Intro to JAVA

Chapter 6 Lab I

1. P1. Simple Loops
Often it is necessary to repeat a portion of coding several times in a program. A simple loop can automate the repetition. Here is a program that computes the number of digits needed to represent a number in base 10.

/*

 Count number of digits needed to express an integer in base 10

 using multiple if statements

*/

public static void main(String[] args)

{

 String input = JOptionPane.showInputDialog(

 "Input an integer between 1 and 9999");

 int n = Integer.parseInt(n):

 if (n < 1 || n > 9999) return;

 int temp = n;

 int d = 1;

 if (temp > 9)

 {

 temp = temp / 10;

 d++;

 }

 if (temp > 9)

 {

 temp = temp / 10;

 d++;

 }

 if (temp > 9)

 {

 temp = temp / 10;

 d++;

 }

 if (temp > 9)

 {

 temp = temp / 10;

 d++;

 }

 System.out.println(input + " can be expressed in " + d + " digits");

 System.exit(0);

}

Repeating the section below four times, even using copy/paste, is tedious, and the coding works only for input <= 9999.
 if (temp > 9)

 {

 temp = temp / 10;

 d++;

 }

It is helpful to have a way of testing that the input is greater than 1, and to execute the succeeding control block if it is. Replacing if with while does this.
/*

 Count number of digits needed to express an integer in base 10

 using while loop

*/

public static void main(String[] args)

{

 String input = JOptionPane.showInputDialog(

 "Input an integer between 1 and 9999:");

 int n = Integer.parseInt(n):

 if (n < 1 || n > 9999) return;

 int d = 1;

 int temp = n;

 while (temp > 9)
 {

 temp = temp / 10;

 d++;

 }

 System.out.println(input + " can be expressed in " + d + " digits");

 System.exit(0);

}

The fractions 1/2, 1/4, 1/8 get closer and closer to 0 as they are divided by two. Change the previous program to count the number of divisions by two needed to be within 0.0001 of zero.

2. P2. Loop Termination
Which values of nyear cause the following loops to terminate?

/* Count the number of years from a user-input year until the year 3000.

*/

public static void main(String[] args)

{

 int millennium = 3000;

 String input = JOptionPane.showInputDialog(

 "Please enter the current year:");

 int nyear = Integer.parseInt(input);

 while (nyear != millennium)

 {

 nyear++;

 }

System.out.println(" Another " + (millennium - nyear) + "years to the millennium.");

 System.exit(0);

}

3. Re-write the preceding while loop so that it will terminate for any integer input.

4. P3. for Loops
A variable that counts the iterations of a loop is called a loop index or loop control variable. In the preceding examples nyear serves as an index, counting the number of years to the next millennium. This type of loop is frequently written using the for idiom.
 for (loop_index = start_value; condition; index_increment)

Write a program controlled by two (non-nested) for loops that produces the following listing of inclusive dates, from the fifth century B.C. through the fifth century A.D.

Century 5 BC 400-499

Century 4 BC 300-399

Century 3 BC 200-299

Century 2 BC 100-199

Century 1 BC 1-99

Century 1 AD 1-99

Century 2 AD 100-199

Century 3 AD 200-299

Century 4 AD 300-399

Century 5 AD 400-499
5. Write the same program with a single loop for (i = -5 ; i <= 5 ; i++) and an if in the body of the loop.

6. R1. Other Loops
One loop type might be better suited than another to a particular purpose. The following usages are idiomatic.

	For
	Known number of iterations

	while
	Unknown number of iterations

	do while
	At least one iteration

Convert the following while loop to a do while loop.

public static void main(String[] args)

{

 int sum = 0;

 int n = 1;

 while (n != 0)

 {

 String input = JOptionPane(

 "Please enter a number, 0 to quit:");

 n = Integer.parseInt(input);

 if (n != 0)

 {

 sum += n;

 System.out.println("Sum = " + sum);

 }

 }
}
7. Is this an improvement? Why or why not?
David A. Young
page 5
03/24/2003

