Explore Infinite Geometric Series

You can explore infinite geometric series by using a sequence of squares.

Use with Lesson 12-5

Activity

1. On a piece of graph paper, draw a 16×16 unit square. Note that its perimeter is 64 units.
2. Starting at one corner of the original square, draw a new square with side lengths half as long, or in this case, 8×8 units. Note that its perimeter is 32 units.

3. Create a table as shown at right. Fill in the perimeters and the cumulative sum of the perimeters that you have found so far.

Square	Perimeter	Sum
16×16	64	64
8×8	32	96
4×4	\square	\square
2×2	\square	\square
1×1	\square	\square
$\frac{1}{2} \times \frac{1}{2}$	\square	\square

Try This

1. Copy the table, and complete the first 6 rows.
2. Use summation notation to write a geometric series for the perimeters.
3. Use a graphing calculator to find the sum of the first 20 terms of the series.
4. Make a Conjecture Make a conjecture about the sum of the perimeter series if it were to continue indefinitely.
5. Evaluate $\frac{64}{1-\frac{1}{2}}$. How does this relate to your answer to Problem 4 ?
6. Copy and complete the table by finding the area of each square and the cumulative sums.
7. Use summation notation to write a geometric series for the areas.
8. Use a graphing calculator to find the sum of the first 10 terms of the series.
9. Make a Conjecture Make a conjecture about the sum of the area series if it were to continue indefinitely.
10. Evaluate $\frac{256}{1-\frac{1}{4}}$. How does this relate to your answer to Problem 9?
11. Draw a Conclusion Write a formula for the sum of an infinite geometric sequence.

Square	Area	Sum
16×16	\square	\square
8×8	\square	\square
4×4	\square	\square
2×2	\square	\square
1×1	\square	\square
$\frac{1}{2} \times \frac{1}{2}$	\square	\square

