}
2nd [DRAW] \\
DRAW \\
6:DrawF
\end{tabular} \\
\hline Drawlnv expression & Draws the inverse of expression by plotting \(\mathbf{X}\) values on the y -axis and \(\mathbf{Y}\) values on the \(x\)-axis. & \begin{tabular}{l}
2nd [DRAW] \\
DRAW \\
8:DrawInv
\end{tabular} \\
\hline \begin{tabular}{l}
:DS<(variable,value) \\
:commandA \\
:commands
\end{tabular} & Decrements variable by 1 ; skips commandA if variable < value. & \[
\begin{aligned}
& \dagger \text { PRGM } \\
& \text { CTL } \\
& B: D S<(
\end{aligned}
\] \\
\hline \(\mathbf{e}^{\wedge}(\) power \()\) & Returns e raised to power. & 2nd [\(\mathrm{e}^{x}\)] \\
\hline \(\mathbf{e}^{\wedge}(\) list \()\) & Returns a list of e raised to a list of powers. & 2nd [\(\mathrm{e}^{x}\)] \\
\hline Exponent: valueE exponent & Returns value times 10 to the exponent. & 2nd [EE] \\
\hline \begin{tabular}{l}
Exponent: \\
listEexponent
\end{tabular} & Returns list elements times 10 to the exponent. & 2nd [EE] \\
\hline Exponent: matrix Eexponent & Returns matrix elements times 10 to the exponent. & 2nd [EE] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/tem \\
\hline Eff(nominal rate, compounding periods) & Computes the effective interest rate. & \[
\begin{aligned}
& \text { APPS } 1 \text { :Finance } \\
& \text { CALC } \\
& \text { C:DEff(}
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Else \\
See If:Then:Else
\end{tabular}} \\
\hline End & Identifies end of For(, If-Then-Else, Repeat, or While loop. & \[
\begin{aligned}
& \dagger \text { PRGM } \\
& \text { CTL } \\
& \text { 7:End }
\end{aligned}
\] \\
\hline Eng & Sets engineering display mode. & \[
\dagger \frac{\text { MODE }}{\text { Eng }}
\] \\
\hline Equ \({ }^{\text {String }} \mathbf{(Y = v a r , S t r} n\)) & Converts the contents of a \(\mathbf{Y}=\) var to a string and stores it in Strn. & 2nd [CATALOG] EquiString(\\
\hline expr(string) & Converts string to an expression and executes it. & 2nd [CATALOG] expr(\\
\hline ExpReg [Xlistname, Ylistname,freqlist,regequ] & Fits an exponential regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \[
\begin{aligned}
& \text { STAT } \\
& \text { CALC } \\
& \text { 0:ExpReg }
\end{aligned}
\] \\
\hline ExprOff & Turns off the expression display during TRACE. & \(\dagger\) 2nd [FORMAT] ExprOff \\
\hline ExprOn & Turns on the expression display during TRACE. & \[
\begin{aligned}
& \dagger \text { 2nd [FORMAT] } \\
& \text { ExprOn }
\end{aligned}
\] \\
\hline Fcdf(lowerbound, upperbound, numerator \(d f\), denominator \(d f\)) & Computes the F distribution probability between lowerbound and upperbound for the specified numerator \(d f\) (degrees of freedom) and denominator df. & \[
\begin{aligned}
& \text { 2nd [DISTR] } \\
& \text { DISTR } \\
& \text { 9:Fcdf(}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/tem \\
\hline Fill(value,matrixname) & Stores value to each element in matrixname. & \begin{tabular}{l}
[2nd [MATRIX] \\
MATH \\
4:Fill(
\end{tabular} \\
\hline Fill(value,listname) & Stores value to each element in listname. & \[
\begin{aligned}
& \text { 2nd [LIST] } \\
& \text { OPS } \\
& \text { 4:Fill(}
\end{aligned}
\] \\
\hline Fix \# & Sets fixed-decimal mode for \# of decimal places. & \[
\begin{aligned}
& \dagger \text { MODE } \\
& 0123456789 \\
& \text { (select one) }
\end{aligned}
\] \\
\hline Float & Sets floating decimal mode. & \[
\begin{aligned}
& \dagger \text { MODE } \\
& \text { Float }
\end{aligned}
\] \\
\hline fMax(expression,variable, lower,upper[,tolerance]) & Returns the value of variable where the local maximum of expression occurs, between lower and upper, with specified tolerance. & \begin{tabular}{l}
MATH \\
MATH \\
7:fMax(
\end{tabular} \\
\hline \(\mathbf{f M i n}\) (expression,variable, lower,upper[,tolerance]) & Returns the value of variable where the local minimum of expression occurs, between lower and upper, with specified tolerance. & \begin{tabular}{l}
MATH \\
MATH \\
6:fMin(
\end{tabular} \\
\hline fnInt(expression,variable, lower,upper[,tolerance]) & Returns the function integral of expression with respect to variable, between lower and upper, with specified tolerance. & \begin{tabular}{l}
MATH \\
MATH \\
\(9: f n \operatorname{lnt}(\)
\end{tabular} \\
\hline FnOff [function\#, function\#,...,function n] & Deselects all \(\mathbf{Y}=\) functions or specified \(Y=\) functions. & \begin{tabular}{l}
VARS \\
Y-VARS On/Off 2:FnOff
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline FnOn [function\#, function\#,...,function n] & Selects all \(\mathbf{Y}=\) functions or specified \(\mathbf{Y}=\) functions. & \begin{tabular}{l}
VARS \\
Y-VARS On/Off \\
1:FnOn
\end{tabular} \\
\hline ```
:For(variable,begin,end
 [,increment])
:commands
:End
:commands
``` & Executes commands through End, incrementing variable from begin by increment until variable>end. & \[
\begin{aligned}
& \dagger \text { PRGM } \\
& \text { CTL } \\
& \text { 4:For( }
\end{aligned}
\] \\
\hline fPart(value) & Returns the fractional part or parts of a real or complex number, expression, list, or matrix. & MATH NUM 4:fPart( \\
\hline ```
Fpdf(x,numerator df,
    denominator df)
``` & Computes the F distribution probability between lowerbound and upperbound for the specified numerator \(d f\) (degrees of freedom) and denominator \(d f\). & \begin{tabular}{l}
2nd [DISTR] \\
DISTR \\
8:Fpdf(
\end{tabular} \\
\hline value Frac & Displays a real or complex number, expression, list, or matrix as a fraction simplified to its simplest terms. & \begin{tabular}{l}
MATH \\
MATH \\
1:PFac
\end{tabular} \\
\hline Full & Sets full screen mode. & \[
\frac{\dagger \text { MODE }}{\text { Full }}
\] \\
\hline Func & Sets function graphing mode. & \[
\frac{\dagger \text { MODE }}{\text { Func }}
\] \\
\hline GarbageCollect & Displays the garbage collection menu to allow cleanup of unused archive memory. & 2nd [CATALOG] GarbageCollect \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/tem \\
\hline \(\operatorname{gcd}(\) valueA, valueB) & Returns the greatest common divisor of valueA and valueB, which can be real numbers or lists. & \begin{tabular}{l}
MATH \\
NUM \\
9:gcd(
\end{tabular} \\
\hline geometcdf(\(p, x\)) & Computes a cumulative probability at \(x\), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success \(p\). & \begin{tabular}{l}
2nd [DISTR] DISTR \\
E:geometcdf(
\end{tabular} \\
\hline geometpdf(\(p, x\)) & Computes a probability at \(x\), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success \(p\). & \begin{tabular}{l}
2nd [DISTR] \\
DISTR \\
D:geometpdf(
\end{tabular} \\
\hline Get(variable) & Gets data from the CBL \(2^{\text {TM }} /\) CBL \(^{\text {TM }}\) or CBR \({ }^{\text {TM }}\) System and stores it in variable. & \[
\begin{aligned}
& \dagger \text { PRGM } \\
& \text { I/O } \\
& \text { A:Get(}
\end{aligned}
\] \\
\hline GetCalc(variable) & Gets contents of variable on another TI-83 Plus and stores it to variable on the receiving TI-83 Plus. & \(\dagger\) PRGM
I/O
0:GetCalc(\\
\hline getKey & Returns the key code for the current keystroke, or \(\mathbf{0}\), if no key is pressed. & \\
\hline Goto label & Transfers control to label. & \[
\begin{aligned}
& \dagger \text { PRGM } \\
& \text { CTL } \\
& \text { O:Goto }
\end{aligned}
\] \\
\hline GraphStyle(function\#, graphstyle\#) & Sets a graphstyle for function\#. & ```
+PRGM
 CTL
 H:GraphStyle(
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline GridOff & Turns off grid format. & \[
\begin{aligned}
& \dagger \text { 2nd [FORMAT] } \\
& \text { GridOff }
\end{aligned}
\] \\
\hline GridOn & Turns on grid format. & \[
\begin{aligned}
& \dagger \text { 2nd [FORMAT] } \\
& \text { GridOn }
\end{aligned}
\] \\
\hline G-T & Sets graph-table vertical split-screen mode. & \[
\frac{\dagger \text { MODE }}{\text { G-T }}
\] \\
\hline Horiz & Sets horizontal split-screen mode. & \[
\dagger \frac{\text { MODE }}{\text { Horiz }}
\] \\
\hline Horizontal \(y\) & Draws a horizontal line at \(y\). & \[
\begin{aligned}
& \text { 2nd] [DRAW] } \\
& \text { DRAW } \\
& \text { 3:Horizontal }
\end{aligned}
\] \\
\hline identity(dimension) & Returns the identity matrix of dimension rows \(\times\) dimension columns. & \begin{tabular}{l}
2nd [MATRIX] \\
MATH \\
5:identity(
\end{tabular} \\
\hline :If condition :commandA :commands & If condition \(=0\) (false), skips commandA. & \[
\begin{gathered}
\dagger \text { PRGM } \\
\text { CTL } \\
\text { 1:If }
\end{gathered}
\] \\
\hline :If condition :Then :commands :End :commands & Executes commands from Then to End if condition = 1 (true). & \begin{tabular}{l}
\(\dagger\) \\
PRGM CTL 2:Then
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline int(value) & Returns the largest integer \(\leq\) a real or complex number, expression, list, or matrix. & \begin{tabular}{l}
MATH \\
5:int(
\end{tabular} \\
\hline \(\Sigma \operatorname{Int}(p m t 1, p m t 2\) [,roundvalue]) & Computes the sum, rounded to roundvalue, of the interest amount between pmtl and pmt 2 for an amortization schedule. & \begin{tabular}{l}
APPS 1:Finance CALC \\
A: \(\operatorname{Ilnt}(\)
\end{tabular} \\
\hline invNorm(area[,u, \({ }^{\text {a }}\) ) & Computes the inverse cumulative normal distribution function for a given area under the normal distribution curve specified by \(\mu\) and \(\sigma\). & \begin{tabular}{l}
2nd [DISTR] DISTR \\
3:invNorm(
\end{tabular} \\
\hline iPart(value) & Returns the integer part of a real or complex number, expression, list, or matrix. & \begin{tabular}{l}
MATH \\
3:iPart(
\end{tabular} \\
\hline \(\operatorname{irr}(\) CFO,CFList[,CFFreq]) & Returns the interest rate at which the net present value of the cash flow is equal to zero. & \begin{tabular}{l}
APPS 1:Finance CALC \\
8:irr(
\end{tabular} \\
\hline \begin{tabular}{l}
:IS>(variable,value) \\
:commandA \\
:commands
\end{tabular} & Increments variable by 1; skips commandA if variable>value. & \[
\begin{aligned}
& \dagger \text { PRGM } \\
& \text { CTL } \\
& \text { A:IS>( }
\end{aligned}
\] \\
\hline Llistname & Identifies the next one to five characters as a user-created list name. & \[
\begin{aligned}
& \text { 2nd [LIST] } \\
& \text { OPS } \\
& \text { B:( }
\end{aligned}
\] \\
\hline LabelOff & Turns off axes labels. & \(\dagger\) 2nd [FORMAT] LabelOff \\
\hline LabelOn & Turns on axes labels. & \(\dagger\) 2nd [FORMAT] LabelOn \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline Lbl label & Creates a label of one or two characters. & \[
\begin{gathered}
\dagger \text { PRGM } \\
\text { CTL } \\
\text { 9:LbI }
\end{gathered}
\] \\
\hline \(\mathbf{I c m ( v a l u e A , v a l u e B )}\) & Returns the least common multiple of \(v a l u e A\) and valueB, which can be real numbers or lists. & \begin{tabular}{l}
MATH \\
NUM \\
8:Icm(
\end{tabular} \\
\hline length(string) & Returns the number of characters in string. & 2nd [CATALOG] length( \\
\hline Line( \(X 1, Y 1, X 2, Y 2)\) & Draws a line from \((X 1, Y 1)\) to \((X 2, Y 2)\). & \begin{tabular}{l}
2nd [DRAW] \\
DRAW \\
2:Line(
\end{tabular} \\
\hline Line ( \(X 1, Y 1, X 2, Y 2,0)\) & Erases a line from ( \(X 1, Y 1\) ) to \((X 2, Y 2)\). & \begin{tabular}{l}
2nd [DRAW] \\
DRAW \\
2:Line(
\end{tabular} \\
\hline LinReg(a+bx) [Xlistname, Ylistname,freqlist, regequ] & Fits a linear regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \begin{tabular}{l}
STAT \\
CALC \\
8:LinReg(a+bx)
\end{tabular} \\
\hline LinReg(ax+b) [Xlistname, Ylistname,freqlist, regequ] & Fits a linear regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \begin{tabular}{l}
STAT \\
CALC \\
4:LinReg(ax+b)
\end{tabular} \\
\hline LinRegTTest [Xlistname, Ylistname,freqlist, alternative,regequ] & \begin{tabular}{l}
Performs a linear regression and a \(t\)-test. alternative \(=-1\) is <; \\
alternative \(=\mathbf{0}\) is \(\neq\); alternative \(=\mathbf{1}\) is \(>\).
\end{tabular} &  \\
\hline \(\Delta\) List(list) & Returns a list containing the differences between consecutive elements in list. & \[
\begin{aligned}
& \text { 2nd [LIST] } \\
& \text { OPS } \\
& \text { 7: } \Delta \text { List( }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline List \(>\) matr(listname 1,..., listname n,matrixname) & Fills matrixname column by column with the elements from each specified listname. & 2nd [LIST]
OPS
0:List \(>\) matr( \\
\hline \(\boldsymbol{I n}\) (value) & Returns the natural logarithm of a real or complex number, expression, or list. & LN \\
\hline LnReg [Xlistname, Ylistname,freqlist, regequ] & Fits a logarithmic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \begin{tabular}{l}
STAT \\
CALC \\
9:LnReg
\end{tabular} \\
\hline \(\boldsymbol{\operatorname { l o g }}\) (value) & Returns logarithm of a real or complex number, expression, or list. & LOG \\
\hline Logistic [Xlistname, Ylistname,freqlist, regequ] & Fits a logistic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \begin{tabular}{l}
STAT \\
CALC \\
B:Logistic
\end{tabular} \\
\hline Matr>list(matrix, listnameA,...,listname n) & Fills each listname with elements from each column in matrix. & 2nd [LIST] OPSA:Matr list( \\
\hline Matr>list(matrix, column\#,listname) & Fills a listname with elements from a specified column\# in matrix. & 2nd [LIST] OPSA:Matr list( \\
\hline max(valueA, valueB) & Returns the larger of valueA and value \(B\). & \begin{tabular}{l}
MATH \\
NUM \\
7:max(
\end{tabular} \\
\hline \(\boldsymbol{\operatorname { m a x } ( \text { list } )}\) & Returns largest real or complex element in list. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
2:max(
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline \(\boldsymbol{\operatorname { m a x }}\) (listA,listB) & Returns a real or complex list of the larger of each pair of elements in listA and list \(B\). & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
2:max
\end{tabular} \\
\hline \(\boldsymbol{\operatorname { m a x }}\) (value, list) & Returns a real or complex list of the larger of value or each list element. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
2:max
\end{tabular} \\
\hline mean(list[,freqlist]) & Returns the mean of list with frequency freqlist. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
3:mean(
\end{tabular} \\
\hline median(list[,freqlist]) & Returns the median of list with frequency freqlist. & 2nd [LIST] MATH 4:median( \\
\hline Med-Med [Xlistname, Ylistname,freqlist, regequ] & Fits a median-median model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \[
\begin{aligned}
& \text { STAT } \\
& \text { CALC } \\
& \text { 3:Med-Med }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Menu("title","text1",label1 } \\
& {[, \ldots, \text {,"text7",label7]) }}
\end{aligned}
\] & Generates a menu of up to seven items during program execution. & \begin{tabular}{l}
\(\dagger\) \\
\(\dagger\) PRGM CTL C:Menu(
\end{tabular} \\
\hline \(\boldsymbol{\operatorname { m i n }}(\) value \(A, v a l u e B) ~\) & Returns smaller of valueA and valueB. & \begin{tabular}{l}
MATH \\
NUM \\
6:min
\end{tabular} \\
\hline \(\min (\) list \()\) & Returns smallest real or complex element in list. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
\(1: m i n(\)
\end{tabular} \\
\hline \(\boldsymbol{\operatorname { m i n }}(\mathrm{list}\) A,listB) & Returns real or complex list of the smaller of each pair of elements in listA and listB. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
1:min(
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline min(value, list) & Returns a real or complex list of the smaller of value or each list element. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
1:min(
\end{tabular} \\
\hline value A nCr valueB & Returns the number of combinations of valueA taken valueB at a time. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& 3: \mathrm{nCr}
\end{aligned}
\] \\
\hline value \(\mathbf{n C r}\) list & Returns a list of the combinations of value taken each element in list at a time. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& 3: \mathrm{nCr}
\end{aligned}
\] \\
\hline list \(\mathbf{n C r}\) value & Returns a list of the combinations of each element in list taken value at a time. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& 3: \mathrm{nCr}
\end{aligned}
\] \\
\hline listA \(\mathbf{n C r}\) list \(B\) & Returns a list of the combinations of each element in listA taken each element in list \(B\) at a time. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& 3: \mathrm{nCr}
\end{aligned}
\] \\
\hline ```
nDeriv(expression,variable,
    value[,\varepsilon])
``` & Returns approximate numerical derivative of expression with respect to variable at value, with specified \(\varepsilon\). & \begin{tabular}{l}
MATH \\
MATH \\
8:nDeriv(
\end{tabular} \\
\hline Nom(effective rate, compounding periods) & Computes the nominal interest rate. & \begin{tabular}{l}
APPS 1:Finance CALC \\
B:Nom(
\end{tabular} \\
\hline Normal & Sets normal display mode. & \[
\begin{aligned}
& \dagger \text { MODEE } \\
& \text { Normal }
\end{aligned}
\] \\
\hline normalcdf(lowerbound, upperbound \([, \mu, \sigma]\)) & Computes the normal distribution probability between lowerbound and upperbound for the specified \(\mu\) and \(\sigma\). & \begin{tabular}{l}
2nd [DISTR] \\
DISTR \\
2:normalcdf(
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & \begin{tabular}{l}
Key or Keys/ \\
Menu or Screen/tem
\end{tabular} \\
\hline normalpdf(\(x[, \mu, \sigma]\)) & Computes the probability density function for the normal distribution at a specified \(x\) value for the specified \(\mu\) and \(\sigma\). & 2nd [DISTR] DISTR 1:normalpdf(\\
\hline not(value) & Returns \(\mathbf{0}\) if value is \(\neq 0\). value can be a real number, expression, or list. & \begin{tabular}{l}
2nd [TEST] \\
LOGIC \\
4:not(
\end{tabular} \\
\hline value A nPr valueB & Returns the number of permutations of valueA taken valueB at a time. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& 2: \mathrm{nPr}
\end{aligned}
\] \\
\hline value \(\mathbf{n P r}\) list & Returns a list of the permutations of value taken each element in list at a time. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& \text { 2:nPr }
\end{aligned}
\] \\
\hline list \(\mathbf{n P r}\) value & Returns a list of the permutations of each element in list taken value at a time. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& 2: \mathrm{nPr}
\end{aligned}
\] \\
\hline listA \(\mathbf{n P r}\) list \(B\) & Returns a list of the permutations of each element in listA taken each element in list \(B\) at a time. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& 2: \mathrm{nPr}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { npv(interest rate,CFO, } \\
& \text { CFList }[, \text { CFFreq }])
\end{aligned}
\] & Computes the sum of the present values for cash inflows and outflows. & \begin{tabular}{l}
APPS 1:Finance CALC \\
7:npv(
\end{tabular} \\
\hline value \(A\) or value B & Returns 1 if value \(A\) or value \(B\) is \(\neq 0\). value \(A\) and value \(B\) can be real numbers, expressions, or lists. & \\
\hline Output(row,column, "text") & Displays text beginning at specified row and column. & \[
\begin{aligned}
& \dagger \text { PRGM } \\
& \text { 1/O } \\
& \text { 6:Output(}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Function or Instruction/ & & \begin{tabular}{l}
Key or Keys/ \\
Arguments
\end{tabular} \\
\hline \begin{tabular}{l}
Output(row, column, \\
value)
\end{tabular} & Result & Menu or Screen/lem
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline Plot\#ttype,datalistname, data axis,mark) & Defines Plot\# (1, 2, or 3) of type NormProbPlot for datalistname on data axis using mark. data axis can be \(\mathbf{X}\) or \(\mathbf{Y}\). & \(\dagger\) 2nd [STAT PLOT] PLOTS 1:Plot1-2:Plot2-3:Plot3- \\
\hline PlotsOff [1,2,3] & Deselects all stat plots or one or more specified stat plots (1, 2, or 3). & 2nd [STAT PLOT] STAT PLOTS 4:PlotsOff \\
\hline PlotsOn [1,2,3] & Selects all stat plots or one or more specified stat plots (1, 2, or 3). & 2nd [STAT PLOT] STAT PLOTS 5:PlotsOn \\
\hline Pmt_Bgn & Specifies an annuity due, where payments occur at the beginning of each payment period. & \[
\begin{aligned}
& \text { APPS 1:Finance } \\
& \text { CALC } \\
& \text { F:Pmt_Bgn }
\end{aligned}
\] \\
\hline Pmt_End & Specifies an ordinary annuity, where payments occur at the end of each payment period. & \[
\begin{aligned}
& \hline \text { APPS 1:Finance } \\
& \text { CALC } \\
& \text { E:Pmt_End }
\end{aligned}
\] \\
\hline poissoncdf(\(\mu, x\)) & Computes a cumulative probability at \(x\) for the discrete Poisson distribution with specified mean \(\mu\). & \begin{tabular}{l}
2nd [DISTR] \\
DISTR \\
C:poissoncdf(
\end{tabular} \\
\hline poissonpdf(\(\mu, x\)) & Computes a probability at \(x\) for the discrete Poisson distribution with the specified mean \(\mu\). & \begin{tabular}{l}
2nd [DISTR] \\
DISTR \\
B:poissonpdf(
\end{tabular} \\
\hline Polar & Sets polar graphing mode. & \[
\begin{gathered}
\dagger \text { MODE } \\
\text { PoI }
\end{gathered}
\] \\
\hline complex value Polar & Displays complex value in polar format. & \[
\begin{aligned}
& \text { MATH } \\
& \text { CPX } \\
& \text { 7:PPolar }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline PolarGC & Sets polar graphing coordinates format. & \(\dagger\) 2nd [FORMAT] PolarGC \\
\hline prgmname & Executes the program name. & \begin{tabular}{l}
\(\dagger\) \\
PRGM CTRL D:prgm
\end{tabular} \\
\hline \(\underset{[, \text { roundvalue }])}{\mathrm{EPrn}(\text { pmt })}\) & Computes the sum, rounded to roundvalue, of the principal amount between pmtl and pmt2 for an amortization schedule. & \[
\begin{aligned}
& \text { APPS 1:Finance } \\
& \text { CALC } \\
& 0: \Sigma \text { Prn(}
\end{aligned}
\] \\
\hline prod(list[,start,end]) & Returns product of list elements between start and end. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
6:prod(
\end{tabular} \\
\hline \begin{tabular}{l}
Prompt variableA \\
[,variableB,...,variable n]
\end{tabular} & Prompts for value for variableA, then variableB, and so on. & \(\dagger\) PRGM
1/O
2:Prompt \\
\hline \[
\begin{aligned}
& \text { 1-PropZInt(} x, n \\
& \text { [,confidence level]) }
\end{aligned}
\] & Computes a one-proportion \(z\) confidence interval. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { A:1-PropZInt(}
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\text { 2-PropZInt(} x 1, n 1, x 2, n 2 \\
{[, \text { confidence level] })}
\end{gathered}
\] & Computes a two-proportion \(z\) confidence interval. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { B:2-PropZInt(}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { 1-PropZTest(} \text { p0,x,n} \\
& \text { [,alternative,drawflag]) }
\end{aligned}
\] & Computes a one-proportion \(z\) test. alternative \(=-1\) is \(<\); alternative \(=0\) is \(\neq\); alternative \(=\mathbf{1}\) is \(>\). drawflag \(=1\) draws results; drawflag=0 calculates results. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 5:1-PropZTest(}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline \[
\begin{gathered}
\text { 2-PropZTest(x1,n1,x2,n2 } \\
\text { [,alternative,drawflag]) }
\end{gathered}
\] & Computes a two-proportion \(z\) test. alternative \(=-1\) is \(<\); alternative \(=\mathbf{0}\) is \(\neq\); alternative \(=1\) is \(>\). drawflag= \(=1\) draws results; drawflag=0 calculates results. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 6:2-PropZTest(}
\end{aligned}
\] \\
\hline Pt-Change (\(x, y\)) & Reverses a point at (\(x, y\)). & 2nd [DRAW] POINTS 3:Pt-Change(\\
\hline Pt-Off(\(x, y[\) mark]) & Erases a point at (\(x, y\)) using mark. & 2nd [DRAW] POINTS 2:Pt-Off(\\
\hline Pt-On(\(x, y[\) mark]) & Draws a point at (\(x, y\)) using mark. & \begin{tabular}{l}
2nd [DRAW] \\
POINTS \\
1:Pt-On(
\end{tabular} \\
\hline PwrReg [Xlistname, Ylistname,freqlist, regequ] & Fits a power regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \begin{tabular}{l}
STAT \\
CALC \\
A:PwrReg
\end{tabular} \\
\hline PxI-Change(row,column) & Reverses pixel at (row, column); \(0 \leq\) row \(\leq 62\) and \(0 \leq\) column \(\leq 94\). & \begin{tabular}{l}
2nd [DRAW] \\
POINTS \\
6:PxI-Change(
\end{tabular} \\
\hline PxI-Off(row,column) & \begin{tabular}{l}
Erases pixel at (row,column); \\
\(0 \leq\) row \(\leq 62\) and \(0 \leq\) column \(\leq 94\).
\end{tabular} & 2nd [DRAW] POINTS 5:PxI-Off(\\
\hline PxI-On(row,column) & Draws pixel at (row,column); \(0 \leq\) row \(\leq 62\) and \(0 \leq\) column \(\leq 94\). & 2nd [DRAW] POINTS 4:PxI-On(\\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline pxI-Test(row,column) & Returns 1 if pixel (row, column) is on, 0 if it is off; \(0 \leq\) row \(\leq 62\) and \(0 \leq\) column \(\leq 94\). & 2nd [DRaw] POINTS 7:pxI-Test(\\
\hline P>Rx \((r, \theta)\) & Returns X, given polar coordinates \(r\) and \(\theta\) or a list of polar coordinates. & \begin{tabular}{l}
2nd [ANGLE] \\
ANGLE \\
7:P>Rx(
\end{tabular} \\
\hline P>Ry \((r, \theta)\) & Returns Y, given polar coordinates \(r\) and \(\theta\) or a list of polar coordinates. & \begin{tabular}{l}
2nd [ANGLE] \\
ANGLE \\
8:P>Ry(
\end{tabular} \\
\hline QuadReg [Xlistname, Ylistname,freqlist, regequ] & Fits a quadratic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \begin{tabular}{l}
STAT \\
CALC \\
5:QuadReg
\end{tabular} \\
\hline QuartReg [Xlistname, Ylistname,freqlist, regequ] & Fits a quartic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. & \begin{tabular}{l}
STAT \\
CALC \\
7:QuartReg
\end{tabular} \\
\hline Radian & Sets radian angle mode. & \[
\begin{aligned}
& \dagger \text { MODE } \\
& \text { Radian }
\end{aligned}
\] \\
\hline rand[(numtrials)] & Returns a random number between 0 and 1 for a specified number of trials numtrials. & \begin{tabular}{l}
MATH \\
PRB \\
1:rand
\end{tabular} \\
\hline randBin(numtrials,prob [,numsimulations]) & Generates and displays a random real number from a specified Binomial distribution. & \begin{tabular}{l}
MATH \\
PRB \\
7:randBin(
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline randInt(lower, upper & Generates and displays a random & MATH \\
\hline [,numtrials]) & integer within a range specified by lower and upper integer bounds for a specified number of trials numtrials. & \begin{tabular}{l}
PRB \\
5:randInt(
\end{tabular} \\
\hline randM(rows,columns) & Returns a random matrix of rows (199) \(\times\) columns (1-99). & 2nd [MATRIX] MATH 6:randM(\\
\hline randNorm(\(\mu, \sigma[\),numtrials]) & Generates and displays a random real number from a specified Normal distribution specified by \(\mu\) and \(\sigma\) for a specified number of trials numtrials. & \begin{tabular}{l}
MATH \\
PRB \\
6:randNorm(
\end{tabular} \\
\hline \(\mathrm{re}^{\wedge} \boldsymbol{\theta} \boldsymbol{i}\) & Sets the mode to polar complex number mode (\(\mathbf{r} \boldsymbol{e}^{\wedge} \theta i\)). & \[
\frac{\dagger \text { MODE }}{\mathbf{r e}^{\wedge} \theta \boldsymbol{i}}
\] \\
\hline Real & Sets mode to display complex results only when you enter complex numbers. & \[
\begin{gathered}
\dagger \text { MODE } \\
\text { Real }
\end{gathered}
\] \\
\hline real(value) & Returns the real part of a complex number or list of complex numbers. & \[
\begin{aligned}
& \text { MATH } \\
& \text { CPX } \\
& \text { 2:real(}
\end{aligned}
\] \\
\hline RecallGDB \(n\) & Restores all settings stored in the graph database variable GDB \(n\). & \[
\begin{aligned}
& \text { [2nd] [DRAW] } \\
& \text { STO } \\
& \text { 4:RecalIGDB }
\end{aligned}
\] \\
\hline RecallPic \(n\) & Displays the graph and adds the picture stored in Picn. & \[
\begin{aligned}
& \text { 2nd [DRAW] } \\
& \text { STO } \\
& \text { 2:RecalIPic }
\end{aligned}
\] \\
\hline complex value Rect & Displays complex value or list in rectangular format. & \[
\begin{aligned}
& \text { MATH } \\
& \text { CPX } \\
& \text { 6:PRect }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline RectGC & Sets rectangular graphing coordinates format. & \[
\begin{aligned}
& \dagger \text { 2nd [FORMAT] } \\
& \text { RectGC }
\end{aligned}
\] \\
\hline ref(matrix) & Returns the row-echelon form of a matrix. & \begin{tabular}{l}
2nd [MATRIX] \\
MATH \\
A:ref(
\end{tabular} \\
\hline \begin{tabular}{l}
:Repeat condition :commands \\
:End \\
:commands
\end{tabular} & Executes commands until condition is true. & \[
\begin{aligned}
& \dagger \text { PRGM } \\
& \text { CTL } \\
& \text { 6:Repeat }
\end{aligned}
\] \\
\hline Return & Returns to the calling program. & \begin{tabular}{l}
\(\dagger\) \\
PRGM CTL E:Return
\end{tabular} \\
\hline round(value[,\#decimals]) & Returns a number, expression, list, or matrix rounded to \#decimals (\(\leq 9\)). & \begin{tabular}{l}
MATH \\
NUM \\
2:round(
\end{tabular} \\
\hline *row(value,matrix,row) & Returns a matrix with row of matrix multiplied by value and stored in row. & \begin{tabular}{l}
