Language Features
1. Primitive types: int, double, boolean are part of the AP Java subset.
Students already need to understand string concatenation, String.substring and String.equals.
2. Arithmetic operators: +, -, *, /, % are part of the AP Java subset.

3. Increment/decrement operator: ++, -- are part of the AP Java subset.

4. The assignment operator = is part of the AP Java subset.

5. Relational operators ==, !=, <, <=, >, >= are part of the AP Java subset.

6. Logical operations &&, ||, ! are part of the AP Java subset. Students need to understand the "short circuit" evaluation of the && and || operators.

7. The numeric casts (int) and (double) are part of the AP Java subset. Students are expected to understand "truncation towards 0" behavior as well as the fact that positive floating-point numbers can be rounded to the nearest integer as (int)(x + 0.5), negative numbers as (int)(x - 0.5).

8. String concatenation + is part of the AP Java subset.
9. The escape sequences inside strings \\, \", \n are part of the AP Java subset.

10. User input is not part of the AP Java subset. Instead, if reading input is necessary, it will be indicated in a way similar to the following: double x=IO.readDouble();// read user input
11. Testing of output is restricted to System.out.print and System.out.println.

12. Arrays: one-dimensional arrays and two-dimensional rectangular arrays are part of the AP Java subset - both arrays of primitive types (e.g., int[] and arrays of objects (e.g., Student[]) Students are expected to know that a[0].length is the number of columns in a rectangular two-dimensional array a.
13. The control structures if, if/else, while, for, return are part of the AP Java subset.
14. Method overloading (e.g. MyClass.foo(String s) and MyClass.foo(int n)) is part of the AP Java subset. Students should understand signatures

15. Classes: Students are expected to construct objects with the new operator, to supply construction parameters, and to invoke accessor and modifier methods. For the A exam, students are expected to modify existing classes (by adding or modifying methods and instance variables). For the AB exam, students are expected to design their own classes.

16. Visibility: In the AP Java subset, all classes are public. All instance variables are private. Methods, constructors, and constants (static final variables) are either public or private.

17. The AP Java subset uses /* */, and // comments.
18. The final keyword is only used for final block scope constants and static final class scope constants.
19. The concept of static methods is a part of the subset. Students are required to understand when the use of static methods is appropriate. In the exam, static methods are always invoked through a class, never an object.

20. static final variables are part of the subset, other static variables are not.

21. The null reference is part of the AP Java subset.

22. The use of super is restricted to invoking a superclass constructor (super(args)). Invoking a superclass method through the super keyword (i.e., super.method(args)) may be tested on the AB exam.

23. Students need to be able to implement constructors that initialize all instance variables. Class constants are initialized with an initializer: public static final MY_CONSTANT = initialization expression;
24. Students are expected to be able to extend classes and implement interfaces. On the A exam, students are expected to have a reading knowledge of inheritance that includes understanding the concepts of method overriding and polymorphism as well as the ability to modify existing subclasses. On the AB exam, students are expected to implement their own subclasses.

25. Students are expected to be able to read the definitions of interfaces and abstract classes and understand that the abstract methods need to be redefined. On the AB exam, students are expected to define their own interfaces and abstract classes.

26. Students are expected to understand the difference between object equality (equals) and identity (==).
The implementation of equals and hashCode methods are not in the subset.

27. Students are expected to understand that conversion from a subclass reference to a superclass reference is legal and does not require a cast. Class casts (generally from Object to another class) are part of the AP Java subset, to enable the use of generic collections, for example, Person p = (Person)people.get(i);
28. Students are expected to have a basic understanding of packages and a reading knowledge of import statements of the form: import packageName.subpackageName.ClassName;

29. Students are expected to understand the exceptions that occur when their programs contain errors (in particular, NullPointerException, ArrayIndexOutOfBoundsException, ArithmeticException, ClassCastException). Students are expected to be able to throw the unchecked IllegalStateException and NoSuchElementException in their own methods (principally when implementing collection ADTs).

Standard classes and interfaces with their required methods
The following are used on the AP Exam. The exam contains a reference sheet (similar to the following).

