Algebra II The 7 Methods

Guess:

In this method you cover the variable part of the equation and ask what needs to hold this place to make the sentence True. In:
$10+\frac{2}{3} t=6$ we cover the $\frac{2}{3} t$ part and look at $10+_{\ldots}=6$. This means that we need___ to be -4 . This means that $\frac{2}{3} t=-4$. Repeating the process we need to ask what number in needed in the following sentence: $\frac{2}{3} * \frac{3^{*}}{1}=-4$. So we need a -2 to get the -4 . So $t=-2 * 3$ or -6 .

Solver:

Press \square and move up or down $(\} \dagger)$ to get to the $0:$ Solver... option on the MATH Menu. Press $\mathfrak{I} \quad$ to select and if the area is not clear, press $\}$ ، to get a starting place.

Algebra II The 7 Methods

For the sentence: $-27=12 \mathrm{w}+27$ we key in

using parentheses for each side of the equation. Place a guess on the line for the variable. Then press f [SOLVE] to get the answer. Look for the bullet and don't forget to round.

Graph Intersect:

Press O and place the left side of the sentence on Y_{1} and the right side on Y_{2}. Using Bubble Baby and Dolciani [q ,] Look for the place where the two lines cross (intersect). You might have to adjust the Window to see the intersection. For this sentence $0.7(5 a-1.2)=2 a-0.39$ we replace the a with x and key in the following:

If you can r and then guess the location, do that, but if you can't, press y [CALC] and find the actual intersection.

Algebra II The 7 Methods

Substitution/Logic:
In this method, just place a value in for the variable and then key in the sentence using a colon to separate the two commands. Keep trying until you get the Truth (1). For $78=22-8 \mathrm{t}$ we have:

Algebra II The 7 Methods

Table:

Start this method like the Intersection, but then you will set up your Table as shown below. Press y [TBLSET] and then y [TABLE] to see the Table. For the sentence $4 y-21=9 y-16$ we have:

TABLE SETDF
I ATbl=1

Looking for the value of x that makes the two functions equal, we have:

X	$Y 1$	$Y z$
-86	-61	-106
-9	-57	-97
-7	-49	-79
-7	-45	-70
-6	-41	-61
-4	-87	-52
$X=-16$		

X	$Y 1$	$Y z$
-7	-49	-79
-6	-45	-70
-5	-41	$-6 i$
-4	-37	-43
-3	-29	-34
-7	-25	-25
$X=-1$		

By Hand:

For the following sentence we will just do the traditional algebraic manipulation trying to get the variable isolated with a coefficient of 1 .
$5 x-7=x+9$
$5 x-7-x=x+9-x$
$4 x-7=9$
$4 x-7+7=9+7$
$4 x=16$
$\frac{4 x}{4}=\frac{16}{4}$
$x=4$

Algebra II The 7 Methods

Zero:

This starts like Solver but on the 0 editor. For $8 x-12=15 x-4 x$ we have:

We are looking for the place where the line crosses the x -axis (where $\mathrm{y}=0$). You can trace and guess the value, or use the Zero option off of the CALCLATE Menu (Press y [CALC]Á).

ETHLEDILFTE
 1: val-de
 2Bzero
 3:minimum

 S: intersect.
 6: $\mathrm{d} \cdot \mathrm{y} / \mathrm{dx}$
 7: f f x dx

Algebra II
 The 7 Methods