2nd [MATRIX] \\
MATH \\
E:*row(
\end{tabular} \\
\hline row+(matrix,rowA,rowB) & Returns a matrix with rowA of matrix added to rowB and stored in rowB. & \begin{tabular}{l}
2nd [MATRIX] \\
MATH \\
D:row+(
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { *row+(value,matrix, } \\
& \text { rowA,row } B \text {) }
\end{aligned}
\] & Returns a matrix with rowA of matrix multiplied by value, added to row \(B\), and stored in rowB. & \begin{tabular}{l}
2nd [MATRIX] \\
MATH \\
F:*row+(
\end{tabular} \\
\hline rowSwap(matrix,rowA, rowB) & Returns a matrix with rowA of matrix swapped with rowB. & \begin{tabular}{l}
2nd [MATRIX] \\
MATH \\
C:rowSwap(
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline rref(matrix) & Returns the reduced row-echelon form of a matrix. & \begin{tabular}{l}
2nd [MATRIX] \\
MATH \\
B:rref(
\end{tabular} \\
\hline \(\mathbf{R > P r}(x, y)\) & Returns R, given rectangular coordinates \(x\) and \(y\) or a list of rectangular coordinates. & \begin{tabular}{l}
2nd [ANGLE] \\
ANGLE \\
5: \(\operatorname{R}>\operatorname{Pr}(\)
\end{tabular} \\
\hline R>P \(\boldsymbol{\theta}(x, y)\) & Returns \(\theta\), given rectangular coordinates \(x\) and \(y\) or a list of rectangular coordinates. & \begin{tabular}{l}
2nd [ANGLE] \\
ANGLE \\
6:RP \(\theta_{\text {(}}\)
\end{tabular} \\
\hline \begin{tabular}{l}
2-SampFTest [listname1, listname2,freqlistl, freqlist2,alternative, drawflag] \\
(Data list input)
\end{tabular} & Performs a two-sample F test. alternative \(=-1\) is <; alternative \(=0\) is \(\neq\); alternative \(=\mathbf{1}\) is \(>\). drawflag \(=1\) draws results; drawflag=0 calculates results. & \(\dagger\) STAT
TESTS
D:2-SampFTest \\
\hline 2-SampFTest Sx1,n1, Sx2,n2[,alternative, drawflag] (Summary stats input) & Performs a two-sample F test. alternative \(=-1\) is \(<\); alternative \(=0\) is \(\neq\); alternative \(=\mathbf{1}\) is \(>\). drawflag \(=1\) draws results; drawflag=0 calculates results. & \(\dagger\) STAT
TESTS
D:2-SampFTest \\
\hline \begin{tabular}{l}
2-SampTInt [listname1, \\
listname2, freqlist1, freqlist2, confidence level,pooled] (Data list input)
\end{tabular} & Computes a two-sample \(t\) confidence interval. pooled=1 pools variances; pooled \(=\mathbf{0}\) does not pool variances. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 0:2-SampTInt }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { 2-SampTInt } \bar{x} 1, S x 1, n 1 \text {, } \\
& \bar{x} 2, S x 2, n 2 \\
& {[, \text { confidence level,pooled] }} \\
& \text { (Summary stats input) }
\end{aligned}
\] & Computes a two-sample \(t\) confidence interval. pooled=1 pools variances; pooled \(=\mathbf{0}\) does not pool variances. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 0:2-SampTInt }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline 2-SampTTest [listname1, listname2,freqlist1, freqlist2,alternative, pooled,drawflag] (Data list input) & Computes a two-sample \(t\) test. alternative \(=-1\) is \(<\); alternative \(=\mathbf{0}\) is \(\neq ;\) alternative \(=1\) is \(>\). pooled \(=1\) pools variances; pooled \(=\mathbf{0}\) does not pool variances. drawflag=1 draws results; drawflag \(=0\) calculates results. & \(\dagger\) STAT
TESTS
4:2-SampTTest \\
\hline 2-SampTTest \(\bar{x} 1, S x 1, n 1\), \(\bar{x} 2, S x 2, n 2[\), alternative, pooled,drawflag] (Summary stats input) & Computes a two-sample \(t\) test. alternative \(=-1\) is \(<\); alternative \(=\mathbf{0}\) is \(\neq ;\) alternative \(=\mathbf{1}\) is \(>\). pooled \(=1\) pools variances; pooled \(=\mathbf{0}\) does not pool variances. drawflag=1 draws results; drawflag \(=\mathbf{0}\) calculates results. & \\
\hline 2-SampZInt \(\left(\sigma_{1}, \sigma_{2}\right.\) [,listname1,listname2, freqlist1,freqlist2, confidence level]) (Data list input) & Computes a two-sample \(z\) confidence interval. & ```
\TAT
 TESTS
 9:2-SampZInt(
``` \\
\hline \[
\begin{aligned}
& \text { 2-SampZInt }\left(\sigma_{1}, \sigma_{2},\right. \\
& \bar{X} 1, n 1, \bar{x} 2, n 2 \\
& [, \text { confidence level }]) \\
& \text { (Summary stats input) }
\end{aligned}
\] & Computes a two-sample \(z\) confidence interval. &  \\
\hline 2-SampZTest \(\left(\sigma_{1}, \sigma_{2}\right.\) [,listname1,listname2, freqlist1,freqlist2, alternative,drawflag]) (Data list input) & Computes a two-sample \(z\) test. alternative \(=-1\) is \(<\); alternative \(=0\) is \(\neq\); alternative \(=\mathbf{1}\) is \(>\). drawflag \(=1\) draws results; drawflag=0 calculates results. & \(\dagger\) ¢ STAT
TESTS
3:2-SampZTest( \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline \[
\begin{aligned}
& \text { 2-SampZTest }\left(\sigma_{1}, \sigma_{2},\right. \\
& \bar{X} 1, n 1, \bar{X} 2, n 2 \\
& \text { [,alternative,drawflag]) } \\
& \text { (Summary stats input) }
\end{aligned}
\] & Computes a two-sample \(z\) test. alternative \(=-1\) is \(<\); alternative \(=\mathbf{0}\) is \(\neq\); alternative \(=\mathbf{1}\) is \(>\). drawflag \(=1\) draws results; drawflag=0 calculates results. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 3:2-SampZTest( }
\end{aligned}
\] \\
\hline Sci & Sets scientific notation display mode. & \[
\dagger \frac{\text { MODE }}{\mathrm{Sci}}
\] \\
\hline Select(Xlistname, Ylistname) & Selects one or more specific data points from a scatter plot or xyLine plot (only), and then stores the selected data points to two new lists, Xlistname and Ylistname. & \[
\begin{aligned}
& \text { 2nd [LIST] } \\
& \text { OPS } \\
& \text { 8:Select( }
\end{aligned}
\] \\
\hline Send(variable) & Sends contents of variable to the CBL 2/CBL or CBR System. & \[
\begin{aligned}
& +\frac{\text { PRGM }}{\text { I/O }} \\
& \text { B:Send( }
\end{aligned}
\] \\
\hline seq(expression,variable, begin,end[,increment]) & Returns list created by evaluating expression with regard to variable, from begin to end by increment. & \[
\begin{aligned}
& \text { 2nd] [LIST] } \\
& \text { OPS } \\
& 5: \mathrm{seq}(
\end{aligned}
\] \\
\hline Seq & Sets sequence graphing mode. & \[
\begin{gathered}
+ \text { MODE } \\
\text { Seq }
\end{gathered}
\] \\
\hline Sequential & Sets mode to graph functions sequentially. & \(\dagger\) MODE \\
\hline SetUpEditor & Removes all list names from the stat list editor, and then restores list names L1 through L6 to columns 1 through 6. & STAT EDIT 5:SetUpEditor \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline SetUpEditor listname 1 [,listname2,..., listname20] & Removes all list names from the stat list editor, then sets it up to display one or more listnames in the specified order, starting with column 1. & \begin{tabular}{l}
STAT \\
EDIT \\
5:SetUpEditor
\end{tabular} \\
\hline Shade(lowerfunc, upperfunc[,Xleft,Xright, pattern,patres]) & Draws lowerfunc and upperfunc in terms of \(\mathbf{X}\) on the current graph and uses pattern and patres to shade the area bounded by lowerfunc, upperfunc, Xleft, and Xright. & 2nd [DRAW] DRAW 7:Shade( \\
\hline Shade \(\chi^{2}\) (lowerbound, upperbound,df) & Draws the density function for the \(\chi^{2}\) distribution specified by degrees of freedom \(d f\) and shades the area between lowerbound and upperbound. & 2nd [DISTR] DRAW 3:Shade \(\chi^{2}\) ( \\
\hline ShadeF(lowerbound, upperbound, numerator \(d f\), denominator \(d f\) ) & Draws the density function for the \(F\) distribution specified by numerator \(d f\) and denominator \(d f\) and shades the area between lowerbound and upperbound. & 2nd [DISTR] DRAW 4:ShadeF( \\
\hline ShadeNorm(lowerbound, upperbound \([, \mu, \sigma]\) ) & Draws the normal density function specified by \(\mu\) and \(\sigma\) and shades the area between lowerbound and upperbound. & \begin{tabular}{l}
2nd [DISTR] DRAW \\
1:ShadeNorm(
\end{tabular} \\
\hline Shade_t(lowerbound, upperbound,df) & Draws the density function for the Student-t distribution specified by degrees of freedom df, and shades the area between lowerbound and upperbound. & 2nd [DISTR] DRAW 2:Shade_t( \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline Simul & Sets mode to graph functions simultaneously. & \[
\dagger \frac{\text { MODE }}{\text { Simul }}
\] \\
\hline \(\boldsymbol{\operatorname { s i n }}\) (value) & Returns the sine of a real number, expression, or list. & SIN \\
\hline \(\boldsymbol{\operatorname { s i n }}^{-1}\) (value) & Returns the arcsine of a real number, expression, or list. & 2nd [ \(\mathrm{SIN}^{-1]}\) \\
\hline \(\boldsymbol{\operatorname { s i n h }}\) (value) & Returns the hyperbolic sine of a real number, expression, or list. & 2nd [CATALOG] sinh( \\
\hline \(\sinh ^{-1}\) (value) & Returns the hyperbolic arcsine of a real number, expression, or list. & 2nd [CATALOG] \(\boldsymbol{s i n h}^{-1}\) ( \\
\hline SinReg [iterations, Xlistname,Ylistname, period,regequ] & Attempts iterations times to fit a sinusoidal regression model to Xlistname and Ylistname using a period guess, and stores the regression equation to regequ. &  \\
\hline solve(expression,variable, guess,\{lower,upper\}) & Solves expression for variable, given an initial guess and lower and upper bounds within which the solution is sought. & \begin{tabular}{l}
\(\dagger\) \\
MATH MATH 0:solve(
\end{tabular} \\
\hline SortA(listname) & Sorts elements of listname in ascending order. & 2nd [LIST] OPS1:SortA( \\
\hline SortA(keylistname, dependlist 1 [,dependlist2, ...,dependlist n]) & Sorts elements of keylistname in ascending order, then sorts each dependlist as a dependent list. & 2nd [LIST] OPS 1:SortA \\
\hline SortD(listname) & Sorts elements of listname in descending order. & 2nd [LIST] OPS2:SortD( \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline SortD(keylistname, dependlist 1 [,dependlist2, ..., dependlist n]) & Sorts elements of keylistname in descending order, then sorts each dependlist as a dependent list. & \begin{tabular}{l}
2nd [LIST] \\
OPS \\
2:SortD(
\end{tabular} \\
\hline \(\mathbf{s t d D e v}(l i s t[\) freqlist]) & Returns the standard deviation of the elements in list with frequency freqlist. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
7:stdDev(
\end{tabular} \\
\hline Stop & Ends program execution; returns to home screen. & \[
\begin{aligned}
& + \text { PRGM } \\
& \text { CTL } \\
& \text { F:Stop }
\end{aligned}
\] \\
\hline Store: value \(\rightarrow\) variable & Stores value in variable. & STO* \\
\hline StoreGDB \(n\) & Stores current graph in database GDB \(n\). & 2ndd [DRAW]
STO
3:StoreGDB \\
\hline StorePic \(n\) & Stores current picture in picture Picn. & \[
\begin{aligned}
& \text { 2nd [DRAW] } \\
& \text { STO } \\
& \text { 1:StorePic }
\end{aligned}
\] \\
\hline String \({ }^{\text {Equ }}\) (string, \(\mathbf{Y}=\) var) & Converts string into an equation and stores it in \(\mathrm{Y}=\) var. & 2nd [CATALOG] String)Equ( \\
\hline sub(string,begin,length) & Returns a string that is a subset of another string, from begin to length. & 2nd [CATALOG] sub( \\
\hline sum(list[,start,end] & Returns the sum of elements of list from start to end. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
5:sum(
\end{tabular} \\
\hline \(\boldsymbol{\operatorname { t a n }}\) (value) & Returns the tangent of a real number, expression, or list. & TAN \\
\hline \(\tan ^{-1}\) (value) & Returns the arctangent of a real number, expression, or list. & 2nd [tan-1] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline Tangent(expression,value) & Draws a line tangent to expression at \(\mathbf{X}=\) value. & \[
\begin{aligned}
& \text { 2nd [DRAW] } \\
& \text { DRAW } \\
& \text { 5:Tangent( }
\end{aligned}
\] \\
\hline tanh(value) & Returns hyperbolic tangent of a real number, expression, or list. & 2nd [CATALOG] tanh( \\
\hline \(\tanh ^{-1}\) (value) & Returns the hyperbolic arctangent of a real number, expression, or list. & \[
\begin{aligned}
& \text { 2nd [CATALOG] } \\
& \boldsymbol{\operatorname { t a n h }}^{-1} \mathbf{(}
\end{aligned}
\] \\
\hline tcdf(lowerbound, upperbound,df) & Computes the Student- \(t\) distribution probability between lowerbound and upperbound for the specified degrees of freedom \(d f\). & \begin{tabular}{l}
2nd [DISTR] \\
DISTR \\
5:tcdf(
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Text }(\text { row, column,text } 1, \\
& \text { text } 2, \ldots, \text { text } n)
\end{aligned}
\] & Writes text on graph beginning at pixel (row, column), where \(0 \leq\) row \(\leq 57\) and \(0 \leq\) column \(\leq 94\). & \[
\begin{aligned}
& \text { 2nd [DRAW] } \\
& \text { DRAW } \\
& \text { 0:Text( }
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Then See If:Then} \\
\hline Time & Sets sequence graphs to plot with respect to time. & \[
\begin{aligned}
& \dagger \text { 2nd [FORMAT] } \\
& \text { Time }
\end{aligned}
\] \\
\hline TInterval [listname, freqlist,confidence level] (Data list input) & Computes a \(t\) confidence interval. & \(\dagger\) STAT
TESTS
8:TInterval \\
\hline \begin{tabular}{l}
TInterval \(\bar{x}, S x, n\) \\
[,confidence level] \\
(Summary stats input)
\end{tabular} & Computes a \(t\) confidence interval. & \(\dagger\) STAT
TESTS
8:TInterval \\
\hline \(\operatorname{tpdf}(x, d f)\) & Computes the probability density function (pdf) for the Student- \(t\) distribution at a specified \(x\) value with specified degrees of freedom \(d f\). & \[
\begin{aligned}
& \text { 2nd [DISTR] } \\
& \text { DISTR } \\
& \text { 4:tpdf( }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline Trace & Displays the graph and enters TRACE mode. & TRACE \\
\hline T-Test \(\mu 0[\),listname, freqlist,alternative, drawflag] (Data list input) & Performs a \(t\) test with frequency freqlist. alternative \(=-1\) is <; alternative \(=\mathbf{0}\) is \(\neq\); alternative \(=1\) is \(>\). drawflag=1 draws results; drawflag=0 calculates results. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 2:T-Test }
\end{aligned}
\] \\
\hline T-Test \(\mu 0, \overline{\mathrm{x}}, S x, n\) [,alternative,drawflag] (Summary stats input) & Performs a \(t\) test with frequency freqlist. alternative \(=-1\) is \(<\); alternative \(=\mathbf{0}\) is \(\neq ;\) alternative \(=1\) is >. drawflag=1 draws results; drawflag=0 calculates results. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 2:T-Test }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { tvm_FV[(N,I\%,PV,PMT, } \\
& P / \bar{Y}, C / Y)]
\end{aligned}
\] & Computes the future value. & \begin{tabular}{l}
APPS 1:Finance \\
CALC \\
6:tvm_FV
\end{tabular} \\
\hline \[
\begin{aligned}
& \operatorname{tvm}^{\mathrm{I}} \mathrm{I} \%[(\mathbf{N}, P V, P M T, F V, \\
& P / Y, C / Y)]
\end{aligned}
\] & Computes the annual interest rate. & \begin{tabular}{l}
APPS 1:Finance \\
CALC \\
3:tvm_(
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { tvm_N[(I\%,PV,PMT,FV, } \\
& P / \bar{Y}, C / Y)]
\end{aligned}
\] & Computes the number of payment periods. & \begin{tabular}{l}
APPS 1:Finance \\
CALC \\
5:tvm_(
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { tvm_Pmt[(N,I\%,PV,FV, } \\
& P / \bar{Y}, C / Y)]
\end{aligned}
\] & Computes the amount of each payment. & \begin{tabular}{l}
APPS 1:Finance CALC \\
2:tvm_Pmt
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { tvm_PV[(N,I\%,PMT,FV, } \\
& P / \bar{Y}, C / Y)]
\end{aligned}
\] & Computes the present value. & \[
\begin{aligned}
& \text { APPS 1:Finance } \\
& \text { CALC } \\
& \text { 4:tvm_PV }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline UnArchive & \begin{tabular}{l}
Moves the specified variables from the user data archive memory to RAM. \\
To archive variables, use Archive.
\end{tabular} & 2nd [MEM] 6:UnArchive \\
\hline uvAxes & Sets sequence graphs to plot \(\mathbf{u}(\boldsymbol{n})\) on the x-axis and \(\mathbf{v}(\boldsymbol{n})\) on the y -axis. & \[
\dagger \underset{\text { uvd }}{\text { 2nd }} \text { [FORMAT] }
\] \\
\hline uwAxes & Sets sequence graphs to plot \(\mathbf{u}(\boldsymbol{n})\) on the \(x\)-axis and \(\mathbf{w}(\boldsymbol{n})\) on the \(y\)-axis. & \[
\dagger \underset{\text { uw }}{\text { 2nd }} \text { [FORMAT] }
\] \\
\hline 1-Var Stats [Xlistname, freqlist] & Performs one-variable analysis on the data in Xlistname with frequency freqlist. & \begin{tabular}{l}
STAT \\
CALC \\
1:1-Var Stats
\end{tabular} \\
\hline 2-Var Stats [Xlistname, Ylistname,freqlist] & Performs two-variable analysis on the data in Xlistname and Ylistname with frequency freqlist. & \begin{tabular}{l}
STAT \\
CALC \\
2:2-Var Stats
\end{tabular} \\
\hline variance(list[ffreqlist]) & Returns the variance of the elements in list with frequency freqlist. & \begin{tabular}{l}
2nd [LIST] \\
MATH \\
8:variance(
\end{tabular} \\
\hline Vertical \(x\) & Draws a vertical line at \(x\). &  \\
\hline vwAxes & Sets sequence graphs to plot \(\mathbf{v}(\boldsymbol{n})\) on the \(x\)-axis and \(\mathbf{w}(\boldsymbol{n})\) on the \(y\)-axis. & \[
\begin{aligned}
& \dagger \text { 2nd [FORMAT] } \\
& \mathbf{v w}
\end{aligned}
\] \\
\hline Web & Sets sequence graphs to trace as webs. & \[
\dagger \text { 覴d }
\] \\
\hline :While condition :commands :End :command & Executes commands while condition is true. & \[
\begin{aligned}
& \dagger \text { PRGM } \\
& \text { CTL } \\
& \text { 5:While }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline valueA xor valueB & Returns 1 if only valueA or value \(B=\) 0 . value \(A\) and valueB can be real numbers, expressions, or lists. & \begin{tabular}{l}
2nd [TEST] \\
LOGIC \\
3:xor
\end{tabular} \\
\hline ZBox & Displays a graph, lets you draw a box that defines a new viewing window, and updates the window. & \[
\begin{aligned}
& \dagger \text { ZOOM } \\
& \text { ZOOM } \\
& \text { 1:ZBox }
\end{aligned}
\] \\
\hline ZDecimal & Adjusts the viewing window so that \(\Delta \mathbf{X}=0.1\) and \(\Delta \mathbf{Y}=0.1\), and displays the graph screen with the origin centered on the screen. & \[
\begin{aligned}
& \dagger \text { ZOOM } \\
& \text { ZOOM } \\
& \text { 4:ZDecimal }
\end{aligned}
\] \\
\hline ZInteger & Redefines the viewing window using these dimensions:
\[
\begin{array}{ll}
\Delta X=1 & \text { Xscl=10 } \\
\Delta Y=1 & \text { Yscl=10 }
\end{array}
\] & \(\dagger\) ZOOM
ZOOM
8:ZInteger \\
\hline ZInterval \(\sigma\),listname, freqlist,confidence level] (Data list input) & Computes a \(z\) confidence interval. & \(\dagger\) STAT
TESTS
7:ZInterval \\
\hline \begin{tabular}{l}
ZInterval \(\sigma, \overline{\bar{x}}, n\) \\
[,confidence level] (Summary stats input)
\end{tabular} & Computes a \(z\) confidence interval. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 7:ZInterval }
\end{aligned}
\] \\
\hline Zoom In & Magnifies the part of the graph that surrounds the cursor location. & \[
\begin{aligned}
& \dagger \overparen{\text { ZOOM }} \\
& \text { ZOOM } \\
& \text { 2:Zoom In }
\end{aligned}
\] \\
\hline Zoom Out & Displays a greater portion of the graph, centered on the cursor location. & \[
\begin{aligned}
& \dagger \text { ZOOM } \\
& \text { ZOOM } \\
& \text { 3:Zoom Out }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/tem \\
\hline ZoomFit & Recalculates Ymin and Ymax to include the minimum and maximum \(\mathbf{Y}\) values, between Xmin and Xmax, of the selected functions and replots the functions. & \[
\begin{aligned}
& \dagger \text { ZOOM } \\
& \text { ZOOM } \\
& \text { 0:ZoomFit }
\end{aligned}
\] \\
\hline ZoomRcl & Graphs the selected functions in a user-defined viewing window. & \(\dagger\) ZOOM MEMORY 3:ZoomRcl \\
\hline ZoomStat & Redefines the viewing window so that all statistical data points are displayed. & \[
\begin{aligned}
& \dagger \text { ZOOM } \\
& \text { ZOOM } \\
& \text { 9:ZoomStat }
\end{aligned}
\] \\
\hline ZoomSto & Immediately stores the current viewing window. & \begin{tabular}{l}
† \\
Z00M MEMORY 2:ZoomSto
\end{tabular} \\
\hline ZPrevious & Replots the graph using the window variables of the graph that was displayed before you executed the last ZOOM instruction. & \(\dagger\) ZOOM MEMORY 1:ZPrevious \\
\hline ZSquare & Adjusts the \(\mathbf{X}\) or \(\mathbf{Y}\) window settings so that each pixel represents an equal width and height in the coordinate system, and updates the viewing window. & \[
\begin{aligned}
& \dagger \text { ZOOM } \\
& \text { ZOOM } \\
& \text { 5:ZSquare }
\end{aligned}
\] \\
\hline ZStandard & Replots the functions immediately, updating the window variables to the default values. & \begin{tabular}{l}
† \\
\(\dagger\) Z00M Z00M 6:ZStandard
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/Item \\
\hline Z-Test \((\mu 0, \sigma[\), listname, freqlist,alternative, drawflag]) (Data list input) & Performs a \(z\) test with frequency freqlist. alternative \(=-1\) is <; alternative \(=\mathbf{0}\) is \(\neq ;\) alternative \(=\mathbf{1}\) is \(>\). drawflag= \(\mathbf{1}\) draws results; drawflag=0 calculates results. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 1:Z-Test( }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Z-Test \((\mu 0, \sigma, \overline{\mathrm{x}}, n\) \\
[,alternative,drawflag]) (Summary stats input)
\end{tabular} & Performs a \(z\) test. alternative \(=-1\) is \(<\); alternative \(=\mathbf{0}\) is \(\neq ;\) alternative \(=\mathbf{1}\) is \(>\). drawflag=1 draws results; drawflag=0 calculates results. & \[
\begin{aligned}
& \dagger \text { STAT } \\
& \text { TESTS } \\
& \text { 1:Z-Test }
\end{aligned}
\] \\
\hline ZTrig & Replots the functions immediately, updating the window variables to preset values for plotting trig functions. & \[
\begin{aligned}
& \dagger \text { ZOOM } \\
& \text { ZOOM } \\
& \text { 7:ZTrig }
\end{aligned}
\] \\
\hline Factorial: value! & Returns factorial of value. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& 4:!
\end{aligned}
\] \\
\hline Factorial: list! & Returns factorial of list elements. & \[
\begin{aligned}
& \text { MATH } \\
& \text { PRB } \\
& 4:!
\end{aligned}
\] \\
\hline Degrees notation: value \({ }^{\circ}\) & Interprets value as degrees; designates degrees in DMS format. & \begin{tabular}{l}
2nd [ANGLE] \\
ANGLE \\
1:(
\end{tabular} \\
\hline Radian: angler & Interprets angle as radians. & \begin{tabular}{l}
2nd [ANGLE] \\
ANGLE \\
3: \({ }^{\text {r }}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline Transpose: matrix \({ }^{\boldsymbol{\top}}\) & Returns a matrix in which each element (row, column) is swapped with the corresponding element (column, row) of matrix. & \[
\begin{aligned}
& \text { 2nd [MATRIX] } \\
& \text { MATH } \\
& \mathbf{2 :} \mathbf{T}^{\text {T }}
\end{aligned}
\] \\
\hline \(x^{\text {th }}\) root \(\sqrt{\mathbf{x}} \sqrt{\text { value }}\) & Returns \(x^{\text {th }}\) root of value. & \begin{tabular}{l}
MATH \\
MATH \\
5: x
\end{tabular} \\
\hline \(x^{\text {th }}\) root \(\mathbf{x}^{\sqrt{ } \text { list }}\) & Returns \(x^{\text {th }}\) root of list elements. & \begin{tabular}{l}
MATH \\
MATH \\
5: x(
\end{tabular} \\
\hline \(\overline{\text { list } \mathbf{x} \sqrt{ } \text { value }}\) & Returns list roots of value. & \begin{tabular}{l}
MATH \\
MATH \\
5: x (
\end{tabular} \\
\hline list \(A \times \sqrt{\text { list }}\) B & Returns listA roots of listB. & \begin{tabular}{l}
MATH \\
MATH \\
5: x (
\end{tabular} \\
\hline Cube: value \({ }^{3}\) & Returns the cube of a real or complex number, expression, list, or square matrix. & \begin{tabular}{l}
MATH \\
MATH \\
3:3
\end{tabular} \\
\hline Cube root: \(\sqrt[3]{ }\) (value) & Returns the cube root of a real or complex number, expression, or list. &  \\
\hline Equal: value \(A=\) value \(B\) & Returns 1 if value \(A=\) value \(B\). Returns 0 if value \(A \neq\) valueB. value \(A\) and valueB can be real or complex numbers, expressions, lists, or matrices. & \[
\begin{aligned}
& \text { 2nd [TEST] } \\
& \text { TEST } \\
& \mathbf{1 : =}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction/ Arguments & Result & Key or Keys/ Menu or Screen/ltem \\
\hline Not equal: value \(A \neq\) value \(B\) & Returns 1 if value \(A \neq\) value \(B\). Returns 0 if value \(A=\) valueB. value \(A\) and value \(B\) can be real or complex numbers, expressions, lists, or matrices. & \[
\begin{aligned}
& \text { 2nd [TEST] } \\
& \text { TEST } \\
& \mathbf{2 : \neq}
\end{aligned}
\] \\
\hline Less than: value \(A<v a l u e B\) & Returns 1 if value \(A<\) value \(B\). Returns 0 if value \(A \geq\) valueB. value \(A\) and valueB can be real or complex numbers, expressions, or lists. & \[
\begin{aligned}
& \text { 2nd [TEST] } \\
& \text { TEST } \\
& 5:<
\end{aligned}
\] \\
\hline Greater than: value \(A>\) value \(B\) & Returns 1 if value \(A>v a l u e B\). Returns 0 if value \(A \leq\) valueB. value \(A\) and valueB can be real or complex numbers, expressions, or lists. & \[
\begin{aligned}
& \text { 2nd [TEST] } \\
& \text { TEST } \\
& \text { 3:> }
\end{aligned}
\] \\
\hline Less than or equal: value \(A \leq\) value \(B\) & Returns 1 if value \(A \leq\) valueB. Returns 0 if value \(A>v a l u e B\). value \(A\) and valueB can be real or complex numbers, expressions, or lists. & \[
\begin{aligned}
& \text { 2nd [TEST] } \\
& \text { TEST } \\
& 6: \leq
\end{aligned}
\] \\
\hline Greater than or equal: value \(A \geq\) value \(B\) & Returns 1 if value \(A \geq\) valueB. Returns 0 if value \(A\) valueB. valueA and valueB can be real or complex numbers, expressions, or lists. & \[
\begin{aligned}
& \text { 2nd [TEST] } \\
& \text { TEST } \\
& \mathbf{4 : \geq}
\end{aligned}
\] \\
\hline Inverse: value \({ }^{-1}\) & Returns 1 divided by a real or complex number or expression. & \(x^{-1}\) \\
\hline Inverse: list \(^{-1}\) & Returns 1 divided by list elements. & \(x^{-1}\) \\
\hline Inverse: matrix \({ }^{-1}\) & Returns matrix inverted. & \(x^{-1}\) \\
\hline Square: value \({ }^{2}\) & Returns value multiplied by itself. value can be a real or complex number or expression. & \(x^{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function or Instruction／ Arguments & Result & Key or Keys／ Menu or Screen／Item \\
\hline Square：list \({ }^{2}\) & Returns list elements squared． & \(x^{2}\) \\
\hline Square：matrix \({ }^{\mathbf{2}}\) & Returns matrix multiplied by itself． & \(x^{2}\) \\
\hline Powers：value＾power & Returns value raised to power．value can be a real or complex number or expression． & \(\checkmark\) \\
\hline Powers：list＾power & Returns list elements raised to power． & \(\checkmark\) \\
\hline Powers：value＾list & Returns value raised to list elements． & \(\checkmark\) \\
\hline Powers：matrix＾power & Returns matrix elements raised to power． & \(\triangle\) \\
\hline Negation：－value & Returns the negative of a real or complex number，expression，list，or matrix． & \((-)\) \\
\hline Power of ten： \(\mathbf{1 0 \wedge}^{\wedge}\)（value） & Returns 10 raised to the value power．value can be a real or complex number or expression． & 2nd［10 \({ }^{x}\) ］ \\
\hline Power of ten： \(\mathbf{1 0}^{\wedge}(\) list \()\) & Returns a list of 10 raised to the list power． & 2nd［10 \({ }^{\text {x }}\) ］ \\
\hline Square root：\(\sqrt{(\text { value })}\) & Returns square root of a real or complex number，expression，or list． & 2nd［ r ］ \\
\hline Multiplication： value \(A *\) value \(B\) & Returns value \(A\) times valueB． & 区 \\
\hline Multiplication： value＊list & Returns value times each list element． & 区 \\
\hline Multiplication： list＊value & Returns each list element times value． & 区 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
Function or Instruction/ \\
Arguments
\end{tabular} & Result & \begin{tabular}{l} 
Key or Keys/ \\
Menu or Screen/lem
\end{tabular} \\
\hline \begin{tabular}{l} 
Multiplication: \\
listA list \(B\)
\end{tabular} & \begin{tabular}{l} 
Returns listA elements times listB \\
elements.
\end{tabular} & \(\boxed{\text { R }}\)
\end{tabular}
\begin{tabular}{lll}
\begin{tabular}{l} 
Function or Instruction/ \\
Arguments
\end{tabular} & Result & \begin{tabular}{l} 
Key or Keys/ \\
Menu or Screen/ltem
\end{tabular} \\
\hline \begin{tabular}{l} 
Subtraction: \\
list-value
\end{tabular} & Subtracts value from list elements. & - \\
\hline \begin{tabular}{l} 
Subtraction: \\
listA-listB
\end{tabular} & \begin{tabular}{l} 
Subtracts listB elements from listA \\
elements.
\end{tabular} & \(\square\) \\
\hline \begin{tabular}{l} 
Subtraction: \\
matrixA-matrixB
\end{tabular} & \begin{tabular}{l} 
Subtracts matrixB elements from \\
matrixA elements.
\end{tabular} & \(\square\) \\
\hline \begin{tabular}{l} 
Minutes notation: \\
degrees \({ }^{\circ}\) minutes'seconds"
\end{tabular} & \begin{tabular}{l} 
Interprets minutes angle \\
measurement as minutes.
\end{tabular} & 2nd [ANGLE] \\
\hline \begin{tabular}{l} 
Seconds notation: \\
degrees \({ }^{\circ}\) minutes'seconds"
\end{tabular} & \begin{tabular}{l} 
Interprets seconds angle \\
measurement as seconds.
\end{tabular} & ANGLE 2:' \\
\hline
\end{tabular}