1. class java.lang.String : Notes: immutable

· boolean compareTo(Object other)

· boolean equals(Object other)

· int length()

· String substring(int from, int to)

· String substring(int from)

· int indexOf(String s)

2. class java.lang.Math

· static int abs(int x)

· static double abs(double x)

· static double pow(double base, double exponent)

· static double sqrt(double x)

3. class java.lang.Object

· boolean equals(Object other)

· String toString(Object other)

· int hashCode() (AB only)

4. class java.lang.Integer : Notes: immutable

· constructor from int

· intValue

· equals(Object other)

· toString(Object other) (overrides method in java.lang.Object)

· compareTo(Object other) specified by java.lang.Comparable

5. class java.lang.Double : Notes: immutable

· constructor from double

· doubleValue

· equals(Object other)

· toString(Object other)
(overrides method in java.lang.Object)

· compareTo(Object other) specified by java.lang.Comparable

6. class java.util.Random

· int nextInt(int n)

· double nextDouble()

7. class java.util.ArrayList

· AP Computer Science A students only need to know 6 methods below.

· AP Computer Science AB students need to know that ArrayList implements List and which methods from ArrayList implement those specified by List.

· Required methods specified by interface java.util.List

· ListIterator listIterator() (AB only)

· int size()

· boolean add(Object x)

· Required methods not part of interface java.util.List

· Object get(int n)

· void set(int n, Object x)

· boolean add(int n, Object x)

· Object remove(int n)

8. interface java.lang.Comparable (AB only)

· boolean compareTo(Object other)

9. interface java.util.List (AB only)

· ListIterator listIterator()

· int size()

· void add(Object x)

10. class java.util.LinkedList (AB only)

· Notes: listIterator, size, and add are implemented from java.util.List, the others are not part of List

· Required methods

· ListIterator listIterator()

· int size()

· void add(Object x)

· void addFirst(Object x)

· void addLast(Object x)

· Object getFirst()

· Object getLast()

· Object removeFirst()

· Object removeLast()

11. interface java.util.Set (AB only)

· boolean add(Object x)

· boolean contains(Object x)

· boolean remove(Object x)

· int size()

· Iterator iterator()

12. class java.util.HashSet and class java.util.TreeSet (AB only)

· boolean add(Object x)

· boolean contains(Object x)

· boolean remove(Object x)

· int size()

· Iterator iterator()

13. interface java.util.Map (AB only)

· Object put(Object key, Object value)

· Object get(Object key)

· boolean containsKey(Object key)

· int size()

· Set keySet()
14. class java.util.HashMap and class java.util.TreeMap (AB only)

· Object put(Object key, Object value)

· Object get(Object key)

· boolean containsKey(Object key)

· int size()

· Set keySet()

15. interface java.util.Iterator (AB only)

· boolean hasNext()

· Object next()

· void remove()

16. interface java.util.ListIterator (AB only)

· extends interface java.util.Iterator

· In addition to the Iterator methods, the following methods are required

· void add(Object x)

· void set(Object x)

1. Adding an item to the end of an ArrayList takes O(1) time. Adding one item to the front of an ArrayList of size n is O(n).

2. LinkedList is implemented as a doubly linked list with head and tail links. Searches for the kth item in the list start at the end of

the list that is closer.

3. TreeSets and TreeMaps are implemented as balanced binary trees, so add, contains, and remove for TreeSet and put, get, and

containsKey for TreeMap are all O(log n)worst-case.

4. Operations on HashSet and HashMap are O(1) expected time, but could be O(n) worst-case time

5. Iterator and ListIterator for List return the elements in the order they appear in the list.

6. Items inserted in TreeSet and keys inserted in TreeMap must be Comparable (in the AP Java subset).

7. Iterator for TreeSet returns the elements in the order specified by compareTo.

8. Iterator for HashSet returns elements in an arbitrary order.

9. An Iterator or ListIterator can iterate through all elements in a collection in O(n) time. For a HashSet, n is the maximum size

the HashSet has ever been; for other Collection classes, n is the current size. For a TreeSet iterator, the first call to next() takes O(log n)time.
Questions will deal with activities such as the following:

a. modifying the procedural and data organization of the case study program to correspond to changes in the program specification;

b. extending the case study program by writing new code (including new methods for existing classes, new subclasses extending existing classes, and new classes);

c. evaluating alternatives in the representation and design of objects and classes;

d. evaluating alternative incremental development strategies;

e. understanding how the objects/classes of the program interact; and

f. developing test data.
Each examination consists of two sections: a multiple-choice section (40 questions in 1 hour and 15 minutes), which tests proficiency in a wide variety of topics, and a free-response section (4 questions in 1 hour and 45 minutes), which requires the student to demonstrate the ability to solve problems involving more extended reasoning.
