\qquad
\qquad
\qquad

SECTION Ready To Go On? Skills Intervention 1-6 Midpoint and Distance in the Coordinate Plane

Find these vocabulary words in Lesson 1-6 and the Multilingual Glossary.

| Vocabulary
 coordinate plane leg \quad hypotenuse |
| :--- | :--- | :--- |

Finding the Coordinates of a Midpoint

Find the coordinates of the midpoint of $\overline{K L}$ with endpoints $K(-9,4)$ and $L(7,-6)$.

Write the Midpoint Formula.
Substitute the coordinates of K and L into the midpoint formula.
Simplify to find the coordinates of the midpoint. \qquad

Finding the Coordinates of an Endpoint

M is the midpoint of $\overline{P R}$. P has coordinates ($-7,1$), and M has coordinates (-1, -4). Find the coordinates of \boldsymbol{R}.

The coordinates of R are unknown. Let the coordinates of R equal (x, y).
Apply the Midpoint Formula. $(-1,-4)=\left(\frac{-7+x}{\square}, \frac{1+y}{\square}\right)$
Write and solve an equation to find the x-coordinate of $R . \frac{-7+x}{\square}=-1 \rightarrow x=$ \square
Write and solve an equation to find the y-coordinate of $R . \frac{1+y}{\square}=\square \longrightarrow y=\square$
The coordinates of R are (\qquad , \qquad).

Finding Distances in the Coordinate Plane

Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from K to L.

Write the Distance Formula.
What are the coordinates of K ? \qquad of L ?
Substitute the coordinates of K and L into the Distance Formula.

Simplify. The length of $\overline{K L}$ is \qquad .

Write the Pythagorean Theorem.
Substitute the lengths of the legs into the Pythagorean Theorem to find the length of the hypotenuse. \qquad Simplify.

The length of the hypotenuse $K L$ is \qquad .