\section*{TI-83 Plus Menu Map}

The TI-83 Plus Menu Map begins at the top-left corner of the keyboard and follows the keyboard layout from left to right. Default values and settings are shown.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(Y\)} \\
\hline & + & 1 & \\
\hline (Func mode) & (Par mode) & (Pol mode) & (Seq mode) \\
\hline Plot1 Plot2 & Plot1 Plot2 & Plot1 Plot2 & Plot1 Plot2 \\
\hline Plot3 & Plot3 & Plot3 & Plot3 \\
\hline Y1= & , \(\times 1\) T= & , \(\mathrm{r} 1=\) & \(n \mathrm{Min}=1\) \\
\hline Y2= & \(Y 1 \mathrm{~T}=\) & -r2= & \(\because u(n)=\) \\
\hline Y \(3=\) & , \(22 \mathrm{~T}=\) & - \(\mathrm{r} 3=\) & \(u(n M i n)=\) \\
\hline Y4 \(=\) & \(Y 2 \mathrm{~T}=\) & - \(\mathrm{r} 4=\) & \(\because \mathrm{v}(\mathrm{n})=\) \\
\hline & & - \(\mathrm{r} 5=\) & \(v(n M i n)=\) \\
\hline Y9 \(=\) & \(\times 6 \mathrm{~T}=\) & vr6= & \(\therefore \mathrm{W}(\mathrm{n})=\) \\
\hline YO= & \(Y 6 T=\) & & \(w(n M i n)=\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 2nd [STAT PLOT] & \multicolumn{3}{|l|}{2nd [STAT PLOT]} \\
\hline \(\ulcorner\) [ & 「 & T & ᄀ \\
\hline STAT PLOTS & (PRGM editor) & (PRGM editor) & (PRGM editor) \\
\hline 1:Plot1...0ff & PLOTS & TYPE & MARK \\
\hline \(\stackrel{\because}{\because}\) L1 L2 \(\square\) & 1:P1ot1 & 1:Scatter & 1:口 \\
\hline 2:P1ot2...0ff & 2:Plot2 & 2:xyLine & 2:+ \\
\hline \(\stackrel{\because}{\because}\) L1 L2 \(\square\) & 3:Plot3 & 3:Histogram & 3 : \\
\hline 3:P1ot3...0ff & 4:Plots0ff & 4:ModBoxplot & \\
\hline \(\stackrel{\because}{\bullet}\) L1 L2 \(\square\) & \(5: P 1\) ots0n & 5:Boxplot & \\
\hline 4:P1ots0ff & & 6:NormProbPlot & \\
\hline \(5: P 1\) ots0n & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\ulcorner\) & 1 & 1 & \\
\hline (Func mode) & (Par mode) & (Pol mode) & (Seq mode) \\
\hline WINDOW & WINDOW & WINDOW & WINDOW \\
\hline Xmin \(=-10\) & Tmin=0 & Omin \(=0\) & \(n \mathrm{Min}=1\) \\
\hline Xmax \(=10\) & Tmax \(=\pi * 2\) & \(\theta \max =\pi * 2\) & \(n \mathrm{Max}=10\) \\
\hline Xscl=1 & Tstep= \(/ 24\) & Ostep \(=\pi / 24\) & PlotStart=1 \\
\hline Ymin \(=-10\) & Xmin \(=-10\) & Xmin \(=-10\) & PlotStep=1 \\
\hline \(Y \mathrm{max}=10\) & Xmax \(=10\) & Xmax=10 & Xmin \(=-10\) \\
\hline Yscl=1 & Xscl=1 & Xscl=1 & \(X \mathrm{max}=10\) \\
\hline Xres=1 & Ymin=-10 & Ymin=-10 & Xscl=1 \\
\hline & \(Y \max =10\) & \(Y \max =10\) & Ymin=-10 \\
\hline & Y Scl=1 & Yscl=1 & \(Y \mathrm{max}=10\) \\
\hline & & & Yscl=1 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
2nd [TBLSET] & 2nd [TBLSET] \\
TABLE SETUP & (PRGM editor) \\
TblStart=0 & TABLE SETUP \\
\(\Delta\) Tbl=1 & Indpnt:Auto Ask \\
Indpnt: Auto Ask & Depend:Auto Ask \\
Depend:Auto Ask &
\end{tabular}
\begin{tabular}{lll}
\hline ZOOM & \\
ZOOM & MEMORY & MEMORY \\
1:ZBox & 1:ZPrevious & (Set Factors...) \\
2:Zoom In & 2:ZoomSto & ZOOM FACTORS \\
3:Zoom Out & \(3:\) ZoomRc1 & XFact=4 \\
4:ZDecimal & 4:SetFactors... & YFact=4 \\
5:ZSquare & & \\
6:ZStandard & & \\
7:ZTrig & & \\
8:ZInteger & & \\
9:ZoomStat & & \\
0:ZoomFit & &
\end{tabular}

2nd [FORMAT]
\begin{tabular}{ll}
\(\quad\) (Func/Par/Pol modes) & (Seq mode) \\
RectGC PolarGC & Time Web uv VW uw \\
CoordOn CoordOff & RectGC PolarGC \\
GridOff GridOn & CoordOn CoordOff \\
AxesOn AxesOff & GridOff GridOn \\
LabelOff LabelOn & AxesOn Axes0ff \\
Expr0n Expr0ff & LabelOff LabelOn \\
& ExprOn Expr0ff
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{2nd [CALC]}} \\
\hline 1 & & & \\
\hline (Func mode) & (Par mode) & (Pol mode) & (Seq mode) \\
\hline CALCULATE & CALCULATE & CALCULATE & CALCULATE \\
\hline 1:value & 1:value & 1:value & 1:value \\
\hline 2:zero & 2:dy/dx & 2:dy/dx & \\
\hline 3:minimum & 3:dy/dt & 3:dr/d \(\theta\) & \\
\hline 4:maximum & 4:dx/dt & & \\
\hline \multicolumn{4}{|l|}{5:intersect} \\
\hline \multicolumn{4}{|l|}{6:dy/dx} \\
\hline \multicolumn{4}{|l|}{\(7: \int f(x) d x\)} \\
\hline \multicolumn{4}{|l|}{MODE} \\
\hline \multicolumn{4}{|l|}{Normal Sci Eng} \\
\hline \multicolumn{4}{|l|}{Float 0123456789} \\
\hline \multicolumn{4}{|l|}{Radian Degree} \\
\hline \multicolumn{4}{|l|}{Func Par Pol Seq} \\
\hline \multicolumn{4}{|l|}{Connected Dot} \\
\hline \multicolumn{4}{|l|}{Sequential Simul} \\
\hline Real a+bi re & & & \\
\hline Full Horiz & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2nd [LINK] & \\
\hline , & \(\square\) \\
\hline SEND & RECEIVE \\
\hline \(1: \mathrm{Al} 1+\ldots\) & 1:Receive \\
\hline 2:A11-... & \\
\hline 3 : Prgm... & \\
\hline 4:List... & \\
\hline 5:Lists to TI82... & \\
\hline 6:GDB... & \\
\hline 7 : Pic... & \\
\hline 8:Matrix... & \\
\hline 9:Real... & \\
\hline 0: Complex... & \\
\hline A: Y-Vars... & \\
\hline B: String... & \\
\hline C:Apps... & \\
\hline D: AppVars... & \\
\hline E:Group... & \\
\hline F:Send Id & \\
\hline G: SendOS & \\
\hline H:Back Up... & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{STAT} \\
\hline \(\stackrel{ }{ }\) & 1 & , \\
\hline EDIT & CALC & TESTS \\
\hline 1:Edit... & 1:1-Var Stats & 1:Z-Test... \\
\hline 2:SortA( & 2:2-Var Stats & 2:T-Test... \\
\hline 3:SortD( & 3:Med-Med & 3:2-SampZTest... \\
\hline 4:C1rList & 4: LinReg ( \(\mathrm{ax}+\mathrm{b}\) ) & 4:2-SampTTest... \\
\hline \multirow[t]{12}{*}{5:SetUpEditor} & 5:QuadReg & 5:1-PropZTest... \\
\hline & 6:CubicReg & 6:2-PropZTest... \\
\hline & 7:QuartReg & 7:ZInterval... \\
\hline & 8: LinReg ( \(\mathrm{a}+\mathrm{bx}\) ) & 8:TInterval... \\
\hline & 9:LnReg & 9:2-SampZInt... \\
\hline & 0 : ExpReg & 0:2-SampTInt... \\
\hline & A: PwrReg & A:1-PropZInt... \\
\hline & B: Logistic & B:2-PropZInt... \\
\hline & C:SinReg & C: \(\chi^{2}\)-Test... \\
\hline & & D:2-SampFTest... \\
\hline & & E:LinRegTTest... \\
\hline & & F:ANOVA( \\
\hline
\end{tabular}

\section*{2nd [LIST]}
\begin{tabular}{|c|c|c|}
\hline \(\square\) & T & 7 \\
\hline NAMES & OPS & MATH \\
\hline 1:1istname & 1:SortA( & 1:min( \\
\hline 2:1istname & 2:SortD( & 2:max \\
\hline 3:1istname & 3:dim( & 3:mean( \\
\hline & 4:Fill ( & 4:median ( \\
\hline & 5:seq ( & 5: sum( \\
\hline & 6: cumSum ( & 6 :prod ( \\
\hline & 7: List \(^{\text {c }}\) & 7:stdDev( \\
\hline & 8:Select( & 8:variance( \\
\hline & 9:augment( & \\
\hline & 0:Listmatr ( & \\
\hline & A:Matrlist( & \\
\hline & B: L & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MATH} \\
\hline \(\stackrel{\downarrow}{ }\) & 1 & 1 & 7 \\
\hline MATH & NUM & CPX & PRB \\
\hline 1: Frac & 1:abs ( & 1:conj( & 1:rand \\
\hline 2: \(\mathrm{Dec}^{\text {c }}\) & 2:round ( & 2:real & 2:nPr \\
\hline 3: \({ }^{3}\) & 3: iPart( & 3:imag( & 3:nCr \\
\hline \(4: 3 \sqrt{( }\) & 4:fPart( & 4:angle( & 4:! \\
\hline 5: \(\times \sqrt{ }\) & 5:int( & 5:abs ( & 5: randInt ( \\
\hline 6: fMin ( & 6:min ( & 6:Rect & 6: randNorm( \\
\hline 7: fMax & 7:max & 7 : Polar & 7:randBin( \\
\hline 8:nDeriv( & 8:1cm( & & \\
\hline 9:fnInt & 9: gcd ( & & \\
\hline 0:Solver... & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
2nd [TEST] & \\
TEST & LOGIC \\
\(1:=\) & \(1:\) and \\
\(2: \neq\) & \(2:\) or \\
\(3:>\) & \(3:\) xor \\
\(4: \geq\) & \(4:\) not \((\) \\
\(5:<\) & \\
\(6: \leq\) &
\end{tabular}\(\quad\).
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{2nd [MATRIX]} \\
\hline \(\downarrow\) & 1 & 7 \\
\hline NAMES & MATH & EDIT \\
\hline 1: [A] & 1: det ( & 1:[A] \\
\hline 2: [B] & \(2:{ }^{\text {T}}\) & 2:[B] \\
\hline 3: [C] & 3:dim( & 3:[C] \\
\hline 4: [D] & 4:Fill & 4: [D] \\
\hline 5: [E] & 5:identity ( & 5: [E] \\
\hline 6: [F] & 6:randM ( & 6:[F] \\
\hline 7 : [G] & 7:augment( & \(7:[\mathrm{G}]\) \\
\hline 8: [H] & 8:Matrlist & 8: [H] \\
\hline 9: [I] & 9:Listmatr & 9:[I] \\
\hline 0: [J] & 0:cumSum( & 0:[J] \\
\hline & A:ref( & \\
\hline & B:rref( & \\
\hline & C: rowSwap( & \\
\hline & D: row+( & \\
\hline & E:*row ( & \\
\hline & F:*row+( & \\
\hline
\end{tabular}


\section*{PRGM}
\begin{tabular}{lll} 
& & \\
EXEC & EDIT & NEW \\
1:name & \(1:\) name & 1:Create New \\
2:name & \(2:\) name &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{PRGM} \\
\hline & & \\
\hline (PRGM editor) & (PRGM editor) & (PRGM editor) \\
\hline CTL & I/ 0 & EXEC \\
\hline 1:If & 1:Input & 1:name \\
\hline 2:Then & 2:Prompt & 2:name \\
\hline 3:Else & 3:Disp & \\
\hline 4:For ( & 4:DispGraph & \\
\hline 5:While & 5:DispTable & \\
\hline 6:Repeat & 6:0utput( & \\
\hline 7: End & 7:getKey & \\
\hline 8:Pause & 8:C1rHome & \\
\hline 9:Lb1 & 9:ClrTable & \\
\hline 0:Goto & 0:GetCalc & \\
\hline A: IS> ( & A: Get ( & \\
\hline B: DS< & B:Send ( & \\
\hline \multicolumn{3}{|l|}{C: Menul} \\
\hline \multicolumn{3}{|l|}{D: prgm} \\
\hline \multicolumn{3}{|l|}{E:Return} \\
\hline \multicolumn{3}{|l|}{F:Stop} \\
\hline \multicolumn{3}{|l|}{G:DelVar} \\
\hline H:GraphStyle( & & \\
\hline
\end{tabular}

