Date Class

Using Matrices to Transform Geometric Figures 4-3

Use with Lesson 4-3

Activity 1

You and your partner are going to explore the concept of using matrices to transform geometric figures.

- **Step 1** Sketch the triangle *ABC* on the grid to the right. A(0, 0), B(4, 0), and C(4, 3).
- **Step 2** Represent triangle *ABC* as matrix *C*.

$$C =$$
 _____ Let $K = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Find KC . _____

Г

Step 3 Graph the triangle represented by KC, $\triangle A'B'C'$, on the coordinate plane with ABC. How are $\triangle ABC$ and $\triangle A'B'C'$ related?

Activity 2

- **Step 1** Use the same coordinates as before to sketch triangle ABC on the grid to the right.
- **Step 2** Represent triangle *ABC* as matrix *D*.
- **Step 3** Let $M = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Find *MD*. _____
- **Step 4** Graph the triangle represented by MD, $\triangle A'B'C'$, on the coordinate plane with ABC.

How are $\triangle ABC$ and $\triangle A'B'C'$ related?

Try This

1. Sketch triangle A(0, 0), B(3, 0), and C(3, 4). Represent the coordinates of the

triangle as a matrix and find the product with matrix *D*. Let $D = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.

How are the two triangles related?

2. Using the same coordinates and matrix $E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. How are the two triangles related?

13

Answer Key continued

LESSON 3-5

- 1. It is two planes that intersect in 3-D.
- **2.** This line represents the intersection of two planes in the 3-D.
- **3.** It represents the line of intersection of two planes although you can not see the two planes as you can in Step 4.
- 4. They represent the intersection of either two planes intersecting along the line two dimensional line y = 25; or three planes intersecting at the point (0, 25, 0), i.e., the (0, 25, 0), i.e., the *y*-intercept of 25.

LESSON 4-2

Activity

Step 8: second; first 11 first; second second; second

Try This 1. $\begin{bmatrix} -15 & -16 \\ -7 & 10 \\ 4 & -2 \\ -8 & -4 \end{bmatrix}$ 2. $\begin{bmatrix} 11 & 3 \\ -27 & -5 \end{bmatrix}$ 3. 3×3 ; $\begin{bmatrix} 3 & -5 \\ 6 & -1 \\ 2 & 5 \end{bmatrix}$

4. No. The number of columns of the left matrix is 2. The number of rows of the right matrix is 1. They are not equal.

LESSON 4-3

Activity 1

The triangle is rotated about the origin counterclockwise 90 degrees.

Answer Key continued

The triangle is rotated about the origin clockwise 90 degrees.

Try This

- 1. The triangle is rotated about the origin 180 degrees.
- **2.** The triangle is rotated 360 degrees about the origin.

LESSON 5-3

1.							
Completing the Square							
Expression	Number of 1-tiles needed to complete the square	Expression written as a square					
$x^{2} + 2x + _$	1	$x^2 + 2x + 1 = (x + 1)^2$					
$x^{2} + 4x + _$	4	$x^2 + 4x + 4 = (x + 2)^2$					
$x^{2} + 6x + $	9	$x^2 + 6x + 9 = (x + 3)^2$					
$x^{2} + 8x + _$	16	$x^2 + 8x + 16 = (x + 4)^2$					
$x^{2} + 10x + $	25	$x^2 + 10x + 25 = (x + 5)^2$					
$x^2 + 12x + $	36	$x^2 + 12x + 36 = (x + 6)^2$					

- **2.** *d* = half of *b*
- **3.** $c = d^2$
- 4. Find the square of half the coefficient on *b*.

LESSON 6-4

Activity 1

Try This

1. Possible answer: The large cube has side length *a*, so its volume is a^3 . The small cube has side length *b*, so its volume is b^3 . The volume of the figure is the volume of the two cubes, $a^3 + b^3$.

2.
$$V_1 = a^2(a - b);$$

 $V_{11} = ab(a - b);$
 $V_{111} = b^2(a + b)$

3.
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

LESSON 7-1

Activity Step 2: 4, $\frac{1}{4}$

Fold number		2	3	4	5	6
Number of regions		2	4	8	16	32
Fraction area of each region	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$

Step 3 and Step 4: Check student's table and graph.

Try This

- 1. growth
- **2.** $y = 2^{x}$
- **3.** 256
- 4. decay

5.
$$y = \left(\frac{1}{2}\right)^{x}$$

6. $\frac{1}{256}$