Guess:

In this method you cover the variable part of the equation and ask what needs to hold this place to make the sentence True. In:

 $10 + \frac{2}{3}t = 6$ we cover the $\frac{2}{3}t$ part and look at $10 + _ = 6$. This means that we need ______ to be - 4. This means that $\frac{2}{3}t = -4$. Repeating the process we need to ask what number in needed in the following sentence: $\frac{2}{3} * \frac{3*}{1} = -4$. So we need a - 2 to get the - 4. So t = -2*3 or -6.

Solver:

Press and move up or down (} †) to get to the 0:Solver... option on the MATH Menu. Press í to select and if the area is not clear, press } to get a starting place.

For the sentence: -27 = 12w + 27 we key in

EQUATION SOLVER ean:0=(-27)-(12W +27)

using parentheses for each side of the equation. Place a guess on the line for the variable. Then press f [SOLVE] to get the answer. Look for the bullet and don't forget to round.

Graph Intersect:

Press **o** and place the left side of the sentence on Y_1 and the right side on Y_2 . Using Bubble Baby and Dolciani [**q**] Look for the place where the two lines cross (intersect). You might have to adjust the Window to see the intersection. For this sentence 0.7(5a - 1.2) = 2a - 0.39 we replace the a with x and key in the following:

Plot1 Plot2 Plot3 +0Y180.7(5X-1.2) +0Y282X-0.39	SUDUX MEMORY 1:ZBox 2:Zoom In
NY3=	JS:ZOOM UUt
\Y4=	4:ZDecimal
∖Y5=	5:ZSquare
∖Y6=	38 ZStandard
×Y7=	7↓ZTri9

If you can **r** and then guess the location, do that, but if you can't, press **y** [CALC] and find the actual intersection.

Substitution/Logic:

In this method, just place a value in for the variable and then key in the sentence using a colon to separate the two commands. Keep trying until you get the Truth (1). For 78 = 22 - 8t we have:

Table:

Start this method like the Intersection, but then you will set up your Table as shown below. Press **y** [TBLSET] and then **y** [TABLE] to see the Table. For the sentence 4y - 21 = 9y - 16 we have:

Looking for the value of x that makes the two functions equal, we have:

By Hand:

For the following sentence we will just do the traditional algebraic manipulation trying to get the variable isolated with a coefficient of 1. 5x - 7 = x + 9

$$5x - 7 - x = x + 9 - x$$
$$4x - 7 = 9$$
$$4x - 7 + 7 = 9 + 7$$
$$4x = 16$$
$$\frac{4x}{4} = \frac{16}{4}$$
$$x = 4$$

Zero:

This starts like Solver but on the **o** editor. For 8x - 12 = 15x - 4x we have:

We are looking for the place where the line crosses the x-axis (where y = 0). You can trace and guess the value, or use the Zero option off of the CALCLATE Menu (Press **y** [CALC] **Á**).