\section*{2nd [DRAW]}
\begin{tabular}{|c|c|c|}
\hline \(\bigcirc\) & & \(\checkmark\) \\
\hline DRAW & POINTS & STO \\
\hline 1:C1rDraw & 1: Pt-0n( & 1:StorePic \\
\hline 2:Line( & 2:Pt-0ff( & 2:Recallpic \\
\hline 3:Horizontal & 3:Pt-Change( & 3:StoreGDB \\
\hline 4:Vertical & 4: Px 1 -0n( & 4:RecallGDB \\
\hline 5:Tangent ( & 5:Px1-0ff( & \\
\hline 6:DrawF & 6:Px1-Change( & \\
\hline 7:Shade( & 7:px1-Test( & \\
\hline 8:DrawInv & & \\
\hline 9:Circle( & & \\
\hline 0:Text( & & \\
\hline A: Pen & & \\
\hline VARS & & \\
\hline & \(\checkmark\) & \\
\hline VARS & \(Y\)-VARS & \\
\hline 1:Window... & 1:Function... & \\
\hline 2:Zoom... & 2:Parametric... & \\
\hline 3:GDB... & 3:Polar... & \\
\hline 4:Picture... & 4:0n/0ff... & \\
\hline 5:Statistics... & & \\
\hline 6:Table... & & \\
\hline 7:String... & & \\
\hline
\end{tabular}

VARS
\begin{tabular}{|c|c|c|}
\hline （Window．．．） & （Window．．．） & （Window．．．） \\
\hline X／Y & T／日 & U／V／W \\
\hline 1：Xmin & 1：Tmin & 1：u（nMin） \\
\hline 2：Xmax & 2：Tmax & 2：v（nMin） \\
\hline 3：Xscl & 3：Tstep & 3：w（nMin） \\
\hline 4：Ymin & 4：\(\theta\) min & 4：nMin \\
\hline 5：Ymax & 5：\(\theta\) max & 5：nMax \\
\hline 6：Yscl & 6：日step & 6：PlotStart \\
\hline 7：Xres & & 7：PlotStep \\
\hline 8：\(\Delta X\) & & \\
\hline 9： 土 \(^{\text {Y }}\) & & \\
\hline 0：XFact & & \\
\hline A：YFact & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{RS} \\
\hline & & \\
\hline （Zoom．．．） & （Zoom．．．） & （Zoom．．．） \\
\hline ZX／ZY & ZT／Z日 & ZU \\
\hline 1：ZXmin & 1：ZTmin & 1：Zu（nMin） \\
\hline 2：ZXmax & 2：ZTmax & 2：Zv（nMin） \\
\hline 3：ZXscl & 3：ZTstep & 3：Zw（nMin） \\
\hline 4：ZYmin & 4：Z Emin & 4：ZnMin \\
\hline 5：ZYmax & 5：Z \(\max\) & 5：ZnMax \\
\hline 6：ZYscl & 6：Z日step & 6：ZPlotStart \\
\hline 7：ZXres & & 7：ZPlotStep \\
\hline
\end{tabular}
\begin{tabular}{ll} 
VARS & \\
\hline (GDB...) & (Picture... \\
GRAPH DATABASE & ) \\
1:GDB1 & PICTURE \\
2:GDB2 & \(1:\) Pic1 \\
. & \(2:\) Pic2 \\
\(9:\) GDB 9 & \(\ldots: \operatorname{Pic9}\) \\
\(0:\) GDB0 & \(0:\) Pic0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{VARS} \\
\hline -1 & | & - & - & 1 \\
\hline (Statistics...) & (Statistics...) & (Statistics...) & (Statistics...) & (Statistics...) \\
\hline XY & \(\Sigma\) & EQ & TEST & PTS \\
\hline \(1: n\) & 1: \(\Sigma \mathrm{x}\) & 1: RegEQ & \(1: \mathrm{p}\) & 1: \(\times 1\) \\
\hline \(2: \bar{x}\) & \(2: \Sigma x^{2}\) & 2:a & 2: z & 2:y1 \\
\hline 3: Sx & \(3: \Sigma y\) & 3 : b & 3: t & 3: x 2 \\
\hline 4: \(\sigma x\) & 4: \(5 y^{2}\) & 4:c & 4: \(\chi^{2}\) & 4:y2 \\
\hline 5: y & 5: \(\Sigma \mathrm{x} y\) & 5:d & 5:F & 5:x3 \\
\hline 6: Sy & & 6:e & 6:df & 6:y3 \\
\hline 7: \(\sigma \mathrm{y}\) & & \(7: r\) & \(7: \hat{p}\) & 7:Q1 \\
\hline 8:minX & & 8: \(r^{2}\) & \(8: \hat{p} 1\) & 8:Med \\
\hline 9:max m & & 9: \(\mathrm{R}^{2}\) & \(9: \hat{p} 2\) & 9:Q3 \\
\hline 0:minY & & & 0:s & \\
\hline A: max \(Y\) & & & A: \(\overline{\mathrm{x}} 1\) & \\
\hline & & & B: \(\overline{\mathrm{x}} 2\) & \\
\hline & & & C: Sx 1 & \\
\hline & & & D: Sx2 & \\
\hline & & & E: Sxp & \\
\hline & & & \(F: n 1\) & \\
\hline & & & \(\mathrm{G}: \mathrm{n} 2\) & \\
\hline & & & H:lower & \\
\hline & & & I :upper & \\
\hline
\end{tabular}

VARS
\begin{tabular}{ll}
\hline (Table...) & (String...) \\
TABLE & STRING \\
1:TblStart & \(1:\) Str1 \\
2: \(\Delta\) Tbl & \(2: S t r 2\) \\
3:TblInput & \(3:\) Str3 \\
& \(4:\) Str4 \\
& \(\ldots\) \\
& \(9: S t r 9\) \\
& \(0: S t r 0\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Y - VARS} \\
\hline & 1 & & \\
\hline (Function...) & (Parametric...) & (Polar...) & (0n/0ff...) \\
\hline FUNCTION & PARAMETRIC & POLAR & ON/OFF \\
\hline \(1: Y_{1}\) & 1: \(\mathrm{X}_{1 \mathrm{~T}}{ }^{\text {T }}\) & 1:r1 & 1: FnOn \\
\hline \(2: Y_{2}\) & 2: \(\mathrm{Y}_{1 \mathrm{~T}}\) & 2:r2 & 2:FnOff \\
\hline \(3: Y_{3}\) & 3: X2T & 3:r3 & \\
\hline \(4: Y 4\) & 4:Y2T & 4:r4 & \\
\hline ... & . . & 5: \(\mathrm{r}_{5}\) & \\
\hline 9:Y9 & A: \(\mathrm{X}_{6} \mathrm{~T}\) & 6:r6 & \\
\hline \(0: Y 0\) & B: \(\mathrm{Y}_{6} \mathrm{~T}\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{2nd [DISTR]} \\
\hline \(\square\), & 7 \\
\hline DISTR & DRAW \\
\hline 1:normalpdf( & 1:ShadeNorm( \\
\hline 2:normalcdf( & 2:Shade_t \({ }^{\text {( }}\) \\
\hline 3:invNorm( & 3: Shade \(\chi^{2}\) ( \\
\hline 4 :tpdf( & 4:ShadeF( \\
\hline \(5: \mathrm{tcdf}\) ( & \\
\hline \(6: \chi^{2} \mathrm{pdf}\) ( & \\
\hline \(7: \chi^{2} \mathrm{cdf}(\) & \\
\hline 8:Fpdf( & \\
\hline 9:Fcdf( & \\
\hline 0 : bi nompdf( & \\
\hline A: binomedf( & \\
\hline B: poissonpdf( & \\
\hline C: poissoncdf( & \\
\hline D: geometpdf( & \\
\hline E: geometcdf( & \\
\hline
\end{tabular}

\section*{1:Finance}

\section*{Finance}
\begin{tabular}{|c|c|}
\hline & \\
\hline CALC & VARS \\
\hline 1:TVM & 1:N \\
\hline Solver... & 2:I\% \\
\hline 2:tvm_Pmt & 3:PV \\
\hline 3:tvm_I\% & 4 : PMT \\
\hline 4:tvm_PV & 5:FV \\
\hline 5:tvm_N & 6:P/Y \\
\hline 6:tvm_FV & 7:C/Y \\
\hline 7:npv( & \\
\hline 8:irr( & \\
\hline 9:bal( & \\
\hline \(0: \Sigma \operatorname{Prn}(\) & \\
\hline A: \(\operatorname{IInt}(\) & \\
\hline B: \(\mathrm{Nom}_{\text {( }}\) & \\
\hline C:DEff( & \\
\hline D:dbd( & \\
\hline E:Pmt_End & \\
\hline F: Pmt_Bgn & \\
\hline
\end{tabular}
.Pmt_Bgn

\section*{2:CBL/CBR}

\section*{CBL/CBR}

1:GAUGE
2:DATA LOGGER
3:CBR
4:QUIT
\begin{tabular}{|c|c|}
\hline 2nd [MEM] - & MEMORY
\(\square\) \\
\hline MEMORY & (Mem Mgmt/Del...) \\
\hline 1:About & RAM FREE 25631 \\
\hline 2:Mem Mgmt/De1... & ARC FREE 131069 \\
\hline 3:Clear Entries & 1:A11... \\
\hline 4:C1rA11Lists & 2 : Real... \\
\hline 5: Archive & 3: Complex... \\
\hline 6: UnArchive & 4:List... \\
\hline 7 : Reset... & \(5:\) Matrix... \\
\hline 8:Group & \(6: Y-\operatorname{Vars} . .\). \\
\hline & 7 : Prgm... \\
\hline & 8:Pic... \\
\hline & 9 : GDB... \\
\hline & 0:String... \\
\hline & A: Apps... \\
\hline & B: AppVars... \\
\hline & C : Group... \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{MEMORY (Reset...)} \\
\hline & & \\
\hline RAM & ARCHIVE & ALL \\
\hline 1:A11 RAM... & 1:Vars... & 1:A11 Memory... \\
\hline 2:Defaults... & \begin{tabular}{l}
2:Apps... \\
B: Both...
\end{tabular} & \\
\hline Resetting RAM & Resetting Both & Resetting ALL \\
\hline erases all data & erases all data, & erases all data, \\
\hline and programs from & programs and Apps & programs and Apps \\
\hline RAM. & from Archive. & from RAM and \\
\hline & & Archive. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\multicolumn{2}{c}{ RAM } \\
RESET RAM & RESET DEFAULTS \\
1:No & \(1:\) No \\
2:Reset & \(2:\) Reset \\
Resetting RAM & \\
erases all data & \\
and programs from & \\
RAM.
\end{tabular}

\section*{ARCHIVE}
\begin{tabular}{lll} 
RESET ARC VARS & RESET ARC APPS & RESET ARC BOTH \\
1:No & \(1:\) No & \(1:\) No \\
2:Reset & \(2:\) Reset & 2:Reset \\
Resetting Vars & Resetting Apps & Resetting Both \\
erases all data & erases all Apps & erases all data, \\
and programs from & from Archive. & programs and Apps \\
Archive. & & from Archive.
\end{tabular}

\section*{ALL}

RESET MEMORY
1:No
2:Reset
Resetting ALL
will delete all
data, programs \&
Apps from RAM \& Archive.

\section*{MEMORY (GROUP...)}

\author{
GROUP UNGROUP \\ 1:Create New
}
```

MEMORY
(UNGROUP...)
:name
2:name
2nd [CATALOG]
CATALOG
cosh(
cosh-1(
Equ*String(
expr(
inString(
length(
sinh(
sinh-1(
String>Equ(
sub(
tanh(
tanh-1(

```

\section*{Variables}

\section*{User Variables}

The Tl-83 Plus uses the variables listed below in various ways. Some variables are restricted to specific data types.

The variables \(\mathbf{A}\) through \(\mathbf{Z}\) and \(\theta\) are defined as real or complex numbers. You may store to them. The TI-83 Plus can update \(\mathbf{X}, \mathbf{Y}, \mathbf{R}, \theta\), and \(\mathbf{T}\) during graphing, so you may want to avoid using these variables to store nongraphing data.

The variables (list names) L1 through L6 are restricted to lists; you cannot store another type of data to them.

The variables (matrix names) [A] through [J] are restricted to matrices; you cannot store another type of data to them.

The variables Pic1 through Pic9 and Pic0 are restricted to pictures; you cannot store another type of data to them.

The variables GDB1 through GDB9 and GDB0 are restricted to graph databases; you cannot store another type of data to them.

The variables Str1 through Str9 and Str0 are restricted to strings; you cannot store another type of data to them.

Except for system variables, you can store any string of characters, functions, instructions, or variables to the functions \(\mathbf{Y}_{n}\), ( 1 through 9 , and \(\mathbf{0}\) ), \(\mathbf{X}_{n \mathbf{T}} / \mathbf{Y}_{n \mathbf{T}}\) (1 through 6), \(\mathbf{r}_{n}(\mathbf{1}\) through \(\mathbf{6}), \mathbf{u}(n), \mathbf{v}(n)\), and \(\mathbf{w}(n)\) directly or through the \(\mathbf{Y}=\) editor. The validity of the string is determined when the function is evaluated.

\section*{Archive Variables}

You can store data, programs or any variable from RAM to user data archive memory where they cannot be edited or deleted inadvertantly. Archiving also allows you to free up RAM for variables that may require additional memory. The names of archived variables are preceded by an asterisk "*" indicating they are in user data archive.

\section*{System Variables}

The variables below must be real numbers. You may store to them. Since the TI-83 Plus can update some of them, as the result of a zoom, for example, you may want to avoid using these variables to store nongraphing data.
- Xmin, Xmax, Xscl, \(\Delta \mathbf{X}\), XFact, Tstep, PlotStart, nMin, and other window variables.
- ZXmin, ZXmax, ZXscl, ZTstep, ZPlotStart, Zu(nMin), and other zoom variables.

The variables below are reserved for use by the TI-83 Plus. You cannot store to them.
\(\mathrm{n}, \overline{\mathrm{x}}, \mathrm{Sx}, \sigma \mathbf{x}, \min \mathrm{X}, \max \mathrm{X}, \Sigma \mathrm{y}, \Sigma \mathrm{y}^{2}, \Sigma \mathrm{xy}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \operatorname{RegEQ}, \mathrm{x}_{1}, \mathrm{x} 2, \mathrm{y} 1, \mathrm{z}, \mathrm{t}\), \(\mathrm{F}, \chi^{\mathbf{2}}, \hat{p}, \overline{\mathrm{x}} \mathbf{1}, \mathrm{Sx} 1, \mathrm{n} 1\), lower, upper, \(\mathbf{r}^{\mathbf{2}}, \mathbf{R}^{\mathbf{2}}\) and other statistical variables.

\section*{Statistics Formulas}

This section contains statistics formulas for the Logistic and SinReg regressions, ANOVA, 2-SampFTest, and 2-SampTTest.

\section*{Logistic}

The logistic regression algorithm applies nonlinear recursive leastsquares techniques to optimize the following cost function:
\[
J=\sum_{i=1}^{N}\left(\frac{c}{1+a e^{-b x_{i}}}-y_{i}\right)^{2}
\]
which is the sum of the squares of the residual errors,
where: \(\quad x=\) the independent variable list
\[
y=\text { the dependent variable list }
\]
\(N=\) the dimension of the lists
This technique attempts to estimate the constants \(a, b\), and \(c\) recursively to make \(J\) as small as possible.

\section*{SinReg}

The sine regression algorithm applies nonlinear recursive least-squares techniques to optimize the following cost function:
\[
J=\sum_{i=1}^{N}\left[a \sin \left(b x_{i}+c\right)+d-y_{i}\right]^{2}
\]
which is the sum of the squares of the residual errors,
where: \(\quad x=\) the independent variable list
\(y=\) the dependent variable list
\(N=\) the dimension of the lists
This technique attempts to recursively estimate the constants \(a, b, c\), and \(d\) to make \(J\) as small as possible.

\section*{ANOVA(}

The ANOVA F statistic is:
\[
\mathrm{F}=\frac{\text { Factor } M S}{\text { Error } M S}
\]

The mean squares \((M S)\) that make up F are:
\[
\begin{aligned}
& \text { Factor } M S=\frac{\text { Factor } S S}{\text { Factordf }} \\
& \text { Error } M S=\frac{\text { ErrorSS }}{\text { Errordf }}
\end{aligned}
\]

The sum of squares \((S S)\) that make up the mean squares are:
\[
\begin{aligned}
& \text { Factor } S S=\sum_{i=1}^{I} n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2} \\
& \text { Error } S S=\sum_{i=1}^{I}\left(n_{i}-1\right) S x_{i}^{2}
\end{aligned}
\]

The degrees of freedom \(d f\) that make up the mean squares are:
\[
\begin{aligned}
& \text { Factordf }=I-1=\text { numerator } d f \text { for } \mathrm{F} \\
& \text { Error } d f=\sum_{i=1}^{I}\left(n_{i}-1\right)=\text { denominator } d f \text { for } \mathrm{F}
\end{aligned}
\]
where: \(\quad I=\) number of populations
\(\bar{x}_{i}=\) the mean of each list
\(S x_{i}=\) the standard deviation of each list
\(n_{i}=\) the length of each list
\(\bar{x}=\) the mean of all lists

\section*{2-SampFTest}

Below is the definition for the 2-SampFTest.
\[
\begin{aligned}
S x 1, S x 2= & \text { Sample standard deviations having } n_{1}-1 \text { and } n_{2}-1 \\
& \text { degrees of freedom } d f \text {, respectively. }
\end{aligned}
\]
\[
\mathrm{F}=\mathrm{F} \text {-statistic }=\left(\frac{S x 1}{S x 2}\right)^{2}
\]
\[
\begin{aligned}
d f\left(x, n_{1}-1, n_{2}-1\right) & =\mathrm{F} p d f() \text { with degrees of freedom } d f, n_{1}-1, \text { and } n_{2}-1 \\
p & =\text { reported } p \text { value }
\end{aligned}
\]

2-SampFTest for the alternative hypothesis \(\sigma_{1}>\sigma_{2}\).
\[
p=\int_{F}^{\infty} f\left(x, n_{1}-1, n_{2}-1\right) d x
\]

2-SampFTest for the alternative hypothesis \(\sigma_{1}<\sigma_{2}\).
\[
p=\int_{0}^{F} f\left(x, n_{1}-1, n_{2}-1\right) d x
\]

2-SampFTest for the alternative hypothesis \(\sigma_{1} \neq \sigma_{2}\). Limits must satisfy the following:
\[
\frac{p}{2}=\int_{0}^{\text {Lbnd }} f\left(x, n_{1}-1, n_{2}-1\right) d x=\int_{U b n d}^{\infty} f\left(x, n_{1}-1, n_{2}-1\right) d x
\]
where: [Lbnd,Ubnd] = lower and upper limits
The F-statistic is used as the bound producing the smallest integral. The remaining bound is selected to achieve the preceding integral's equality relationship.

\section*{2-SampTTest}

The following is the definition for the 2-SampTTest. The two-sample \(t\) statistic with degrees of freedom \(d f\) is:
\[
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{S}
\]
where the computation of \(S\) and \(d f\) are dependent on whether the variances are pooled. If the variances are not pooled:
\[
\begin{aligned}
& S=\sqrt{\frac{S x_{1}^{2}}{n_{1}}+\frac{S x_{2}^{2}}{n_{2}}} \\
& d f=\frac{\left(\frac{S x_{1}^{2}}{n_{1}}+\frac{S x_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{S x_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{S x_{2}^{2}}{n_{2}}\right)^{2}}
\end{aligned}
\]
otherwise:
\[
\begin{aligned}
& S x_{p}=\frac{\left(n_{1}-1\right) S x_{1}^{2}+\left(n_{2}-1\right) S x_{2}^{2}}{d f} \\
& S=\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} S x_{p} \\
& d f=n_{1}+n_{2}-2
\end{aligned}
\]
and \(S x p\) is the pooled variance.

\section*{Financial Formulas}

This section contains financial formulas for computing time value of money, amortization, cash flow, interest-rate conversions, and days between dates.

\section*{Time Value of Money}
\[
i=\left[e^{(y \times \ln (x+1))}\right]-1
\]
where: \(P M T \neq 0\)
\[
\begin{aligned}
& y=C / Y \div P / Y \\
& x=(.01 \times I \%) \div C / Y \\
& C / Y=\text { compounding periods per year } \\
& P / Y=\text { payment periods per year } \\
& I \%=\text { interest rate per year } \\
& i=(-F V \div P V)^{(1 \div N)}-1
\end{aligned}
\]
where: \(P M T=0\)
The iteration used to compute \(i\) :
\[
0=P V+P M T \times G_{i}\left[\frac{1-(1+i)^{-N}}{i}\right]+F V \times(1+i)^{-N}
\]
\[
I \%=100 \times C / Y \times\left[e^{(y \times \ln (x+1))}-1\right]
\]
where: \(\quad x=i\)
\[
y=P / Y \div C / Y
\]
\[
G_{i}=1+i \times k
\]
where: \(\quad k=0\) for end-of-period payments \(k=1\) for beginning-of-period payments
\[
N=\frac{\ln \left(\frac{P M T \times G_{i}-F V \times i}{P M T \times G_{i}+P V \times i}\right)}{\ln (1+i)}
\]
where: \(\quad i \neq 0\)
\[
N=-(P V+F V) \div P M T
\]
where: \(\quad i=0\)
\[
P M T=\frac{-i}{G_{i}} \times\left[P V+\frac{P V+F V}{(1+i)^{N}-1}\right]
\]
where: \(\quad i \neq 0\)
\[
P M T=-(P V+F V) \div N
\]
where: \(\quad i=0\)
\[
P V=\left[\frac{P M T \times G_{i}}{i}-F V\right] \times \frac{1}{(1+i)^{N}}-\frac{P M T \times G_{i}}{i}
\]
where: \(\quad i \neq 0\)
\[
P V=-(F V+P M T \times N)
\]
where:
\[
i=0
\]
\[
F V=\frac{P M T \times G_{i}}{i}-(1+i)^{N} \times\left(P V+\frac{P M T \times G_{i}}{i}\right)
\]
where: \(\quad i \neq 0\)
\[
F V=-(P V+P M T \times N)
\]
where: \(\quad i=0\)

\section*{Amortization}

If computing \(\operatorname{bal}(), p m t 2=n p m t\)
Let \(\operatorname{bal}(0)=R N D(P V)\)
Iterate from \(m=1\) to \(p m t 2\)
\[
\left\{\begin{array}{c}
\mathrm{I}_{\mathrm{m}}=R N D[R N D 12(-i \times \operatorname{bal}(m-1))] \\
\operatorname{bal}(m)=\operatorname{bal}(m-1)-\mathrm{I}_{\mathrm{m}}+R N D(P M T)
\end{array}\right.
\]
then:
\[
\begin{aligned}
& \operatorname{bal}()=\operatorname{bal}(p m t 2) \\
& \Sigma \operatorname{Pr} n()=\operatorname{bal}(p m t 2)-\operatorname{bal}(p m t 1) \\
& \Sigma \operatorname{Int}()=(p m t 2-p m t 1+1) \times R N D(P M T)-\Sigma \operatorname{Pr} n()
\end{aligned}
\]
where:
\[
\begin{aligned}
& R N D= \text { round the display to the number of decimal places } \\
& \text { selected }
\end{aligned}
\]
\[
R N D 12=\text { round to } 12 \text { decimal places }
\]

Balance, principal, and interest are dependent on the values of PMT, PV, \(\mathrm{I} \%\), and \(p m t 1\) and \(p m t 2\).

\section*{Cash Flow}
\[
n p v()=C F_{0}+\sum_{j=1}^{N} C F_{j}(1+i)^{-S_{j}-1} \frac{\left(1-(1+i)^{-n_{j}}\right)}{i}
\]
where: \(\quad S_{j}=\left\{\begin{array}{cc}\sum_{i=1}^{j} n_{i} & j \geq 1 \\ 0 & j=0\end{array}\right.\)
Net present value is dependent on the values of the initial cash flow ( \(C F_{0}\) ), subsequent cash flows ( \(C F j\) ), frequency of each cash flow ( \(n j\) ), and the specified interest rate (i).
\[
\operatorname{irr}()=100 \times i \text {, where } i \text { satisfies } n p v()=0
\]

Internal rate of return is dependent on the values of the initial cash flow \(\left(C F_{0}\right)\) and subsequent cash flows (CFj).
\[
i=I \% \div 100
\]

\section*{Interest Rate Conversions}
\[
\text { Eff }=100 \times\left(e^{C P \times \ln (x+1)}-1\right)
\]
where:
\[
x=.01 \times \text { Nom } \div C P
\]
\[
\text { Nom }=100 \times C P \times\left[e^{1 \div C P \times \ln (x+1)}-1\right]
\]
where:
\[
\begin{aligned}
x & =.01 \times \text { Eff } \\
\text { Eff } & =\text { effective rate } \\
C P & =\text { compounding periods } \\
\text { Nom } & =\text { nominal rate }
\end{aligned}
\]

\section*{Days between Dates}

With the dbd( function, you can enter or compute a date within the range Jan. 1, 1950, through Dec. 31, 2049.

Actual/actual day-count method (assumes actual number of days per month and actual number of days per year):
\(d b d(\) (days between dates \()=\) Number of Days II - Number of Days I
\[
\begin{aligned}
\text { Number of Days I } & =(Y 1-Y B) \times 365 \\
& +(\text { number of days } M B \text { to } M 1) \\
& +D T 1 \\
& +\frac{(Y 1-Y B)}{4} \\
\text { Number of Days II } & =(Y 2-Y B) \times 365 \\
& +(\text { number of days } M B \text { to } M 2) \\
& +D T 2 \\
& +\frac{(Y 2-Y B)}{4}
\end{aligned}
\]
where: \(\quad M 1=\) month of first date
\(D T 1=\) day of first date
\(Y 1=\) year of first date
\(M 2=\) month of second date
DT2 = day of second date
\(Y 2=\) year of second date
\(M B=\) base month (January)
\(D B=\) base day (1)
\(Y B=\) base year (first year after leap year)

\section*{Appendix B: General Information}

\section*{Battery Information}

\section*{When to Replace the Batteries}

The TI-83 Plus uses five batteries: four AAA alkaline batteries and one lithium battery. The lithium battery provides auxiliary power to retain memory while you replace the AAA batteries.

When the battery voltage level drops below a usable level, the TI-83 Plus:

Displays this message when you turn on the unit.


Message A

Displays this message when you attempt to download an application.
\[
\begin{array}{|l|}
\hline \text { Bit.teries } \\
\text { are low. } \\
\text { Chenge is } \\
\text { reanired. } \\
\hline
\end{array}
\]

Message B

After Message A is first displayed, you can expect the batteries to function for about one or two weeks, depending on usage. (This oneweek to two-week period is based on tests with alkaline batteries; the performance of other kinds of batteries may vary.)

The low-battery message continues to be displayed each time you turn on the unit until you replace the batteries. If you do not replace the batteries within about two weeks, the calculator may turn off by itself or fail to turn on until you install new batteries.

If Message B is displayed, you must to replace the batteries immediately to successfully download an application.

Replace the lithium battery every three or four years.

\section*{Effects of Replacing the Batteries}

Do not remove both types of batteries (AAA and lithium auxiliary) at the same time. Do not allow the batteries to lose power completely. If you follow these guidelines and the steps for replacing batteries, you can replace either type of battery without losing any information in memory.

\section*{Battery Precautions}

Take these precautions when replacing batteries.
- Do not leave batteries within reach of children
- Do not mix new and used batteries. Do not mix brands (or types within brands) of batteries.
- Do not mix rechargeable and nonrechargeable batteries.
- Install batteries according to polarity (+ and -) diagrams.
- Do not place nonrechargeable batteries in a battery recharger.
- Properly dispose of used batteries immediately. Do not leave them within the reach of children.
- Do not incinerate or dismantle batteries.

\section*{Replacing the Batteries}

To replace the batteries, follow these steps.
1. Turn off the calculator. Replace the slide cover over the keyboard to avoid inadvertently turning on the calculator. Turn the back of the calculator toward you.
2. Hold the calculator upright, push downward on the latch on the top of the battery cover with your finger, and then pull the cover toward you.

Note: To avoid loss of information stored in memory, you must turn off the calculator. Do not remove the AAA batteries and the lithium battery simultaneously.
3. Replace all four AAA alkaline batteries simultaneously. Or, replace the lithium battery.
- To replace the AAA alkaline batteries, remove all four discharged AAA batteries and install new ones according to the polarity (+ and -) diagram in the battery compartment.
- To replace the lithium battery, remove the screw from the lithiumbattery cover, and then remove the cover. Install the new battery, + side up. Replace the cover and secure it with the screw. Use a CR1616 or CR1620 (or equivalent) lithium battery.
4. Replace the battery compartment cover. Turn the calculator on and adjust the display contrast, if necessary.

\section*{In Case of Difficulty}

\section*{Handling a Difficulty}

To handle a difficulty, follow these steps.
1. If you cannot see anything on the screen, the contrast may need to be adjusted.

To darken the screen, press and release 2nd, and then press and hold \(\Delta\) until the display is sufficiently dark.

To lighten the screen, press and release 2nd, and then press and hold \(\square\) until the display is sufficiently light.
2. If an error menu is displayed, follow the steps in Chapter 1. Refer to the Error Conditions table for details about specific errors, if necessary.
3. If the busy indicator (dotted line) is displayed, a graph or program has been paused; the Tl-83 Plus is waiting for input. Press ENTER to continue or press ON to break.
4. If a checkerboard cursor ( entered the maximum number of characters in a prompt, or memory is full. If memory is full:
- Press [2nd [Mem] 2 to display the memory management delete menu.
- Select the type of data you want to delete, or select 1:All for a list of all variables of all types. A screen is displayed listing each variable of the type you selected and the number of bytes each variable is using.
- Press \(\triangle\) and \(\square\) to move the selection cursor ( \((\boldsymbol{)}\) next to the item you want to delete, and then press [ELL. (Chapter 18).
5. If the calculator does not seem to work at all, be sure the batteries are fresh and that they are installed properly. Refer to battery information on pages 736 and 737.
6. If the calculator still doesn't work even though you are sure the batteries are sufficiently charged, you can try the two solutions in the order they are presented.
- Download calculator system software as follows:
a. Remove one battery from the calculator and then press and hold the DEL key while re-installing the battery. This will force the calculator to accept a download of system software.
b. Connect your calculator to a personal computer with the TI-GRAPH LINK \({ }^{\text {TM }}\) accessory to download current or new software code to your calculator.
- II. If the above solution does not work, reset all memory as follows:
a. Remove one battery from the calculator and then press and hold down the CLEAR key while re-installing the battery. While continuing to hold down the CLEAR key, press and hold down the 0 N key. When the home screen is displayed, release the keys.
b. Press [2nd [mem] to display the memory menu.
c. Select 7:Reset to display the ram archive all menu.
d. Press \(\square\) to display the all menu.
e. Select 1:All Memory to display the reset memory menu.
f. To continue with the reset, select 2:Reset. The message MEM cleared is displayed on the home screen.

\section*{Error Conditions}

When the TI-83 Plus detects an error, it displays ERR:message and an error menu. Chapter 1 describes the general steps for correcting errors. This table contains each error type, possible causes, and suggestions for correction.
\begin{tabular}{ll}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline ARCHIVED & \begin{tabular}{l} 
You have attempted to use, edit, or delete an archived \\
variable. For example, dim(L1) is an error if L1 is archived.
\end{tabular} \\
\hline ARCHIVE FULL & \begin{tabular}{l} 
You have attempted to archive a variable and there is not \\
enough space in archive to receive it.
\end{tabular} \\
\hline ARGUMENT & \begin{tabular}{l} 
A function or instruction does not have the correct number \\
of arguments. See Appendix A and the appropriate \\
chapter.
\end{tabular} \\
\hline BAD ADDRESS & \begin{tabular}{l} 
You have attempted to send or receive an application and \\
an error (e.g. electrical interference) has occurred in the \\
transmission.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline BAD GUESS & \begin{tabular}{l}
- In a CALC operation, you specified a Guess that is not between Left Bound and Right Bound. \\
- For the solve( function or the equation solver, you specified a guess that is not between lower and upper. \\
- Your guess and several points around it are undefined. \\
Examine a graph of the function. If the equation has a solution, change the bounds and/or the initial guess.
\end{tabular} \\
\hline BOUND & \begin{tabular}{l}
- In a CALC operation or with Select(, you defined Left Bound > Right Bound. \\
- In fMin(, fMax(, solve(, or the equation solver, you entered lower \(\geq\) upper.
\end{tabular} \\
\hline BREAK & You pressed the 0 N key to break execution of a program, to halt a DRAW instruction, or to stop evaluation of an expression. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline DATA TYPE & \begin{tabular}{l}
You entered a value or variable that is the wrong data type. \\
- For a function (including implied multiplication) or an instruction, you entered an argument that is an invalid data type, such as a complex number where a real number is required. See Appendix A and the appropriate chapter. \\
- In an editor, you entered a type that is not allowed, such as a matrix entered as an element in the stat list editor. See the appropriate chapter. \\
- You attempted to store an incorrect data type, such as a matrix, to a list.
\end{tabular} \\
\hline DIM MISMATCH & You attempted to perform an operation that references more than one list or matrix, but the dimensions do not match. \\
\hline DIVIDE BY 0 & \begin{tabular}{l}
- You attempted to divide by zero. This error is not returned during graphing. The TI-83 Plus allows for undefined values on a graph. \\
- You attempted a linear regression with a vertical line.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline DOMAIN & \begin{tabular}{l}
- You specified an argument to a function or instruction outside the valid range. This error is not returned during graphing. The Tl-83 Plus allows for undefined values on a graph. See Appendix A and the appropriate chapter. \\
- You attempted a logarithmic or power regression with a -X or an exponential or power regression with a -Y. \\
- You attempted to compute \(\Sigma \operatorname{Prn}(\) or \(\Sigma \operatorname{lnt}(\) with \(p m t 2<p m t 1\).
\end{tabular} \\
\hline DUPLICATE & - You attempted to create a duplicate group name. \\
\hline Duplicate Name & - A variable you attempted to transmit cannot be transmitted because a variable with that name already exists in the receiving unit. \\
\hline EXPIRED & You have attempted to run an application with a limited trial period which has expired. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline Error in Xmit & \begin{tabular}{l}
- The TI-83 Plus was unable to transmit an item. Check to see that the cable is firmly connected to both units and that the receiving unit is in receive mode. \\
- You pressed \(O \mathbb{O N}\) to break during transmission. \\
- You attempted to perform a backup from a TI-82 to a TI-83 Plus. \\
- You attempted to transfer data (other than L1 through L6) from a TI-83 Plus to a TI-82. \\
- You attempted to transfer L1 through L6 from a TI-83 Plus to a TI-82 without using 5:Lists to TI82 on the LINK SEND menu.
\end{tabular} \\
\hline ID NOT FOUND & This error occurs when the SendID command is executed but the proper calculator ID cannot be found. \\
\hline ILLEGAL NEST & - You attempted to use an invalid function in an argument to a function, such as seq( within expression for seq(. \\
\hline INCREMENT & \begin{tabular}{l}
- The increment in seq( is 0 or has the wrong sign. This error is not returned during graphing. The TI-83 Plus allows for undefined values on a graph. \\
- The increment in a For(loop is 0.
\end{tabular} \\
\hline
\end{tabular}

\section*{Possible Causes and Suggested Remedies}

INVALID
- You attempted to reference a variable or use a function where it is not valid. For example, \(\mathbf{Y} n\) cannot reference \(\mathbf{Y}, \mathbf{X m i n}, \Delta \mathbf{X}\), or TbIStart.
- You attempted to reference a variable or function that was transferred from the TI-82 and is not valid for the TI-83 Plus. For example, you may have transferred Un-1 to the TI-83 Plus from the TI-82 and then tried to reference it.
- In Seq mode, you attempted to graph a phase plot without defining both equations of the phase plot.
- In Seq mode, you attempted to graph a recursive sequence without having input the correct number of initial conditions.
- In Seq mode, you attempted to reference terms other than ( \(n-1\) ) or ( \(n-2\) ).
- You attempted to designate a graph style that is invalid within the current graph mode.
- You attempted to use Select( without having selected (turned on) at least one xyLine or scatter plot.
\begin{tabular}{|c|c|}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline INVALID DIM & \begin{tabular}{l}
- You specified dimensions for an argument that are not appropriate for the operation. \\
- You specified a list dimension as something other than an integer between 1 and 999. \\
- You specified a matrix dimension as something other than an integer between 1 and 99. \\
- You attempted to invert a matrix that is not square.
\end{tabular} \\
\hline ITERATIONS & \begin{tabular}{l}
- The solve( function or the equation solver has exceeded the maximum number of permitted iterations. Examine a graph of the function. If the equation has a solution, change the bounds, or the initial guess, or both. \\
- irr( has exceeded the maximum number of permitted iterations. \\
- When computing I\%, the maximum number of iterations was exceeded.
\end{tabular} \\
\hline LABEL & The label in the Goto instruction is not defined with a Lbl instruction in the program. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline \multirow[t]{3}{*}{MEMORY} & Memory is insufficient to perform the instruction or function. You must delete items from memory (Chapter 18) before executing the instruction or function. \\
\hline & Recursive problems return this error; for example, graphing the equation \(\mathrm{Y}_{1}=\mathrm{Y}_{1}\). \\
\hline & Branching out of an If/Then, For(, While, or Repeat loop with a Goto also can return this error because the End statement that terminates the loop is never reached. \\
\hline \multirow[t]{2}{*}{MemoryFull} & - You are unable to transmit an item because the receiving unit's available memory is insufficient. You may skip the item or exit receive mode. \\
\hline & - During a memory backup, the receiving unit's available memory is insufficient to receive all items in the sending unit's memory. A message indicates the number of bytes the sending unit must delete to do the memory backup. Delete items and try again. \\
\hline MODE & You attempted to store to a window variable in another graphing mode or to perform an instruction while in the wrong mode; for example, DrawInv in a graphing mode other than Func. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline NO SIGN CHNG & \begin{tabular}{l}
- The solve( function or the equation solver did not detect a sign change. \\
- You attempted to compute I\% when FV, (N*PMT), and PV are all \(\geq 0\), or when \(\mathbf{F V}\), ( \(\mathbf{N} * \mathbf{P M T}\) ), and \(\mathbf{P V}\) are all \(\leq 0\). \\
- You attempted to compute irr( when neither CFList nor \(C F O\) is \(>0\), or when neither CFList nor \(C F O\) is \(<0\).
\end{tabular} \\
\hline NONREAL ANS & In Real mode, the result of a calculation yielded a complex result. This error is not returned during graphing. The TI-83 Plus allows for undefined values on a graph. \\
\hline OVERFLOW & You attempted to enter, or you have calculated, a number that is beyond the range of the calculator. This error is not returned during graphing. The TI-83 Plus allows for undefined values on a graph. \\
\hline RESERVED & You attempted to use a system variable inappropriately. See Appendix A. \\
\hline SINGULAR MAT & \begin{tabular}{l}
- A singular matrix (determinant \(=0\) ) is not valid as the argument for \({ }^{-1}\). \\
- The SinReg instruction or a polynomial regression generated a singular matrix (determinant \(=0\) ) because it could not find a solution, or a solution does not exist. \\
This error is not returned during graphing. The TI-83 Plus allows for undefined values on a graph.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline SINGULARITY & expression in the solve( function or the equation solver contains a singularity (a point at which the function is not defined). Examine a graph of the function. If the equation has a solution, change the bounds or the initial guess or both. \\
\hline STAT & \begin{tabular}{l}
You attempted a stat calculation with lists that are not appropriate. \\
- Statistical analyses must have at least two data points. \\
- Med-Med must have at least three points in each partition. \\
- When you use a frequency list, its elements must be \(\geq 0\). \\
- (Xmax - Xmin) / Xscl must be \(\leq 47\) for a histogram.
\end{tabular} \\
\hline STAT PLOT & You attempted to display a graph when a stat plot that uses an undefined list is turned on. \\
\hline SYNTAX & The command contains a syntax error. Look for misplaced functions, arguments, parentheses, or commas. See Appendix A and the appropriate chapter. \\
\hline TOL NOT MET & You requested a tolerance to which the algorithm cannot return an accurate result. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline UNDEFINED & \begin{tabular}{l} 
You referenced a variable that is not currently defined. For \\
example, you referenced a stat variable when there is no \\
current calculation because a list has been edited, or you \\
referenced a variable when the variable is not valid for the \\
current calculation, such as a after Med-Med.
\end{tabular} \\
\hline VALIDATION & \begin{tabular}{l} 
Electrical interference caused a link to fail or this calculator \\
is not authorized to run the application.
\end{tabular} \\
\hline VARIABLE & \begin{tabular}{l} 
You have tried to archive a variable that cannot be \\
archived or you have have.tried to unarchive an application \\
or group. \\
Examples of variables that cannot be archived include:
\end{tabular} \\
& \begin{tabular}{l} 
- Real numbers LRESID, R, T, X, Y, Theta, Statistic \\
variables under Vars, STATISTICS menu, Yvars, and \\
the AppldList.
\end{tabular} \\
\begin{tabular}{ll} 
You have attempted to receive an incompatible variable \\
version from another calculator.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Type & Possible Causes and Suggested Remedies \\
\hline WINDOW RANGE & \begin{tabular}{l}
A problem exists with the window variables. \\
- You defined \(\mathbf{X m a x} \leq \mathbf{X m i n}\) or \(\mathbf{Y m a x} \leq\) Ymin. \\
- You defined \(\theta\) max \(\leq \theta\) min and \(\theta\) step \(>0\) (or vice versa). \\
- You attempted to define Tstep=0. \\
- You defined Tmax \(\leq\) Tmin and Tstep > 0 (or vice versa). \\
- Window variables are too small or too large to graph correctly. You may have attempted to zoom in or zoom out to a point that exceeds the TI-83 Plus's numerical range.
\end{tabular} \\
\hline ZOOM & \begin{tabular}{l}
- A point or a line, instead of a box, is defined in ZBox. \\
- A ZOOM operation returned a math error.
\end{tabular} \\
\hline
\end{tabular}

\section*{Accuracy Information}

\section*{Computational Accuracy}

To maximize accuracy, the TI-83 Plus carries more digits internally than it displays. Values are stored in memory using up to 14 digits with a twodigit exponent.
- You can store a value in the window variables using up to 10 digits (12 for Xscl, Yscl, Tstep, and \(\theta\) step).
- Displayed values are rounded as specified by the mode setting with a maximum of 10 digits and a two-digit exponent.
- RegEQ displays up to 14 digits in Float mode. Using a fixed-decimal setting other than Float causes RegEQ results to be rounded and stored with the specified number of decimal places.

Xmin is the center of the leftmost pixel, Xmax is the center of the next-to-the-rightmost pixel. (The rightmost pixel is reserved for the busy indicator.) \(\Delta \mathbf{X}\) is the distance between the centers of two adjacent pixels.
- In Full screen mode, \(\Delta \mathbf{X}\) is calculated as (Xmax - Xmin) / 94. In G-T split-screen mode, \(\Delta \mathbf{X}\) is calculated as (Xmax - Xmin) / 46.
- If you enter a value for \(\Delta \mathbf{X}\) from the home screen or a program in Full screen mode, \(\mathbf{X m a x}\) is calculated as \(\mathbf{X m i n}+\Delta \mathbf{X} * 94\). In G-T splitscreen mode, \(\mathbf{X m a x}\) is calculated as \(\mathbf{X m i n}+\Delta \mathbf{X} * 46\).

Ymin is the center of the next-to-the-bottom pixel; Ymax is the center of the top pixel. \(\Delta \mathbf{Y}\) is the distance between the centers of two adjacent pixels.
- In Full screen mode, \(\Delta \mathbf{Y}\) is calculated as (Ymax - Ymin) / 62. In Horiz split-screen mode, \(\Delta \mathbf{Y}\) is calculated as (Ymax - Ymin) / 30. In G-T split-screen mode, \(\Delta \mathbf{Y}\) is calculated as (Ymax - Ymin) / 50.
- If you enter a value for \(\Delta \boldsymbol{Y}\) from the home screen or a program in Full screen mode, Ymax is calculated as \(\mathbf{Y m i n}+\Delta \mathbf{Y} * 62\). In Horiz splitscreen mode, Ymax is calculated as \(\mathbf{Y m i n}+\Delta \mathbf{Y} * 30\). In G-T splitscreen mode, \(\mathbf{Y m a x}\) is calculated as \(\mathbf{Y m i n}+\Delta \mathbf{Y} * 50\).

Cursor coordinates are displayed as eight-character numbers (which may include a negative sign, decimal point, and exponent) when Float mode is selected. \(\mathbf{X}\) and \(\mathbf{Y}\) are updated with a maximum accuracy of eight digits.
minimum and maximum on the calculate menu are calculated with a tolerance of \(1 \mathrm{E}-5 ; / \int \mathrm{f}(\mathbf{x}) \mathbf{d x}\) is calculated at \(1 \mathrm{E}-3\). Therefore, the result displayed may not be accurate to all eight displayed digits. For most functions, at least five accurate digits exist. For fMin(, fMax(, and fnInt( on the math menu and solve( in the catalog, the tolerance can be specified.

\section*{Function Limits}
\begin{tabular}{|c|c|}
\hline Function & Range of Input Values \\
\hline \(\boldsymbol{\operatorname { s i n }} x, \cos x, \tan x\) & \(0 \leq|x|<10^{12}\) (radian or degree) \\
\hline \(\boldsymbol{\operatorname { s i n }}^{-1} x, \boldsymbol{\operatorname { c o s }}^{-1} x\) & \(-1 \leq x \leq 1\) \\
\hline In \(x, \log x\) & \(10^{-100}<x<10^{100}\) \\
\hline \(\mathbf{e}^{x}\) & \(-10^{100}<x \leq 230.25850929940\) \\
\hline \(10^{x}\) & \(-10^{100}<x<100\) \\
\hline \(\sinh x, \cosh x\) & \(|x| \leq 230.25850929940\) \\
\hline \(\underline{\tanh } x\) & \(|x|<10^{100}\) \\
\hline \(\sinh ^{-1} x\) & \(|x|<5 \times 10^{99}\) \\
\hline \(\cosh ^{-1} x\) & \(1 \leq x<5 \times 10^{99}\) \\
\hline \(\boldsymbol{\operatorname { t a n h }}^{-1} x\) & \(-1<x<1\) \\
\hline \(\sqrt{x}\) (real mode) & \(0 \leq x<10^{100}\) \\
\hline \(\sqrt{x}\) (complex mode) & \(|x|<10^{100}\) \\
\hline \(x!\) & \(-.5 \leq x \leq 69\), where \(x\) is a multiple of . 5 \\
\hline
\end{tabular}

\section*{Function Results}
\begin{tabular}{lll}
\hline Function & Range of Result & \\
\hline \(\boldsymbol{\operatorname { s i n }}^{-1} x, \boldsymbol{\operatorname { t a n }}^{-1} x\) & \(-90^{\circ}\) to \(90^{\circ}\) & or \(-\pi / 2\) to \(\pi / 2\) (radians) \\
\(\boldsymbol{\operatorname { c o s }}^{-1} x\) & \(0^{\circ}\) to \(180^{\circ}\) & or 0 to \(\pi\) (radians) \\
\hline
\end{tabular}

\section*{Support and Service Information}

\section*{Product Support}

Customers in the U.S., Canada, Puerto Rico, and the Virgin Islands For general questions, contact Texas Instruments Customer Support:
phone: 1-800-TI-CARES (1-800-842-2737)
e-mail: ti-cares@ti.com
For technical questions, call the Programming Assistance Group of Customer Support:
phone: 1-972-917-8324

Customers outside the U.S., Canada, Puerto Rico, and the Virgin Islands

Contact TI by e-mail or visit the TI calculator home page on the World Wide Web.
\(\begin{array}{ll}\text { e-mail: } & \underline{\text { ti-cares@ti.com }} \\ \text { Internet: } & \text { education.ti.com }\end{array}\)

\section*{Product Service}

\section*{Customers in the U.S. and Canada Only}

Always contact Texas Instruments Customer Support before returning a product for service.

\section*{Customers outside the U.S. and Canada}

Refer to the leaflet enclosed with this product or contact your local Texas Instruments retailer/distributor.

\section*{Other TI Products and Services}

Visit the TI calculator home page on the World Wide Web.
Internet: education.ti.com
Refer to the leaflet enclosed with this product or contact your local Texas Instruments retailer/distributor.

\section*{Warranty Information}

Customers in the U.S. and Canada Only
One-Year Limited Warranty for Electronic Product
This Texas Instruments ("Tl") electronic product warranty extends only to the original purchaser and user of the product.

Warranty Duration. This TI electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

Warranty Coverage. This TI electronic product is warranted against defective materials and construction. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR CONSTRUCTION.

Warranty Disclaimers. ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.

Some states/provinces do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from state to state or province to province.

Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a reconditioned model of an equivalent quality (at TI's option) when the product is returned, postage prepaid, to Texas Instruments Service Facility. The warranty of the repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than the postage requirement, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value prior to mailing.

Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."

Copyright. The software and any documentation supplied with this product are protected by copyright.

\section*{Australia \& New Zealand Customers only}

\section*{One-Year Limited Warranty for Commercial Electronic Product}

This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.

Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. This warranty is void if the product has been damaged by accident or unreasonable use, neglect, improper service, or other causes not arising out of defects in materials or construction.

Warranty Disclaimers. Any implied warranties arising out of this sale, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, are limited in duration to the above oneyear period. Texas Instruments shall not be liable for loss of use of the product or other incidental or consequential costs, expenses, or damages incurred by the consumer or any other user.

Some jurisdictions do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from jurisdiction to jurisdiction.

Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a new or reconditioned model of an equivalent quality (at Tl's option) when the product is returned to the original point of purchase. The repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than your cost to return the product, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value if you mail it.

Software: Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."

Copyright: The software and any documentation supplied with this product are protected by copyright.

\section*{All Customers Outside the U.S. and Canada}

For information about the length and terms of the warranty, refer to your package and/or to the warranty statement enclosed with this product, or contact your local Texas Instruments retailer/distributor.

\section*{Index}
! (factorial), 94692
" " (string indicator), 484
" (seconds notation), 97, 697
I\% (annual interest rate variable), 444, 462
- (degrees notation), 692
/ (division), 63, 696
e (exponent), 14 20. 661
\({ }^{4}\) (graph style, animate), 117
\(\because\) (graph style, dot), 17
- (graph style, line), 117
\(\geq\) (greater than or equal to), 101, 694
\(\leq\) (less than or equal to). 101, 694
* (multiplication), 63, 695
- (negation), 49 66695
\# (not equal to), 101, 694
N (number of payment periods variable), 444, 462
\(\pi\) (pi), 66
I- (plot type, box), 371
Ine (plot type, histogram), 370
N... (plot type, modified box), 370
(plot type, normal probability), 372
- (subtraction), 63, 696
\(\iota\) (user-created list name symbol), 309, 668
\(\rightarrow\) Store, 29. 686
\(\sqrt{ }\) ( (square root), 64, 695
ㅁ, • (pixel mark), 235, 373
\({ }^{-1}\) (inverse), 64, 271, 694
\(\chi^{2}\)-Test (chi-square test), 412, 657
\(\chi^{2} \mathbf{c d f}(\) (chi-square cdf), 429, 657
\(\chi^{2}\) pdf( (chi-square pdf), 428, 657
Fcdf(, 430, 662
-Dec (to decimal conversion), 67. 659
\(\rightarrow \operatorname{dim}\) ( (assign dimension), 275, 301, 660
LDIST, 471
DDMS (to degrees/minutes/seconds), 99 . 661
LDREF, 471
DEff( (to effective interest rate), 459, 662
ff(x)dx operation on a graph, 153
PFrac (to fraction), 67, 664
\(\Sigma \operatorname{lnt}(\) (sum of interest), 455, 668
LLIGHT, 471
\(\Delta\) List(, 303, 669
LLREF, 471
\(N\) Nom ( to nominal interest rate), 459. 672
Fpdf(, 429, 664
-Polar (to polar), 91, 675
\(\operatorname{PPrn}\) ( (sum of principal), 455, 676

Rect (to rectangular), 91,679
*row(, 282, 680
*row+(, 282, 680
\(\Delta\) Tbl (table step variable), 205
LTEMP, 471
LTREF, 471
LVOLT, 471
LVREF=, 471
\(\Delta X\) window variable, 124
\(\Delta \mathbf{Y}\) window variable, 124
' (minutes notation), 97, 697
( ) (parentheses), 48
+ (addition), 63, 696
+ (concatenation), 490, 696
+ (pixel mark), 235, 373
: (colon), 504
< (less than), 101, 694
= (equal-to relational test), 101, 693
> (greater than), 101, 694
[ ] (matrix indicator), 265
^ (power), 64, 695
\{ \} (list indicator), 288
1-PropZInt (one-proportion \(z\) confidence interval), 410, 676
1-PropZTest (one-proportion \(z\) test), 402, 676
1-Var Stats (one-variable statistics), 357, 689
\(1^{\wedge}\) ^( (power of ten), 65, 695
2 (square), 64, 694

2-PropZInt (two-proportion \(z\) confidence interval), 411, 676
2-PropZTest (two-proportion \(z\) test), 403, 677
2-SampFTest (two-sample F-Test), 414, 681
2-SampTInt (two-sample \(t\) confidence interval), 408, 681
2-SampTTest (two-sample \(t\) test), 400, 682
2-SampZInt (two-sample \(z\) confidence interval), 407, 682
2-SampZTest (two-sample z test), 399, 682
2-Var Stats (two-variable statistics), 358, 689
3 (cube), 68693
\(\sqrt[3]{ }\) ( (cube root), 68, 693

a+bi (rectangular complex mode), 24.
84. 656
about, 596
above graph style( \({ }^{\text {(7) }}\) ), 117
abs( (absolute value), 79, 90, 271, 655
accuracy information
computational and graphing, 754 function limits and results, 756 graphing, 132
addition (+), 63,696
alpha cursor, 12
alpha-lock, 18
alternative hypothesis, 391
amortization
\(\Sigma \operatorname{lnt}(\) (sum of interest), 455, 668
\(\operatorname{Prn}\) ( (sum of principal), 455, 676
bal( (amortization balance), 454, 656
calculating schedules, 454
formula, 731
and (Boolean operator), 103, 655
ANGLE menu, 97
angle modes, 22
angle(, 90,655
animate graph style (i), 117
ANOVA( (one-way variance analysis), 417, 655
formula, 722
Ans (last answer), 36, 599, 655
APD (Automatic Power Down), 6
applications. See examples,
applications
Apps, 27, 598
AppVars, 27, 598
arccosine \(\left(\cos ^{-1}\right), 63\)
Archive, 30, 610, 655
archive full error, 628, 742
garbage collection, 623
memory error, 623
archived variables, 719
arcsine \(\left(\boldsymbol{s i n}^{-1}(), 63\right.\)
arctangent \(\left(\tan ^{-1}(), 63\right.\)
Asm(, 537, 655
AsmComp(, 537, 655
AsmPrgm(, 537, 655
assembly language programs, 537
augment(, 277, 307, 656
Automatic Power Down (APD), 6
automatic regression equation, 353
automatic residual list (RESID), 352
axes format, sequence graphing, 187
axes, displaying (AxesOn, AxesOff), 127, 656
AxesOff, 127, 656
AxesOn, 127, 656
\[
-B-
\]
backing up calculator memory, 638, 650
bal( (amortization balance), 454, 656
bar, 468
batteries, 7,735
below graph style ( \({ }^{\ldots}\) ), 117
binomcdf(, 431, 656
binompdf(, 430, 656
block, 623
Boolean logic, 103
box pixel mark (口), 235, 373

Boxplot plot type ( \({ }^{\text {凹- }}\) ), 371
busy indicator, 11

\(\mathbf{C / Y}\) (compounding-periods-per-year variable), 444, 463
CALCULATE menu, 147
Calculate output option, 388, 392
cash flow
calculating, 452
formula, 732
irr( (internal rate of return), 453, 668
npv( (net present value), 453, 673
CATALOG, 481
CBL 2/CBL, 464
CBL/CBR
Quitting, 480
Running, 464
Selecting, 464
CBL/CBR APP menu, 467
CBR, 464, 533, 633, 665
check memory, 596
chi-square cdf ( \(\chi^{2}\) cdf( \(), 429,657\)
chi-square pdf ( \(\chi^{2} \mathbf{p d f}(), 428,657\)
chi-square test ( \(\chi^{2}\)-Test), 412, 657
Circle( (draw circle), 228, 657
Clear Entries, 596, 657
clearing
all lists (CIrAIILists), 596, 657
drawing (CIrDraw), 217, 657
entries (Clear Entries), 596, 657
home screen (ClrHome), 532, 657
list (CIrList), 349. 658
table (CIrTable), 532, 658
CIrAIILists (clear all lists), 596, 657
CIrDraw (clear drawing), 217, 657
CIrHome (clear home screen), 532, 657
CIrList (clear list), 349, 658
CIrTable (clear table), 532, 658
coefficients of determination ( \(\mathbf{r}^{2}, \mathbf{R}^{2}\), 354
colon separator (:), 504
combinations (nCr), 93672
compiling an assembly program, 537, 655
complex
modes \(\left(\mathbf{a}+\mathbf{b i}\right.\), re \(\left.^{\wedge} \theta \mathbf{i}\right), 24.84 .656\), 679
numbers, 24.84 .679
compounding-periods-per-year variable (C/Y), 444, 463
concatenation (+), 490, 696
confidence intervals, 392
conj( (conjugate), 88, 658
Connected (plotting mode), 23, 658
connecting two calculators, 633
contrast (display), 8
convergence, sequence graphing, 195
conversions

Dec (to decimal), 67, 659
DMS (to degrees/minutes/ seconds), 99661
-Eff (to effective interest rate), 459
-Frac (to fraction conversion), 67, 664
Nom (to nominal interest rate conversion), 459, 672
PPolar (to polar conversion), 91, 675
Rect (to rectangular conversion), 91. 679

Equ-String( (equation-to-string conversion), 491, 662
List)matr( (list-to-matrix conversion), 279, 308, 670
Matrylist( (matrix-to-list conversion), 278, 308, 670
P>Rx(, P>Ry( (polar-to-rectangular conversion), 100, 678
R>Pr(, R>P日( (rectangular-to-polar conversion), 100, 681
String)Equ( (string-to-equation conversion), 493, 686
CoordOff, 126, 658
CoordOn, 126, 658
correlation coefficient (r), 354
\(\boldsymbol{\operatorname { c o s }}^{-1}\) ( (arccosine), 63. 658
\(\cos (\) (cosine), 63, 658
\(\cosh ^{-1}\) ( (hyperbolic arccosine), 496, 658
\(\cosh\) ( (hyperbolic cosine), 496, 658
cosine \((\cos (), 63,658\)
cross pixel mark (+), 235, 373
cube ( \({ }^{3}, 68,693\)
cube root \((\sqrt[3]{ } \sqrt{( }), 68,693\)
cubic regression (CubicReg), 359, 658
CubicReg (cubic regression), 359,658
cumSum( (cumulative sum), 279, 303, 659
cumulative sum (cumSum(), 279, 303 , 659
cursors, 12,18

data collection
methods, 468
options, 468
results, 471
starting \& stopping, 479
Data input option, 388, 390
data logger, 473
data points, 475
data results, 471
days between dates \((\mathbf{d b d}(), 460,659\). 733
dbd( (days between dates), 460, 659.
733
decimal mode (float or fixed), 21
decrement and skip (DS<(), 521, 661
definite integral, 70 152, 165
defragmenting, 622
Degree angle mode, 22. 97.659
degrees notation \(\left({ }^{\circ}\right), 98,692\)
delete variable contents (DelVar), 523,
659
deleting items from memory, 599
DelVar (delete variable contents), 659
DependAsk, 206, 209, 659
DependAuto, 206, 209, 659
derivative. See numerical derivative
\(\operatorname{det}(\) (determinant), 275, 659
determinant ( \(\operatorname{det}(), 275,659\)
DiagnosticOff, 354. 660
DiagnosticOn, 354, 660
diagnostics display mode( \(\left.\mathbf{r t}^{\mathbf{2}}, \mathbf{R}^{\mathbf{2}}\right), 354\)
differentiation, 72. 152. 165. 175
dim( (dimension), 275, 301, 660
dimensioning a list or matrix, 275, 301, 660
directions, 471
DIRECTNS, 471
Disp (display), 528, 529, 660
DispGraph (display graph), 530, 660
display contrast, 8
display cursors, 12
DispTable (display table), 530, 661
DISTR (distributions menu), 424
DISTR DRAW (distributions drawing menu), 434
distribution functions
\(\chi^{2}\) cdf(, 429, 657
\(\chi^{2}\) pdf(, 428, 657
Fcdf(, 430. 662
Fpdf(, 429, 664
binomcdf(, 431, 656
binompdf(, 430, 656
geometcdf(, 433, 665
geometpdf(, 433, 665
invNorm(, 426, 668
normalcdf(, 426, 672
normalpdf(, 425, 673
poissoncdf(, 432, 675
poissonpdf(, 432, 675
tcdf(, 427. 687
tpdf(, 427, 687
distribution shading instructions
ShadeF(, 437, 684
Shade \({ }^{2}\) (, 436, 684
Shade_t(, 435, 684
ShadeNorm(, 435, 684
division (/), 63. 696
DMS (degrees/minutes/seconds entry notation), 97, 697
Dot (plotting mode), 23, 661
dot graph style ( \((\cdot), 117\)
dot pixel mark ( \(\cdot\) ), 235, 373
\(\mathbf{d r} / \mathbf{d} \theta\) operation on a graph, 175
DRAW menu, 214
Draw output option, 388, 392
DRAW POINTS menu, 233

DRAW STO (draw store menu), 239
DrawF (draw a function), 224, 661
drawing on a graph
circles (Circle(), 228
line segments (Line(), 218
lines (Horizontal, Line(, Vertical), 221
pixels (PxI-Change, PxI-Off, PxI-On, pxl-Test), 237
points ( Pt -Change, \(\mathrm{Pt}-\mathrm{Off}, \mathrm{Pt}-\mathrm{On}\) ), 233
tangents (Tangent), 222
text (Text), 230
using Pen, 232
DrawInv (draw inverse), 224, 661
DS<( (decrement and skip), 521, 661
DuplicateName menu, 644
dx/dt operation on a graph, 152, 165
\(\mathbf{d y} / \mathbf{d x}\) operation on a graph, 152, 165, 175

\(e\) (constant), 65
\(\mathrm{e}^{\wedge}\) ( (exponential), 65, 661
edit keys table, 17
Else, 514
End, 476, 515, 662
Eng (engineering notation mode), 20. 662

ENTRY (last entry key), 33
entry cursor, 12
EOS (Equation Operating System), 47
eqn (equation variable), 72
EqurString( (equation-to-string
conversion), 491, 662
equal-to relational test ( \(=\) ), 101, 693
Equation Operating System (EOS), 47
Equation Solver, 72
equations with multiple roots, 77
errors
diagnosing and correcting, 59
messages, 742
examples-applications
area between curves, 578
areas of regular \(n\)-sided polygons, 588
box plots, 560
box with lid, 546
defining a, 546
defining a table of values, 547
finding calculated maximum, 557
setting the viewing window, 551
tracing the graph, 553
zooming in on the graph, 555
zooming in on the table, 549
cobweb attractors, 572
fundamental theorem of calculus, 584
guess the coefficients, 574
inequalities, 566
mortgage payments, 592
parametric equations, ferris wheel problem, 580
piecewise functions, 564
quadratic formula
converting to a fraction, 542
displaying complex results, 544
entering a calculation, 540
Sierpinski triangle, 570
solving a system of nonlinear equations, 568
unit circle and trig curves, 576
examples-Getting Started
coin flip, 61
compound interest, 442
drawing a tangent line, 212
financing a car, 440
forest and trees, 176
generating a sequence, 283
graphing a circle, 105
mean height of a population, 381
path of a ball, 154
pendulum lengths and periods, 315
polar rose, 166
roots of a function, 203
sending variables, 629
solving a system of linear equations, 256
unit circle, 246
volume of a cylinder, 497
examples-miscellaneous
calculating outstanding loan balances, 456
convergence, 195
daylight hours in Alaska, 363
predator-prey model, 197
exponential regression (ExpReg), 361, 662
expr( (string-to-expression conversion), 491, 662
ExpReg (exponential regression), 361, 662
expression, 13
converting from string (expr(), 491, 662
turning on and off (ExprOn, 128, 662
ExprOff (expression off), 128, 662
ExprOn (expression on), 128, 662

\section*{-F-}
factorial (!), 94.692
family of curves, 131
Fill(, 276, 663
FINANCE CALC menu, 446
FINANCE VARS menu, 462
financial functions
amortization schedules, 454
cash flows, 452
days between dates, 460
interest rate conversions, 459
payment method, 461
time value of money (TVM), 448
Fix (fixed-decimal mode), 21, 663
fixed-decimal mode (Fix), 21, 663
Float (floating-decimal mode), 21, 663
floating-decimal mode (Float), 21. 663
fMax ( function maximum), 69. 663
fMin( (function minimum), 69, 663
fnint( (function integral), 71, 663
FnOff (function off), 115, 663
FnOn (function on), 115, 664
For, 515, 664
format settings, 125, 187
formulas
amortization, 731
ANOVA, 722
cash flow, 732
days between dates, 733
factorial, 94
interest rate conversions, 733
logistic regression, 721
sine regression, 722
time value of money, 728
two-sample F-Test, 724
two-sample \(t\) test, 726
fPart( (fractional part), 80, 273, 664
free-moving cursor, 132
frequency, 357
Full (full-screen mode), 25, 664
full-screen mode (Full), 25, 664
Func (function graphing mode), 23, 664
function graphing
\(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) window variables, 124
accuracy, 132
CALC (calculate menu), 147
defining and displaying, 107
defining in the \(Y=\) editor, 111
defining on the home screen, in a program, 112
deselecting, 114, 115
displaying, 108. 121, 129
evaluating, 113
family of curves, 131
format settings, 125
free-moving cursor, 132
graph styles, 117
maximum of ( \(\mathbf{f M a x}(), 69663\)
minimum of (fMin(), 663
modes, 23 109, 664
moving the cursor to a value, 135
overlaying functions on a graph, 130
panning, 136
pausing or stopping a graph, 129
Quick Zoom, 136
selecting, 114, 115, 664
shading, 119

Smart Graph, 129
tracing, 134
viewing window, 121
window variables, 121, 122, 123
\(\mathrm{Y}=\) editor, 111
ZOOM MEMORY menu, 144
ZOOM menu, 138
function integral (fnlnt(), 71,663
function, definition of, 15
functions and instructions table, 654
future value, 444, 451
FV (future-value variable), 444, 462


G-T (graph-table split-screen mode), 25,
252, 666
garbage collecting, 622
GarbageCollect, 626, 664
Gauge, 468
\(\operatorname{gcd}(\) (greatest common divisor), 82,665
GDB (graph database), 242
geometcdf(, 433, 665
geometpdf(, 433, 665
Get( (get data from CBL 2/CBL or CBR), 533, 665
GetCalc( (get data from TI-83), 533,
665
getKey, 531, 665

Getting Started. See examples, Getting Started
Goto, 519, 665
graph database (GDB), 242
graph styles, 117
graphing modes, 23
graphing-order modes, 24
GraphStyle(, 524, 665
graph-table split-screen mode (G-T), 25 252, 666
greater than (>), 101, 694
greater than or equal to ( \(\geq\) ), 101, 694
greatest common divisor (gcd(), 82.665
greatest integer (int(), 81, 273, 668
GridOff, 127, 666
GridOn, 127, 666
grouping, 616

\section*{-H-}

Histogram plot type ( 8 mb) , 370
home screen, 10
Horiz (horizontal split-screen mode), 25. 250,666

Horizontal (draw line), 221, 666
hyperbolic functions, 495
hypothesis tests, 396
———
\(i\) (complex number constant), 86
identity(, 277, 666
If instructions
If, 512, 666
If-Then, 513, 666
If-Then-Else, 514, 667
imag( (imaginary part), 89, 667
imaginary part (imag(), 89.667
implied multiplication, 48
increment and skip (IS>(), 520, 668
independent variable, 206, 209, 667
IndpntAsk, 206, 209, 667
IndpntAuto, 206, 209, 667
inferential stat editors, 388
inferential statistics. See stat tests;
confidence intervals
alternative hypotheses, 391
bypassing editors, 393
calculating test results (Calculate), 392
confidence interval calculations, 392
data input or stats input, 390
entering argument values, 390
graphing test results (Draw), 392
input descriptions table, 419
pooled option, 391
STAT TESTS menu, 394
test and interval output variables, 422
Input, 526, 527, 667
insert cursor, 12
inString( (in string), 492, 667
instruction, definition of, 16
int( (greatest integer), 81. 273, 668
integer part (iPart(), 80, 273, 668
integral. See numerical integral
interest rate conversions
VEff( (compute effective interest rate), 459
-Nom( (compute nominal interest rate), 459
calculating, 459
formula, 733
internal rate of return (irr(), 453. 668
intersect operation on a graph, 151
INTRVL (SEC), 475
inverse ( \({ }^{-1}\) ), 64, 271, 694
inverse cumulative normal distribution (invNorm(), 426, 668
inverse trig functions, 63
invNorm( (inverse cumulative normal distribution), 426, 668
iPart( (integer part), 80, 273, 668
irr( (internal rate of return), 453, 668
IS>( (increment and skip), 520, 668
\[
-K-
\]
keyboard
layout, 2
math operations, 63
key-code diagram, 532

LabeIOff, 127, 668
LabeIOn, 127, 668
labels
graph, 127. 668
program, 519, 669
Last Entry, 33
Lb (label), 519, 669
Icm( (least common multiple), 82, 669
least common multiple (Icm(), 82, 669
length( of string, 492, 669
less than (<), 101, 694
less than or equal to ( \(\leq\) ), 101, 694
Light-Time, 468
line graph style ( \({ }^{\circ}\) ), 117
line segments, drawing, 218
Line( (draw line), 220, 669
lines, drawing, 220, 221
LINK RECEIVE menu, 644
LINK SEND menu, 634
linking
receiving items, 644
to a CBL 2/CBL or CBR, 633
to a PC or Macintosh, 633
to a TI-82, 641, 646
transmitting items, 629
two TI-83 Plus units, 638

LinReg(a+bx) (linear regression), 360 , 669
LinReg(ax+b) (linear regression), 359, 669
LinRegTTest (linear regression \(t\) test), 415, 669
LIST MATH menu, 311
LIST NAMES menu, 291
LIST OPS menu, 299
Listrmatr( (lists-to-matrix conversion), 279, 308, 670
lists
accessing an element, 289
attaching formulas, 293, 294, 336
clearing all elements, 333
copying, 289
creating, 286, 332
deleting from memory, 289, 599
detaching formulas, 296, 340
dimension, 288
entering list names, 292, 330
indicator ( \(\{\) \}), 288
naming lists, 286
storing and displaying, 288
transmitting to and from TI-73, 642
transmitting to and from TI-82, 641, 646
using in expressions, 297
using to graph a family of curves, 131, 290
using to select data points from a plot, 305
using with math operations, 63, 298
\(\ln (, 65,670\)
LnReg (logarithmic regression), 360 , 670
\(\log (, 65,670\)
logic (Boolean) operators, 103
Logistic (regression), 361, 670
logistic regression formula, 721
\[
-M-
\]
marked for deletion, 623
MATH CPX (complex menu), 88
MATH menu, 67
MATH NUM (number menu), 79 math operations, 63
MATH PRB (probability menu), 92
Matrlist( (matrix-to-list conversion), 278, 308, 670
matrices
accessing elements, 268
copying, 267
defined, 258
deleting from memory, 261
dimensions, 259, 275, 276
displaying a matrix, 267
displaying matrix elements, 260
editing matrix elements, 262
indicator ([ ]), 265
inverse ( \({ }^{-1}\) ), 271
math functions, 269
matrix math functions ( \(\operatorname{det}\left({ }^{\mathbf{T}}, \operatorname{dim}(\right.\), Fill(, identity(, randM(, augment(, Matr>ist(, Listımatr(, cumSum(), 274
referencing in expressions, 265
relational operations, 272
row operations(ref(, rref(, rowSwap(, row+(, *row(, *row+(), 280
selecting, 258
viewing, 261
MATRX EDIT menu, 258
MATRX MATH menu, 274
MATRX NAMES menu, 265
max, 470
\(\max (\) (maximum), 81, 311, 670
maximum of a function (fMax ()\(, 69663\)
maximum operation on a graph, 150
mean(, 312, 671
Med-Med (median-median), 358, 671
median(, 312, 671
Mem Mgmt/Del menu, 597
memory
backing up, 650
checking available, 596
clearing all list elements from, 602
clearing entries from, 601
deleting items from, 599
error, 626
insufficient during transmission, 653
resetting defaults, 604
resetting memory, 604
MEMORY menu, 596
Menu( (define menu), 521, 671
menus, 3940
defining (Menu(), 521, 671
map, 698
scrolling, 41
meter, 468
min, 470
\(\min (\) (minimum) \(, 81,311,671\)
minimum of a function \((\mathbf{f M i n}(), 69663\)
minimum operation on a graph, 150
minutes notation ('), 97,697
ModBoxplot plot type ( mode settings, 19
a+bi(complex rectangular), 24, 84 . 656
Connected (plotting), 23, 658
Degree (angle), 22, 99. 659
Dot (plotting), 23. 661
Eng (notation), 20. 662
Fix (decimal), 21, 663
Float (decimal), 21, 663
Full (screen), 25, 664
Func (graphing), 23, 664
G-T (screen), 25, 666
Horiz (screen), 25, 666

Normal (notation), 20, 672
Par/Param (graphing), 23, 674
Pol/Polar (graphing), 23, 675
Radian (angle), 22, 99, 678
\(\boldsymbol{r e}^{\wedge} \boldsymbol{\theta} \boldsymbol{i}\) (complex polar), 24.84 .679
Real, 24679
Sci (notation), 20, 683
Seq (graphing), 23. 683
Sequential (graphing order), 24, 683
Simul (graphing order), 24, 685
modified box plot type (ㄸ..), 370
multiple entries on a line, 14
multiplication (*), 63695
multiplicative inverse, 64

\section*{- N-}
nCr (number of combinations), 93, 672
nDeriv( (numerical derivative), 70,672
negation (-), 49, 66, 695
nonrecursive sequences, 182
normal distribution probability
(normalcdf(), 426, 672
Normal notation mode, 20, 672
normal probability plot type ( \(\llcorner\) ), 372
normalcdf( (normal distribution
probability), 426, 672
normalpdf( (probability density
function), 425, 673
NormProbPlot plot type \((\angle), 372\)
not equal to \((\neq), 101,694\)
not( (Boolean operator), 104, 673
nPr (permutations), 93, 673
npv( (net present value), 453, 673
numerical derivative, 70 152. 165, 175
numerical integral, 70, 153
\[
-\mathrm{O}-
\]

Omit, 619, 645
ON/HALT, 480
one-proportion \(z\) confidence interval (1-PropZInt), 410, 676
one-proportion \(z\) test (1-PropZTest), 402, 676
one-sample \(t\) confidence interval (TInterval), 406, 687
one-variable statistics (1-Var Stats), 357, 689
or (Boolean) operator, 103, 673
order of evaluating equations, 47
Output(, 255, 530, 673
Overwrite, 619, 645
Overwrite AII, 619


P>Rx(, P>Ry( (polar-to-rectangular conversions), 100, 678
P/Y (number-of-payment-periods-peryear variable), 444, 463
panning, 136
Par/Param (parametric graphing mode), 23. 674
parametric equations, 159
parametric graphing
CALC (calculate operations on a graph), 165
defining and editing, 158. 159
free-moving cursor, 163
graph format, 161
graph styles, 159
moving the cursor to a value, 164
selecting and deselecting, 160
setting parametric mode, 158
tracing, 163
window variables, 160
\(\mathrm{Y}=\) editor, 158
zoom operations, 165
parentheses, 48
path (4) graph style, 117
Pause, 518, 674
pausing a graph, 129
Pen, 232
permutations (nPr), 93. 673
phase plots, 197
Pi ( \(\pi\) ), 66
Pic (pictures), 239
pictures (Pic), 239
pixel, 237
pixels in Horiz/G-T modes, 238, 254

PLOT, 476
Plot1, , 373, 674
Plot2, 373, 674
Plot3(, 373, 674
PlotsOff, 375, 675
PlotsOn, 375, 675
plotting modes, 23
plotting stat data, 368
PMT (payment amount variable), 444, 462
Pmt Bgn (payment beginning variable), 461, 675
Pmt End (payment end variable), 461, 675
poissoncdf(, 432, 675
poissonpdf(, 432, 675
Pol/Polar (polar graphing mode), 23 168, 675
polar equations, 169
polar form, complex numbers, 87
polar graphing
CALC (calculate operations on a graph), 175
defining and displaying, 168
equations, 169
free-moving cursor, 173
graph format, 171
graph styles, 169
mode (Pol/Polar), 23, 168, 675
moving the cursor to a value, 174
selecting and deselecting, 169
tracing, 173
window variables, 170
\(Y=\) editor, 168
ZOOM operations, 174
PolarGC (polar graphing coordinates), 126, 676
pooled option, 388. 391
power (^), 64,695
power of ten ( \(10^{\wedge}(), 65695\)
present value, 444, 450
previous entry (Last Entry), 33
prgm (program name), 522, 676
PRGM CTL (program control menu), 511
PRGM EDIT menu, 510
PRGM EXEC menu, 510
PRGM I/O (Input/Output menu), 525
PRGM NEW menu, 500
probability, 92
probability density function (normalpdf(), 425, 673
probe, 468
prod ( (product), 313, 676
programming
copying and renaming, 509
creating new, 500
defined, 500
deleting, 501
deleting command lines, 508
editing, 507
entering command lines, 504
executing, 505
inserting command lines, 508
instructions, 511
name (prgm), 522, 676
renaming, 509
running assembly language program, 537
stopping, 506
subroutines, 535
Prompt, 528, 676
Pt-Change, 235, 677
Pt-Off(, 234, 677
Pt-On(, 233, 677
PV (present value variable), 444, 462
p -value, 422
PwrReg (power regression), 361, 677
Pxl-Change(, 237, 677
PxI-Off, 237, 677
PxI-On(, 237, 677
pxI-Test(, 238, 678

\section*{-Q-}

QuadReg (quadratic regression), 359, 678
QuartReg (quartic regression), 360, 678
Quick Zoom, 136
Quit, 619,645
quitting CBL/CBR, 480
\[
-R-
\]
r (correlation coefficient), 354
\({ }^{r}\) (radian notation), 99, 692
\(\mathbf{R} \operatorname{Pr}(\), \(\mathbf{R P P \theta (}\) (rectangular-to-polar conversions), 100, 681
\(\mathbf{r}^{2}, \mathbf{R}^{\mathbf{2}}\) (coefficients of determination), 354
Radian angle mode, 22, 99, 678
radian notation (r), 99, 692
RAM ARCHIVE ALL menu, 603
rand (random number), 92, 678
randBin( (random binomial), 96, 678
randint( (random integer), 95, 679
randM ( (random matrix), 277, 679
randNorm( (random Normal), 95, 679
random seed, 92
Ranger, 468
RCL (recall), 31, 297
re \({ }^{\wedge} \dot{i}\) ( polar complex mode), 24, 84, 679
Real mode, 24, 679
real( (real part), 89, 679
RealTme, 476
RecallGDB, 244, 679
RecallPic, 241, 679
rectangular form, complex numbers, 86

RectGC (rectangular graphing coordinates), 126, 680
recursive sequences, 183
ref( (row-echelon form), 280, 680
reference\#,471
RegEQ (regression equation variable), 353, 599
regression model
automatic regression equation, 353
automatic residual list feature, 352
diagnostics display mode, 354
models, 357
relational operations, 101, 272
Repeat, 517, 680
RESET MEMORY menu, 608
resetting
all memory, 608
archive memory, 606
defaults, 604
memory, 604
RAM memory, 604
residual list (RESID), 352
Return, 523, 680
\(\operatorname{root}\left(\mathbf{x}_{\sqrt{ }}\right), 69,693\)
root of a function, 148
round(, 80, 271, 680
row+(, 680
rowSwap(, 281, 680
rref( (reduced-row-echelon form), 280, 681

samples (\# of), 475
Scatter plot type ( \(\Vdash^{*}\) ), 369
Sci (scientific notation mode), 20, 683
scientific notation, 14
screen modes, 25
second cursor (2nd), 12
second key (2nd), 4
seconds DMS notation ("), 97
sector, 623
Select(, 304, 683
selecting
data points from a plot, 305
functions from the home screen or a program, 115
functions in the \(\mathrm{Y}=\) editor, 115
stat plots from the \(\mathrm{Y}=\) editor, 115
Send( (send to CBL 2/CBL or CBR), 533, 683
SendID, 634
sending. See transmitting
SendOS, 635
Seq (sequence graphing mode), 23, 683
seq( (sequence), 302, 683
sequence graphing
axes format, 187
CALC (calculate menu), 191
defining and displaying, 179
evaluating, 192
free-moving cursor, 189
graph format, 188
graph styles, 181
moving the cursor to a value, 190
nonrecursive sequences, 182
phase plots, 197
recursive sequences, 183
selecting and deselecting, 181
setting sequence mode, 179
TI-83 Plus versus TI-82 table, 202
tracing, 189
web plots, 193
window variables, 185
\(\mathrm{Y}=\) editor, 180
zoom (zoom menu), 191
Sequential (graphing order mode), 24 .
683
service information, 759
setting
display contrast, 8
graph styles, 118
graph styles from a program, 120
modes, 20
modes from a program, 20
split-screen modes, 248
split-screen modes from a program, 255
tables from a program, 206
SetUpEditor, 350, 683
shade above (") graph style, 117
shade below (
ShadeF(, 437, 684
Shade \(\chi^{2}\) 2, 436, 684
Shade, 226, 684
Shade_tt, 435, 684
ShadeNorm(, 435, 684
shading graph areas, 119,226
Simul (simultaneous graphing order
mode), 24685
\(\mathbf{s i n}^{-1}(\) (arcsine), 63685
\(\boldsymbol{\operatorname { s i n }}\) ( (sine), 63, 685
sine ( \(\boldsymbol{\operatorname { s i n }}(), 63,685\)
sine regression formula, 722
\(\sinh ^{-1}\) ( (hyperbolic arcsine), 496. 685
\(\boldsymbol{\operatorname { s i n h }}\) ( (hyperbolic sine), 496, 685
SinReg (sinusoidal regression), 362, 685
Smart Graph, 129
solve(, 77. 685
Solver, 72
solving for variables in the equation solver, 75
sonic, 468
sonic probe, 468
sonic-time graph, 468
SortA ( sort ascending), 299, 348, 685
SortD( (sort descending), 299, 348, 685
split-screen modes
G-T (graph-table) mode, 252
Horiz (horizontal) mode, 250
setting, 248, 255
split-screen values, 231, 238, 254
square (2), 64694
square root \((\sqrt{ }(), 64.695\)
STAT CALC menu, 356
STAT EDIT menu, 348
stat list editor
attaching formulas to list names, 336
clearing elements from lists, 333
creating list names, 332
detaching formulas from list names, 340
displaying, 329
edit-elements context, 344
editing elements of formulagenerated lists, 341
editing list elements, 334
entering list names, 330
enter-names context, 346
formula-generated list names, 338
removing lists, 332
restoring list names L1-L6, 333
switching contexts, 342
view-elements context, 344
view-names context, 346
STAT PLOTS menu, 373
stat tests and confidence intervals
\(\chi^{2}\)-Test (chi-square test), 412

1-PropZInt (one-proportion \(z\) confidence interval), 410
1-PropZTest (one-proportion \(z\) test), 402
2-PropZInt (two-proportion \(z\) confidence interval), 411
2-PropZTest (two-proportion \(z\) test), 403
2-SampFTest (two-sample F-Test), 414
2-SampTInt (two-sample \(t\) confidence interval), 408
2-SampTTest (two-sample \(t\) test), 400
2-SampZInt (two-sample \(z\) confidence interval), 407
2-SampZTest (two-sample \(z\) test), 399
ANOVA( (one-way analysis of variance), 415
LinRegTTest (linear regression \(t\) test), 415
T-Test (one-sample \(t\) test), 397
TInterval (one-sample \(t\) confidence interval), 406
Z-Test (one-sample \(z\) test), 396
ZInterval (one-sample \(z\) confidence interval), 405
STAT TESTS menu, 394
statistical distribution functions. See
distribution functions
statistical plotting, 368
Boxplot (regular box plot), 371
defining, 373
from a program, 378
Histogram, 370
ModBoxplot (modified box plot), 370
NormProbPlot (normal probability plot), 372
Scatter, 369
tracing, 376
turning on/off stat plots, 115, 375
viewing window, 376
xyLine, 369
statistical variables table, 365
Stats input option, 388, 390
stdDev( (standard deviation), 314, 686
Stop, 523, 686
Store ( \(\rightarrow\) ), 29. 686
StoreGDB, 242, 686
StorePic, 239, 686
storing
graph databases (GDBs), 242
graph pictures, 239
variable values, 29
String \(\mathbf{E q u}\) ( (string-to-equation conversions), 493, 686
strings
concatenation (+), 490, 696
converting, 491
defined, 484
displaying contents, 488
entering, 484
functions in CATALOG, 489
length (length(), 492, 669
storing, 487
variables, 486, 487
student- \(t\) distribution
probability (tcdf(), 427, 687
probability density function (tpdf(), 427, 687
sub( (substring), 493, 686
subroutines, 522
subtraction (-), 63, 696
sum( (summation), 313, 686
system variables, 719
\[
-T-
\]

T (transpose matrix), 275, 693
T-Test (one-sample t test), 397, 688
TABLE SETUP screen, 205
tables
description, 209
variables, 205, 207
\(\boldsymbol{\operatorname { t a n }}^{-1}((\) arctangent \(), 63.686\)
\(\boldsymbol{\operatorname { t a n }}\) ( (tangent), 63, 686
tangent \((\boldsymbol{\operatorname { t a n }}(), 63,686\)
tangent lines, drawing, 222
Tangent( (draw line), 222, 687
\(\boldsymbol{t a n h}^{-1}\) ( (hyperbolic arctangent), 496 . 687
\(\tanh (\) (hyperbolic tangent), 496, 687
TbIStart (table start variable), 205
tcdf( (student- \(t\) distribution probability), 427, 687
technical support. 758
Temperature, 468
Temp-Time, 468
TEST (relational menu), 101
TEST LOGIC (Boolean menu), 103
Text(
instruction, 230, 254. 687
placing on a graph, 230, 254
Then, 513, 666
thick ("it) graph style, 117
TI-82
link differences, 646
transmitting to/from, 644
TI-83
Link. See linking
TI-83 Plus
key code diagram, 532
keyboard, 2
menu map. 698
TI Connect, 632
TI-GRAPH LINK, 632, 633
Time axes format, 187,687
time value of money (TVM)

I\% variable (annual interest rate), 462
\(\mathbf{N}\) variable (number of payment periods), 462
\(\mathbf{C} / \mathbf{Y}\) variable (number of compounding periods per year), 463
calculating, 448
formulas, 728
FV variable (future value), 462
\(\mathbf{P} / \mathbf{Y}\) variable (number of payment periods per year), 463
PMT variable (payment amount), 462
PV variable (present value), 462
TVM Solver, 444
tvm N (\# payment periods), 450, 688
tvm_FV (future value), 451, 688
tvm_1\% (interest rate), 449, 688
tvm Pmt (payment amount), 449 , 688
tvm_PV (present value), 450, 688 variables, 462
TInterval (one-sample \(t\) confidence interval), 406, 687
tpdf( (student- \(t\) distribution probability
density function), 427, 687
TRACE
cursor, 135
entering numbers during, 135, 164 , 173, 189
expression display, 128, 135
Trace instruction in a program, 137, 688
transmitting
error conditions, 652
from a TI-73 to a TI-83 Plus, 648
from a TI-82 to a TI-83 Plus, 646
lists to a TI-73, 642
lists to a TI-82, 641
lists to a TI-83 Plus, 648
stopping, 637
to an additional TI-83 Plus, 638
transpose matrix ( \({ }^{( }\)), 275, 693
TRIGGER, 480
trigonometric functions, 63
turning on and off
axes, 127
calculator, 6
coordinates, 126
expressions, 128
functions, 115
grid, 127
labels, 127
pixels, 237
points, 233
stat plots, 115, 375
tvm_N (\# payment periods), 450, 688
tvm_FV (future value), 451, 688
tvm_I\% (interest rate), 449, 688
tvm_Pmt (payment amount), 449, 688
tvm_PV (present value), 450, 688
two-proportion \(z\) confidence interval (2-PropZInt), 411, 676
two-proportion \(z\) test (2-PropZTest), 403, 677
two-sample F-Test formula, 724
two-sample \(t\) test formula, 726
two-variable statistics (2-Var Stats), 358, 689
Type
Bar or Meter, 469
\[
-U-
\]
u sequence function, 179
UnArchive, 30, 610, 689
ungrouping, 616
units, 470
user variables, 718
uv/uvAxes (axes format), 187, 689
uw/uwAxes (axes format), 187,689
\[
-V-
\]
v sequence function, 179
value operation on a graph, 147
variables
complex, 26
displaying and storing values, 30
equation solver, 75
graph databases, 26
graph pictures, 26
independent/dependent, 209
list, 26.286
matrix, 26 258
real, 26
recalling values, 31
solver editor, 74
statistical, 365
string, 486, 487
test and interval output, 422
types, 26
user and system, 27.718
VARS and \(Y\)-VARS menus, 44
variance of a list (variance(), 314, 689
variance( (variance of a list), 314, 689
VARS menu
GDB, 44
Picture, 44
Statistics, 44
String, 44
Table, 44
Window, 44
Zoom, 44
Vertical (draw line), 221, 689
viewing window, 121
Volt, 468
Voltage, 468
Volt-Time, 468
vw/uvAxes (axes format), 187, 689
\[
-W-
\]
w sequence function, 179
warranty information, 760
Web (axes format), 187, 689
web plots, 193
While, 516, 689
window variables function graphing, 121
parametric graphing, 161
polar graphing, 170

\(\mathbf{x}_{\sqrt{ }}(\) root \(), 69,693\)
XFact zoom factor, 145
x-intercept of a root, 148
xor (Boolean) exclusive or operator, 103, 690
\(x^{\text {th }} \operatorname{root}\left(x_{\sqrt{ }}\right), 69\)
xyLine ( \(\downarrow \sim\) ) plot type, 369


Y -VARS menu
Function, 45
On/Off, 45
Parametric, 45
Polar, 45

\section*{\(Y=\) editor}
function graphing, 111
parametric graphing, 158
polar graphing, 168
sequence graphing, 180
YFact zoom factor, 145
\[
-Z-
\]

Z-Test (one-sample \(z\) test), 396, 692
ZBox, 139, 690
ZDecimal, 141, 690
zero operation on a graph, 148
ZInteger, 143, 690
ZInterval (one-sample \(z\) confidence
interval), 405, 690
zoom, 138, 139, 140, 141, 142, 143,
144, 145, 146
cursor, 139
factors, 145
function graphing, 138
parametric graphing, 165
polar graphing, 174
sequence graphing, 191
Zoom In (zoom in), 140, 690
ZOOM MEMORY menu, 144
ZOOM menu, 138
Zoom Out (zoom out), 140, 690
ZoomFit (zoom to fit function), 143, 691
ZoomRcl (recall stored window), 145, 691
ZoomStat (statistics zoom), 143, 691
ZoomSto (store zoom window), 144 , 691
ZPrevious (use previous window), 144, 691
ZSquare (set square pixels), 142, 691
ZStandard (use standard window), 142, 691
ZTrig (trigonometric window), 142, 692

\section*{Quick-Find Locator}
Chapter 1: Operating the TI-83 Plus Silver Edition ..... 1
Documentation Conventions ..... 1
TI-83 Plus Keyboard ..... 
Keyboard Zones .....  2
Using the Color-Coded Keyboard ..... 4
Using the 2nd and ALPHA Keys ..... 4
Turning On and Turning Off the TI-83 Plus ..... 6
Turning On the Calculator ..... 6
Turning Off the Calculator ..... 7
Batteries ..... 7
Setting the Display Contrast ..... 8
Adjusting the Display Contrast ..... 8
When to Replace Batteries ..... 9
The Display ..... 10
Types of Displays ..... 10
Home Screen ..... 10
Displaying Entries and Answers ..... 10
Returning to the Home Screen ..... 11
Busy Indicator ..... 11
Display Cursors ..... 12
Entering Expressions and Instructions. ..... 13
What Is an Expression? ..... 13
Entering an Expression ..... 13
Multiple Entries on a Line ..... 14
Entering a Number in Scientific Notation ..... 14
Functions ..... 15
Instructions ..... 16
Interrupting a Calculation ..... 16
TI-83 Plus Edit Keys ..... 17
Setting Modes ..... 19
Checking Mode Settings ..... 19
Changing Mode Settings ..... 20
Setting a Mode from a Program ..... 20
Normal, Sci, Eng ..... 20
Float, 0123456789 ..... 21
Radian, Degree ..... 22
Func, Par, Pol, Seq ..... 23
Connected, Dot ..... 23
Sequential, Simul ..... 24
Real, a+bi, re^ \({ }^{\wedge}\) ..... 24
Full, Horiz, G-T ..... 25
Using TI-83 Plus Variable Names ..... 26
Variables and Defined Items ..... 26
Notes about Variables ..... 27
Storing Variable Values ..... 29
Storing Values in a Variable ..... 29
Displaying a Variable Value ..... 30
Archiving Variables (Archive, Unarchive) ..... 30
Recalling Variable Values ..... 31
Using Recall (RCL) ..... 31
ENTRY (Last Entry) Storage Area ..... 33
Using ENTRY (Last Entry) ..... 33
Accessing a Previous Entry ..... 34
Reexecuting the Previous Entry ..... 34
Multiple Entry Values on a Line ..... 35
Clearing ENTRY ..... 36
Using Ans in an Expression ..... 36
Continuing an Expression ..... 37
Storing Answers ..... 38
TI-83 Plus Menus ..... 39
Using a TI-83 Plus Menu ..... 39
Displaying a Menu ..... 40
Moving from One Menu to Another ..... 41
Scrolling a Menu ..... 41
Selecting an Item from a Menu ..... 41
Leaving a Menu without Making a Selection ..... 43
VARS and VARS Y-VARS Menus ..... 44
VARS Menu ..... 44
Selecting a Variable from the VARS Menu or VARS Y-VARS Menu ..... 45
Equation Operating System (EOS) ..... 47
Order of Evaluation ..... 47
Implied Multiplication ..... 48
Parentheses ..... 48
Negation ..... 49
Special Features of the TI-83 Plus ..... 50
Flash - Electronic Upgradability ..... 50
1.56 Megabytes (M) of Available Memory ..... 50
Applications ..... 51
Archiving ..... 51
Calculator-Based Laboratory \({ }^{\text {TM }}\) (CBL \(2^{\text {TM }}\), CBL \({ }^{\text {TM }}\) ) and Calculator-Based Ranger \({ }^{\text {TM }}\) (CBR \({ }^{\text {TM }}\) ) ..... 52
Other TI-83 Plus Features ..... 53
Graphing ..... 53
Sequences ..... 53
Tables ..... 54
Split Screen ..... 54
Matrices ..... 54
Lists ..... 55
Statistics ..... 55
Inferential Statistics ..... 55
Applications ..... 56
CATALOG ..... 56
Programming ..... 57
Archiving ..... 57
Communication Link ..... 57
Error Conditions ..... 59
Diagnosing an Error ..... 59
Correcting an Error ..... 60
Chapter 2: Math, Angle, and Test Operations ..... 61
Getting Started: Coin Flip ..... 61
Keyboard Math Operations ..... 63
Using Lists with Math Operations ..... 63
+ (Addition), - (Subtraction), * (Multiplication), / (Division) ..... 63
Trigonometric Functions ..... 63
\({ }^{\wedge}\) (Power), \({ }^{2}\) (Square), \(\sqrt{( }\) (Square Root) ..... 64
-1 (Inverse) ..... 64
\(\log \left(, 10^{\wedge}(, \ln (\right.\) ..... 65
\(\mathrm{e}^{\wedge}\) ( (Exponential) ..... 65
e (Constant) ..... 65
- (Negation) ..... 66
\(\pi\) (Pi) ..... 66
MATH Operations ..... 67
MATH Menu ..... 67
-Frac, \(\boldsymbol{D}\) Dec ..... 67
\({ }^{3}\) (Cube), \(3 \sqrt{ }\) ( (Cube Root) ..... 68
\(x_{\sqrt{ }}\) (Root) ..... 69
fMin(, fMax( ..... 69
nDeriv( ..... 70
fnlnt( ..... 71
Using the Equation Solver ..... 72
Solver ..... 72
Entering an Expression in the Equation Solver ..... 72
Entering and Editing Variable Values ..... 74
Solving for a Variable in the Equation Solver ..... 75
Editing an Equation Stored to eqn ..... 77
Equations with Multiple Roots ..... 77
Further Solutions ..... 77
Controlling the Solution for Solver or solve(. ..... 78
Using solve( on the Home Screen or from a Program ..... 78
MATH NUM (Number) Operations ..... 79
MATH NUM Menu ..... 79
abs( ..... 79
round( ..... 80
iPart(, fPart( ..... 80
int( ..... 81
\(\min (, \max (\) ..... 81
lcm(, gcd( ..... 82
Entering and Using Complex Numbers ..... 84
Complex-Number Modes ..... 84
Entering Complex Numbers ..... 85
Note about Radian Versus Degree Mode ..... 85
Interpreting Complex Results ..... 86
Rectangular-Complex Mode ..... 86
Polar-Complex Mode ..... 87
MATH CPX (Complex) Operations ..... 88
MATH CPX Menu ..... 88
conj( ..... 88
real ..... 89
imag( ..... 89
angle( ..... 90
abs( ..... 90
Rect ..... 91
Polar ..... 91
MATH PRB (Probability) Operations ..... 92
MATH PRB Menu ..... 92
rand ..... 92
nPr, nCr ..... 93
! (Factorial) ..... 94
randlnt( ..... 95
randNorm( ..... 95
randBin( ..... 96
ANGLE Operations ..... 97
ANGLE Menu ..... 97
Entry Notation ..... 97
\({ }^{\circ}\) (Degree) ..... 98
r (Radians) ..... 99
-DMS ..... 99
\(R>P r(, R>P \theta(, P>R x(, P>R y(\) ..... 100
TEST (Relational) Operations ..... 101
TEST Menu ..... 101
\(=, \neq,>, \geq,<, \leq\) ..... 101
Using Tests ..... 102
TEST LOGIC (Boolean) Operations ..... 103
TEST LOGIC Menu ..... 103
Boolean Operators ..... 103
and, or, xor ..... 103
not( ..... 104
Using Boolean Operations ..... 104
Chapter 3: Function Graphing ..... 105
Getting Started: Graphing a Circle ..... 105
Defining Graphs ..... 107
TI-83 Plus-Graphing Mode Similarities ..... 107
Defining a Graph ..... 107
Displaying and Exploring a Graph ..... 108
Saving a Graph for Later Use ..... 108
Setting the Graph Modes ..... 109
Checking and Changing the Graphing Mode ..... 109
Setting Modes from a Program ..... 110
Defining Functions ..... 111
Displaying Functions in the \(\mathrm{Y}=\) Editor ..... 111
Defining or Editing a Function ..... 111
Defining a Function from the Home Screen or a Program ..... 112
Evaluating \(\mathrm{Y}=\) Functions in Expressions ..... 113
Selecting and Deselecting Functions ..... 114
Selecting and Deselecting a Function ..... 114
Turning On or Turning Off a Stat Plot in the \(Y=\) Editor. ..... 115
Selecting and Deselecting Functions from the Home Screen or a Program ..... 115
Setting Graph Styles for Functions ..... 117
Graph Style Icons in the \(\mathrm{Y}=\) Editor ..... 117
Setting the Graph Style ..... 118
Shading Above and Below ..... 119
Setting a Graph Style from a Program ..... 120
Setting the Viewing Window Variables ..... 121
The TI-83 Plus Viewing Window ..... 121
Displaying the Window Variables ..... 121
Changing a Window Variable Value ..... 122
Storing to a Window Variable from the Home Screen or a Program ..... 123
\(\Delta X\) and \(\Delta Y\) ..... 124
Setting the Graph Format ..... 125
Displaying the Format Settings ..... 125
Changing a Format Setting ..... 125
RectGC, PolarGC ..... 126
CoordOn, CoordOff ..... 126
GridOff, GridOn ..... 127
AxesOn, AxesOff ..... 127
LabelOff, LabelOn ..... 127
ExprOn, ExprOff ..... 128
Displaying Graphs ..... 129
Displaying a New Graph ..... 129
Pausing or Stopping a Graph ..... 129
Smart Graph ..... 129
Overlaying Functions on a Graph ..... 130
Graphing a Family of Curves ..... 131
Exploring Graphs with the Free-Moving Cursor ..... 132
Free-Moving Cursor ..... 132
Graphing Accuracy ..... 132
Exploring Graphs with TRACE ..... 134
Beginning a Trace ..... 134
Moving the Trace Cursor ..... 134
Moving the Trace Cursor from Function to Function ..... 135
Moving the Trace Cursor to Any Valid X Value ..... 135
Panning to the Left or Right ..... 136
Quick Zoom ..... 136
Leaving and Returning to TRACE ..... 137
Using TRACE in a Program ..... 137
Exploring Graphs with the ZOOM Instructions ..... 138
ZOOM Menu ..... 138
Zoom Cursor ..... 139
ZBox ..... 139
Zoom In, Zoom Out ..... 140
ZDecimal ..... 141
ZSquare ..... 142
ZStandard ..... 142
ZTrig ..... 142
ZInteger ..... 143
ZoomStat ..... 143
ZoomFit ..... 143
Using ZOOM MEMORY ..... 144
ZOOM MEMORY Menu ..... 144
ZPrevious ..... 144
ZoomSto ..... 144
ZoomRcl ..... 145
ZOOM FACTORS ..... 145
Checking XFact and YFact ..... 145
Changing XFact and YFact ..... 146
Using ZOOM MEMORY Menu Items from the Home Screen or a Program ..... 146
Using the CALC (Calculate) Operations ..... 147
CALCULATE Menu ..... 147
value ..... 147
zero ..... 148
minimum, maximum ..... 150
intersect ..... 151
dy/dx ..... 152
ff( x\() \mathrm{dx}\) ..... 153
Chapter 4: Parametric Graphing ..... 154
Getting Started: Path of a Ball ..... 154
Defining and Displaying Parametric Graphs ..... 158
TI-83 Plus Graphing Mode Similarities ..... 158
Setting Parametric Graphing Mode ..... 158
Displaying the Parametric \(\mathrm{Y}=\) Editor ..... 158
Selecting a Graph Style ..... 159
Defining and Editing Parametric Equations ..... 159
Selecting and Deselecting Parametric Equations ..... 160
Setting Window Variables ..... 160
Setting the Graph Format ..... 161
Displaying a Graph ..... 161
Window Variables and Y-VARS Menus ..... 161
Exploring Parametric Graphs ..... 163
Free-Moving Cursor ..... 163
TRACE ..... 163
Moving the Trace Cursor to Any Valid T Value ..... 164
ZOOM ..... 165
CALC ..... 165
Chapter 5: Polar Graphing ..... 166
Getting Started: Polar Rose ..... 166
Defining and Displaying Polar Graphs ..... 168
TI-83 Plus Graphing Mode Similarities ..... 168
Setting Polar Graphing Mode ..... 168
Displaying the Polar \(\mathrm{Y}=\) Editor ..... 168
Selecting Graph Styles ..... 169
Defining and Editing Polar Equations ..... 169
Selecting and Deselecting Polar Equations ..... 169
Setting Window Variables ..... 170
Setting the Graph Format ..... 171
Displaying a Graph ..... 171
Window Variables and Y-VARS Menus ..... 171
Exploring Polar Graphs ..... 173
Free-Moving Cursor ..... 173
TRACE ..... 173
Moving the Trace Cursor to Any Valid \(\theta\) Value ..... 174
ZOOM ..... 174
CALC ..... 175
Chapter 6: Sequence Graphing ..... 176
Getting Started: Forest and Trees ..... 176
Defining and Displaying Sequence Graphs ..... 179
TI-83 Plus Graphing Mode Similarities ..... 179
Setting Sequence Graphing Mode ..... 179
TI-83 Plus Sequence Functions u, v, and w ..... 179
Displaying the Sequence \(\mathrm{Y}=\) Editor ..... 180
Selecting Graph Styles ..... 181
Selecting and Deselecting Sequence Functions ..... 181
Defining and Editing a Sequence Function ..... 182
Nonrecursive Sequences ..... 182
Recursive Sequences ..... 183
Setting Window Variables ..... 185
Selecting Axes Combinations ..... 187
Setting the Graph Format ..... 187
Setting Axes Format ..... 187
Displaying a Sequence Graph ..... 188
Exploring Sequence Graphs ..... 189
Free-Moving Cursor ..... 189
TRACE ..... 189
Moving the Trace Cursor to Any Valid \(n\) Value ..... 190
ZOOM ..... 191
CALC ..... 191
Evaluating \(u\), v , and w ..... 192
Graphing Web Plots ..... 193
Graphing a Web Plot ..... 193
Valid Functions for Web Plots ..... 193
Displaying the Graph Screen ..... 194
Drawing the Web ..... 194
Using Web Plots to Illustrate Convergence ..... 195
Example: Convergence ..... 195
Graphing Phase Plots ..... 197
Graphing with uv, vw, and uw ..... 197
Example: Predator-Prey Model ..... 197
Comparing TI-83 Plus and TI-82 Sequence Variables ..... 201
Sequences and Window Variables ..... 201
Keystroke Differences Between TI-83 Plus and TI-82 ..... 202
Sequence Keystroke Changes ..... 202
Chapter 7: Tables ..... 203
Getting Started: Roots of a Function ..... 203
Setting Up the Table ..... 205
TABLE SETUP Screen ..... 205
TblStart, \(\Delta\) Tbl ..... 205
Indpnt: Auto, Indpnt: Ask, Depend: Auto, Depend: Ask ..... 206
Setting Up the Table from the Home Screen or a Program ..... 206
Defining the Dependent Variables ..... 207
Defining Dependent Variables from the \(\mathrm{Y}=\) Editor ..... 207
Editing Dependent Variables from the Table Editor ..... 207
Displaying the Table ..... 209
The Table ..... 209
Independent and Dependent Variables ..... 209
Clearing the Table from the Home Screen or a Program ..... 210
Scrolling Independent-Variable Values ..... 210
Displaying Other Dependent Variables ..... 211
Chapter 8: Draw Instructions ..... 212
Getting Started: Drawing a Tangent Line ..... 212
Using the DRAW Menu ..... 214
DRAW Menu ..... 214
Before Drawing on a Graph ..... 215
Drawing on a Graph ..... 215
Clearing Drawings ..... 217
Clearing Drawings When a Graph Is Displayed ..... 217
Clearing Drawings from the Home Screen or a Program ..... 217
Drawing Line Segments ..... 218
Drawing a Line Segment Directly on a Graph ..... 218
Drawing a Line Segment from the Home Screen or a Program ..... 219
Drawing Horizontal and Vertical Lines ..... 220
Drawing a Line Directly on a Graph ..... 220
Drawing a Line from the Home Screen or a Program ..... 221
Drawing Tangent Lines ..... 222
Drawing a Tangent Line Directly on a Graph ..... 222
Drawing a Tangent Line from the Home Screen or a Program ..... 223
Drawing Functions and Inverses ..... 224
Drawing a Function ..... 224
Drawing an Inverse of a Function ..... 224
Shading Areas on a Graph ..... 226
Shading a Graph ..... 226
Drawing Circles ..... 228
Drawing a Circle Directly on a Graph ..... 228
Drawing a Circle from the Home Screen or a Program ..... 229
Placing Text on a Graph ..... 230
Placing Text Directly on a Graph ..... 230
Placing Text on a Graph from the Home Screen or a Program ..... 230
Split Screen ..... 231
Using Pen to Draw on a Graph ..... 232
Using Pen to Draw on a Graph ..... 232
Drawing Points on a Graph ..... 233
DRAW POINTS Menu ..... 233
Drawing Points Directly on a Graph with Pt-On( ..... 233
Erasing Points with \(\mathrm{Pt}^{-O f f}(\) ..... 234
Changing Points with Pt-Change( ..... 235
Drawing Points from the Home Screen or a Program ..... 235
Drawing Pixels ..... 237
TI-83 Plus Pixels ..... 237
Turning On and Off Pixels with Pxl-On( and Pxl-Off( ..... 237
Using pxl-Test( ..... 238
Split Screen ..... 238
Storing Graph Pictures (Pic) ..... 239
DRAW STO Menu ..... 239
Storing a Graph Picture ..... 239
Recalling Graph Pictures (Pic) ..... 241
Recalling a Graph Picture ..... 241
Deleting a Graph Picture ..... 241
Storing Graph Databases (GDB) ..... 242
What Is a Graph Database? ..... 242
Storing a Graph Database ..... 242
Recalling Graph Databases (GDB) ..... 244
Recalling a Graph Database ..... 244
Deleting a Graph Database ..... 245
Chapter 9: Split Screen ..... 246
Getting Started: Exploring the Unit Circle ..... 246
Using Split Screen ..... 248
Setting a Split-Screen Mode ..... 248
Horiz (Horizontal) Split Screen ..... 250
Horiz Mode ..... 250
Moving from Half to Half in Horiz Mode ..... 251
Full Screens in Horiz Mode ..... 251
G-T (Graph-Table) Split Screen ..... 252
G-T Mode ..... 252
Moving from Half to Half in G-T Mode ..... 252
Using TRACE in G-T Mode ..... 253
Full Screens in G-T Mode ..... 253
TI-83 Plus Pixels in Horiz and G-T Modes ..... 254
TI-83 Plus Pixels in Horiz and G-T Modes ..... 254
DRAW POINTS Menu Pixel Instructions ..... 254
DRAW Menu Text( Instruction ..... 254
PRGM I/O Menu Output( Instruction ..... 255
Setting a Split-Screen Mode from the Home Screen or a Program ..... 255
Chapter 10: Matrices ..... 256
Getting Started: Systems of Linear Equations ..... 256
Defining a Matrix ..... 258
What Is a Matrix? ..... 258
Selecting a Matrix ..... 258
Accepting or Changing Matrix Dimensions ..... 259
Viewing and Editing Matrix Elements ..... 260
Displaying Matrix Elements ..... 260
Deleting a Matrix ..... 261
Viewing a Matrix ..... 261
Viewing-Context Keys ..... 262
Editing a Matrix Element ..... 262
Editing-Context Keys ..... 264
Using Matrices with Expressions ..... 265
Using a Matrix in an Expression ..... 265
Entering a Matrix in an Expression ..... 265
Displaying and Copying Matrices ..... 267
Displaying a Matrix ..... 267
Copying One Matrix to Another ..... 267
Accessing a Matrix Element ..... 268
Using Math Functions with Matrices ..... 269
Using Math Functions with Matrices ..... 269
+ (Add), - (Subtract), * (Multiply) ..... 269
- (Negation) ..... 270
abs( ..... 271
round( ..... 271
-1 (Inverse) ..... 271
Powers ..... 272
Relational Operations ..... 272
iPart(, fPart(, int( ..... 273
Using the MATRX MATH Operations ..... 274
MATRX MATH Menu ..... 274
det( ..... 275
T (Transpose) ..... 275
Accessing Matrix Dimensions with dim( ..... 275
Creating a Matrix with dim( ..... 276
Redimensioning a Matrix with \(\operatorname{dim}\) ( ..... 276
Fill ..... 276
identity( ..... 277
randM( ..... 277
augment( ..... 277
Matrsist( ..... 278
Listrmatr( ..... 279
cumSum( ..... 279
Row Operations ..... 280
ref(, rref( ..... 280
rowSwap( ..... 281
row+( ..... 281
*row( ..... 282
*row+( ..... 282
Chapter 11: Lists ..... 283
Getting Started: Generating a Sequence ..... 283
Naming Lists ..... 286
Using TI-83 Plus List Names L1 through L6 ..... 286
Creating a List Name on the Home Screen ..... 286
Storing and Displaying Lists ..... 288
Storing Elements to a List ..... 288
Displaying a List on the Home Screen ..... 288
Copying One List to Another ..... 289
Accessing a List Element ..... 289
Deleting a List from Memory ..... 289
Using Lists in Graphing ..... 290
Entering List Names ..... 291
Using the LIST NAMES Menu ..... 291
Entering a User-Created List Name Directly ..... 292
Attaching Formulas to List Names ..... 293
Attaching a Formula to a List Name ..... 293
Attaching a Formula to a List on the Home Screen or in a Program ..... 294
Detaching a Formula from a List ..... 296
Using Lists in Expressions ..... 297
Using a List in an Expression ..... 297
Using Lists with Math Functions ..... 298
LIST OPS Menu ..... 299
LIST OPS Menu ..... 299
SortA(, SortD( ..... 299
Using dim( to Find List Dimensions ..... 301
Using dim( to Create a List ..... 301
Using dim( to Redimension a List ..... 301
Fill ..... 302
seq( ..... 302
cumSum( ..... 303
\(\Delta\) List( ..... 303
Select ..... 304
Before Using Select( ..... 304
Using Select( to Select Data Points from a Plot ..... 305
augment( ..... 307
Listımatr( ..... 308
Matrrist( ..... 308
LIST MATH Menu ..... 311
LIST MATH Menu ..... 311
\(\min (, \max (\) ..... 311
mean(, median( ..... 312
sum(, prod(. ..... 313
Sums and Products of Numeric Sequences ..... 313
stdDev(, variance( ..... 314
Chapter 12: Statistics ..... 315
Getting Started: Pendulum Lengths and Periods ..... 315
Setting Up Statistical Analyses ..... 328
Using Lists to Store Data ..... 328
Setting Up a Statistical Analysis ..... 328
Displaying the Stat List Editor ..... 329
Using the Stat List Editor ..... 330
Entering a List Name in the Stat List Editor ..... 330
Creating a Name in the Stat List Editor. ..... 332
Removing a List from the Stat List Editor ..... 332
Removing All Lists and Restoring L1 through L6 ..... 333
Clearing All Elements from a List ..... 333
Editing a List Element ..... 334
Attaching Formulas to List Names ..... 336
Attaching a Formula to a List Name in Stat List Editor ..... 336
Using the Stat List Editor When Formula-Generated Lists Are Displayed ..... 338
Handling Errors Resulting from Attached Formulas ..... 339
Detaching Formulas from List Names ..... 340
Detaching a Formula from a List Name ..... 340
Editing an Element of a Formula-Generated List ..... 341
Switching Stat List Editor Contexts ..... 342
Stat List Editor Contexts ..... 342
Stat List Editor Contexts ..... 344
View-Elements Context ..... 344
Edit-Elements Context ..... 344
View-Names Context ..... 346
Enter-Name Context ..... 346
STAT EDIT Menu ..... 348
STAT EDIT Menu ..... 348
SortA(, SortD( ..... 348
CIrList ..... 349
SetUpEditor ..... 350
Restoring L1 through L6 to the Stat List Editor ..... 351
Regression Model Features ..... 352
Regression Model Features ..... 352
Automatic Residual List ..... 352
Automatic Regression Equation ..... 353
Diagnostics Display Mode ..... 354
STAT CALC Menu ..... 356
STAT CALC Menu ..... 356
Frequency of Occurrence for Data Points ..... 357
1-Var Stats ..... 357
2-Var Stats ..... 358
Med-Med (ax+b) ..... 358
LinReg (ax+b) ..... 359
QuadReg ( \(a x^{2}+b x+c\) ) ..... 359
CubicReg-( \(\left.a x^{3}+b x^{2}+c x+d\right)\) ..... 359
QuartReg-( \(\left.a x^{4}+b x^{3}+c x^{2}+d x+e\right)\) ..... 360
LinReg-(a+bx) ..... 360
LnReg-(a+b \(\ln (x)\) ) ..... 360
ExpReg-(abx) ..... 361
PwrReg-(axb) ..... 361
Logistic-c/( \(\left.1+a * e^{-b x}\right)\) ..... 361
SinReg-a \(\sin (b x+c)+d\) ..... 362
SinReg Example: Daylight Hours in Alaska for One Year ..... 363
Statistical Variables ..... 365
Q1 and Q3 ..... 366
Statistical Analysis in a Program ..... 367
Entering Stat Data ..... 367
Statistical Calculations ..... 367
Statistical Plotting ..... 368
Steps for Plotting Statistical Data in Lists ..... 368
\(\ldots\) (Scatter) ..... 369
L \(\sim\) (xyLine) ..... 369
din (Histogram) ..... 370
[-.. (ModBoxplot) ..... 370
[ ..... 371
\(\measuredangle\) (NormProbPlot) ..... 372
Defining the Plots ..... 373
Displaying Other Stat Plot Editors ..... 375
Turning On and Turning Off Stat Plots ..... 375
Defining the Viewing Window ..... 376
Tracing a Stat Plot ..... 376
Statistical Plotting in a Program ..... 378
Defining a Stat Plot in a Program ..... 378
Displaying a Stat Plot from a Program ..... 380
Chapter 13: Inferential Statistics and Distributions ..... 381
Getting Started: Mean Height of a Population ..... 381
Height (in centimeters) of Each of 10 Women ..... 381
Inferential Stat Editors ..... 388
Displaying the Inferential Stat Editors ..... 388
Using an Inferential Stat Editor ..... 388
Selecting Data or Stats ..... 390
Entering the Values for Arguments ..... 390
Selecting an Alternative Hypothesis ( \(\neq<>\) ) ..... 391
Selecting the Pooled Option ..... 391
Selecting Calculate or Draw for a Hypothesis Test ..... 392
Selecting Calculate for a Confidence Interval ..... 392
Bypassing the Inferential Stat Editors ..... 393
STAT TESTS Menu ..... 394
STAT TESTS Menu ..... 394
Inferential Stat Editors for the STAT TESTS Instructions ..... 395
Z-Test ..... 396
T-Test ..... 397
2-SampZTest ..... 399
2-SampTTest ..... 400
1-PropZTest ..... 402
2-PropZTest ..... 403
ZInterval ..... 405
TInterval ..... 406
2-SampZInt ..... 407
2-SampTInt ..... 408
1-PropZInt ..... 410
2-PropZInt ..... 411
\(\chi^{2}\)-Test ..... 412
2-SampFTest ..... 414
LinRegTTest ..... 415
ANOVA( ..... 417
Inferential Statistics Input Descriptions ..... 419
Test and Interval Output Variables ..... 422
Distribution Functions ..... 424
DISTR menu ..... 424
normalpdf( ..... 425
normalcdf( ..... 426
invNorm( ..... 426
tpdf( ..... 427
tcdf( ..... 427
\(\chi^{2} \mathrm{pdf}(\) ..... 428
\(\chi^{2} \operatorname{cdf}(\) ..... 429
Fpdf( ..... 429
Fcdf( ..... 430
binompdf ..... 430
binomcdf( ..... 431
poissonpdf( ..... 432
poissoncdf( ..... 432
geometpdf( ..... 433
geometcdf( ..... 433
Distribution Shading ..... 434
DISTR DRAW Menu ..... 434
ShadeNorm( ..... 435
Shade_t ..... 435
Shade \({ }^{2}\) ( ..... 436
ShadeF( ..... 437
Chapter 14: Applications ..... 438
The Applications Menu ..... 438
Steps for Running the Finance Application ..... 439
Getting Started: Financing a Car ..... 440
Getting Started: Computing Compound Interest ..... 442
Using the TVM Solver ..... 444
Using the TVM Solver ..... 444
Using the Financial Functions ..... 446
Entering Cash Inflows and Cash Outflows ..... 446
FINANCE CALC Menu ..... 446
TVM Solver ..... 447
Calculating Time Value of Money (TVM) ..... 448
Calculating Time Value of Money ..... 448
tvm_Pmt ..... 449
tvm_I\% ..... 449
tvm_PV ..... 450
tvm_N ..... 450
tvm_FV ..... 451
Calculating Cash Flows ..... 452
Calculating a Cash Flow ..... 452
npv(, irr( ..... 453
Calculating Amortization ..... 454
Calculating an Amortization Schedule ..... 454
bal ..... 454
\(\Sigma \operatorname{Prn}(, \Sigma \operatorname{lnt}(\) ..... 455
Amortization Example: Calculating an Outstanding Loan Balance ..... 456
Calculating Interest Conversion ..... 459
Calculating an Interest Conversion ..... 459
Nom( ..... 459
-Eff( ..... 459
Finding Days between Dates/Defining Payment Method ..... 460
dbd ..... 460
Defining the Payment Method ..... 461
Pmt_End ..... 461
Pmt_Bgn ..... 461
Using the TVM Variables ..... 462
FINANCE VARS Menu ..... 462
N, I\%, PV, PMT, FV ..... 462
\(P / Y\) and \(C / Y\) ..... 463
The CBL/CBR Application ..... 464
Steps for Running the CBL/CBR Application ..... 464
Selecting the CBL/CBR Application ..... 466
Data Collection Methods and Options ..... 467
Specifying the Data Collection Method from the CBL/CBR APP Menu ..... 467
Specifying Options for Each Data Collection Method ..... 468
GAUGE ..... 468
TYPE ..... 469
MIN and MAX ..... 470
UNITS ..... 470
DIRECTNS (Directions) ..... 471
Data Collection Comments and Results ..... 471
DATA LOGGER ..... 473
\#SAMPLES ..... 475
INTRVL (SEC) ..... 475
UNITS ..... 475
PLOT ..... 476
Ymin and Ymax ..... 476
DIRECTNS (Directions) ..... 476
Data Collection Results ..... 477
RANGER ..... 478
Starting Data Collection ..... 479
Collecting the Data ..... 479
Stopping Data Collection ..... 480
Chapter 15: CATALOG, Strings, Hyperbolic Functions ..... 481
Browsing the TI-83 Plus CATALOG ..... 481
What is the CATALOG? ..... 481
Selecting an Item from the CATALOG ..... 482
Entering and Using Strings ..... 484
What Is a String? ..... 484
Entering a String ..... 484
Storing Strings to String Variables ..... 486
String Variables ..... 486
Storing a String to a String Variable ..... 487
Displaying the Contents of a String Variable ..... 488
String Functions and Instructions in the CATALOG ..... 489
Displaying String Functions and Instructions in the CATALOG ..... 489
+ (Concatenation) ..... 490
Selecting a String Function from the CATALOG ..... 490
Equ String ( ..... 491
expr( ..... 491
inString( ..... 492
length( ..... 492
String'Equ( ..... 493
sub ..... 493
Entering a Function to Graph during Program Execution ..... 494
Hyperbolic Functions in the CATALOG ..... 495
Hyperbolic Functions ..... 495
sinh \((, \cosh\) (, \(\tanh (\) ..... 496
sinh- \({ }^{-1}\), cosh \(^{-1}\) (, tanh- \({ }^{-1}\) ..... 496
Chapter 16: Programming ..... 497
Getting Started: Volume of a Cylinder ..... 497
Creating and Deleting Programs ..... 500
What is a Program? ..... 500
Creating a New Program ..... 500
Managing Memory and Deleting a Program ..... 501
Entering Command Lines and Executing Programs ..... 504
Entering a Program Command Line ..... 504
Executing a Program ..... 505
Breaking a Program ..... 506
Editing Programs ..... 507
Editing a Program ..... 507
Inserting and Deleting Command Lines ..... 508
Copying and Renaming Programs ..... 509
Copying and Renaming a Program ..... 509
Scrolling the PRGM EXEC and PRGM EDIT Menus ..... 510
PRGM CTL (Control) Instructions ..... 511
PRGM CTL Menu ..... 511
Controlling Program Flow ..... 512
If ..... 512
If-Then ..... 513
If-Then-Else ..... 514
For( ..... 515
While ..... 516
Repeat ..... 517
End ..... 518
Pause ..... 518
Lbl, Goto ..... 519
IS>( ..... 520
DS<( ..... 521
Menu( ..... 521
prgm ..... 522
Return ..... 523
Stop ..... 523
DelVar ..... 523
GraphStyle( ..... 524
PRGM I/O (Input/Output) Instructions ..... 525
PRGM I/O Menu ..... 525
Displaying a Graph with Input ..... 526
Storing a Variable Value with Input ..... 527
Prompt ..... 528
Displaying the Home Screen ..... 528
Displaying Values and Messages ..... 529
DispGraph ..... 530
DispTable ..... 530
Output( ..... 530
getKey ..... 531
TI-83 Plus Key Code Diagram ..... 532
ClrHome, ClrTable ..... 532
GetCalc ..... 533
Get(, Send( ..... 533
Calling Other Programs as Subroutines ..... 535
Calling a Program from Another Program ..... 535
Notes about Calling Programs ..... 536
Running an Assembly Language Program ..... 537
Chapter 17: Activities ..... 540
The Quadratic Formula ..... 540
Entering a Calculation ..... 540
Converting to a Fraction ..... 542
Displaying Complex Results ..... 544
Box with Lid ..... 546
Defining a Function ..... 546
Defining a Table of Values ..... 547
Zooming In on the Table ..... 549
Setting the Viewing Window ..... 551
Displaying and Tracing the Graph ..... 553
Zooming In on the Graph ..... 555
Finding the Calculated Maximum ..... 557
Comparing Test Results Using Box Plots ..... 560
Problem ..... 560
Procedure ..... 561
Graphing Piecewise Functions ..... 564
Problem ..... 564
Procedure ..... 564
Graphing Inequalities ..... 566
Problem ..... 566
Procedure ..... 566
Solving a System of Nonlinear Equations ..... 568
Problem ..... 568
Procedure ..... 568
Using a Program to Create the Sierpinski Triangle ..... 570
Setting up the Program ..... 570
Program ..... 570
Graphing Cobweb Attractors ..... 572
Problem ..... 572
Procedure ..... 572
Using a Program to Guess the Coefficients ..... 574
Setting Up the Program ..... 574
Program ..... 574
Graphing the Unit Circle and Trigonometric Curves ..... 576
Problem ..... 576
Procedure ..... 576
Finding the Area between Curves ..... 578
Problem ..... 578
Procedure ..... 578
Using Parametric Equations: Ferris Wheel Problem ..... 580
Problem ..... 580
Procedure ..... 581
Demonstrating the Fundamental Theorem of Calculus ..... 584
Problem 1 ..... 584
Procedure 1 ..... 584
Problem 2 ..... 586
Procedure 2 ..... 586
Computing Areas of Regular N-Sided Polygons ..... 588
Problem ..... 588
Procedure ..... 588
Computing and Graphing Mortgage Payments ..... 592
Problem ..... 592
Procedure ..... 592
Chapter 18: Memory and Variable Management ..... 596
Checking Available Memory ..... 596
MEMORY Menu ..... 596
Displaying the MEMORY MANAGEMENT/DELETE Menu ..... 597
Deleting Items from Memory ..... 599
Deleting an Item ..... 599
Clearing Entries and List Elements ..... 601
Clear Entries ..... 601
ClrAllLists ..... 602
Resetting the \(\mathrm{Tl}-83\) Plus ..... 603
RAM ARCHIVE ALL Menu ..... 603
Displaying the RAM ARCHIVE ALL Menu ..... 604
Resetting RAM Memory ..... 604
Resetting Archive Memory ..... 606
Resetting All Memory ..... 608
Archiving and UnArchiving Variables ..... 610
Archiving and UnArchiving Variables ..... 610
Grouping and Ungrouping Variables ..... 616
Grouping Variables ..... 616
Ungrouping Variables ..... 619
DuplicateName Menu ..... 619
Garbage Collection ..... 622
Garbage Collection Message ..... 622
Responding to the Garbage Collection Message ..... 622
Why Not Perform Garbage Collection Automatically Without a Message? ..... 623
Why Is Garbage Collection Necessary? ..... 623
How Unarchiving a Variable Affects the Process ..... 625
If the MEMORY Screen Shows Enough Free Space ..... 626
The Garbage Collection Process ..... 626
Using the GarbageCollect Command ..... 627
ERR:ARCHIVE FULL Message ..... 628
Chapter 19: Communication Link ..... 629
Getting Started: Sending Variables ..... 629
TI-83 Plus Silver Edition LINK ..... 632
Connecting Two Calculators with a Unit-to-Unit Cable ..... 633
Linking to the CBL/CBR System ..... 633
Linking to a Computer ..... 633
Selecting Items to Send ..... 634
LINK SEND Menu ..... 634
Sending the Selected Items ..... 636
Stopping a Transmission ..... 637
Sending to a TI-83 Plus Silver Edition or TI-83 Plus ..... 638
Sending to a TI-83 ..... 640
Sending Lists to a TI-82 ..... 641
Sending to a TI-73 ..... 642
Receiving Items ..... 644
LINK RECEIVE Menu ..... 644
Receiving Unit ..... 644
DuplicateName Menu ..... 644
Receiving from a TI-83 Plus Silver Edition or TI-83 Plus ..... 645
Receiving from a TI-83 ..... 646
Receiving from a TI-82 - Resolved Differences ..... 646
Receiving from a TI-82 - Unresolved Differences ..... 647
Receiving from a TI-73 ..... 648
Backing Up RAM Memory ..... 650
Memory Backup Complete ..... 651
Error Conditions ..... 652
Insufficient Memory in Receiving Unit ..... 653
Appendix A: Tables and Reference Information ..... 654
Table of Functions and Instructions ..... 654
TI-83 Plus Menu Map ..... 698
Variables ..... 718
User Variables ..... 718
Archive Variables ..... 719
System Variables ..... 719
Statistics Formulas ..... 721
Logistic ..... 721
SinReg ..... 722
ANOVA( ..... 722
2-SampFTest ..... 724
2-SampTTest ..... 726
Financial Formulas ..... 728
Time Value of Money ..... 728
Amortization ..... 731
Cash Flow ..... 732
Interest Rate Conversions ..... 733
Days between Dates ..... 733
Appendix B: General Information ..... 735
Battery Information ..... 735
When to Replace the Batteries ..... 735
Effects of Replacing the Batteries ..... 736
Battery Precautions ..... 737
Replacing the Batteries ..... 737
In Case of Difficulty ..... 739
Handling a Difficulty ..... 739
Error Conditions ..... 742
Accuracy Information ..... 754
Computational Accuracy ..... 754
Function Limits ..... 756
Function Results ..... 757
Support and Service Information ..... 758
Product Support ..... 758
Product Service ..... 759
Warranty Information ..... 760
Customers in the U.S. and Canada Only ..... 760
Australia \& New Zealand Customers only ..... 761
All Customers Outside the U.S. and Canada ..... 763```


[^0]:    Windows is a registered trademark of Microsoft Corporation.
    Macintosh is a registered trademark of Apple Computer, Inc.

